Derleme
BibTex RIS Kaynak Göster

PVC’nin Çevresel Koşullar Altındaki Bozunma Mekanizmaları, Stabilizasyon Yaklaşımları ve Mikroplastik Potansiyelinin Değerlendirilmesi

Yıl 2025, Cilt: 9 Sayı: 2, 156 - 170, 30.12.2025
https://doi.org/10.47137/usufedbid.1719641

Öz

Polimerin maruz kaldığı çevresel koşullar polimer bozunmasına neden olabilir, bu da polimerleri zayıflatabilir, hizmet ömrünü azaltır, atık ve çevre sağlığı sorunlarına yol açarak, aynı zamanda mikroplastikler (MP'ler) ve nanoplastikler (NP'ler) olarak bilinen küçük ve kalıcı parçacıkların üretimine yol açabilmektedir. Bu oluşan parçacıkların da yine bozunma süreci, halk sağlığı ve çevre sağlığı açısından sorunlara yol açabilmektedir. Bu makalede, poli(vinil klorür) (PVC)’nin güneş ışığı (UV bozunumu), sıcaklık (termal bozunma), hava (oksidatif bozunma), mikroorganizmalar (biyolojik bozunma), nem (hidrolitik bozunma), yağış ortamları (yağmur, kar v.b) ve sucul ekosistem (deniz ve okyanus ortamları v.b.) gibi çevresel etkiler sürecindeki bozunma mekanizmaları, stabilizasyon yaklaşımları ve mikroplastik oluşma potansiyelleri değerlendirilmiştir. PVC'nin çevresel etkiler ile bozunması sonucu oluşan mikroplastiklerin çevreye salınımı, plastik atıkların yönetimi ve stabilizasyon yaklaşımları konularında yeni stratejilerin geliştirilmesini gerektirmektedir. Bu açıdan, PVC'nin bozunma süreçlerinin ve mikroplastiklerin çevreye etkilerinin daha ayrıntılı bir şekilde incelenmesi önemlidir. Bu yüzden, bu çalışmanın, PVC polimerinin çeşitli ortamlardaki bozunma mekanizmalarını, ürünün hizmet ömrü açısından stabilizasyon stratejilerini ve bozunma sonucu oluşan mikroplastiklerin hem oluşum süreçlerini hem de bozunabilirliklerini bütüncül bir bakış açısıyla ve güncel yaklaşımlarla bir arada ele alarak literatüre katkı sağlayacağı düşünülmektedir.

Destekleyen Kurum

Uşak Üniversitesi

Proje Numarası

UPAP 06/ 2024/TP004

Teşekkür

Uşak Üniversitesi Araştırma Fonu'nun (Proje No: UPAP 06/ 2024/TP004) mali desteği kapsamındaki yüksek lisans projesi ile ilgilidir.

Kaynakça

  • Yu J, Sun L, Ma C, Qiao Yu, Yao H. Thermal degradation of PVC: A review, Waste Management, 2016; 48:300– 314.
  • Mersiowsky I. Long-term fate of PVC products and their additives in landfills, Progress in Polymer Science, 2002;27:2227–2277. doi:10.1016/S0079-6700(02)00072-0.
  • Colnik M, Kotnik P, Knez Ž, Škerget M. Degradation of polyvinyl chloride (PVC) waste with supercritical water, Processes, 2022;10:1940. doi:10.3390/pr10101940.
  • Jafari AJ. Analysis and control of harmful emissions from combustion processes, PhD Thesis, Brunel University, Centre for Environmental Research, 2000.
  • Kudzin MH, Piwowarska D, Festinger N, Chruściel JJ. Risks Associated with the Presence of Polyvinyl Chloride in the Environment and Methods for Its Disposal and Utilization, Materials (Basel), 2024;17:173. doi:10.3390/ma17010173.
  • Ivleva NP, Wiesheu AC, Niessner R. Microplastic in aquatic ecosystems, Angew Chem Int Ed, 2017;56:1720–1739. doi:10.1002/anie.201606957.
  • Ouyang Z, Zhang Z, Jing Y, Bai L, Zhao M, Hao X, Li X, Guo X. The photo-aging of polyvinyl chloride microplastics under different UV irradiations, Gondwana Research, 2022;108:72–80.
  • Andrady AL, Hamid H, Torikai A. Effects of solar UV and climate change on materials, Photochemical & Photobiological Sciences, 2010;9:275–294. doi:10.1039/c0pp90038a.
  • Edo GI, Ndudi W, Ali ABM, Yousif E, Zainulabdeen K, Onyibe PN, Ekokotu HA, Isoje EF, Igbuku UA, Essaghah AEA, Ahmed DS, Umar H, Ozsahin DU. Poly(vinyl chloride) (PVC): an updated review of its properties, polymerization, modification, recycling, and applications, J Mater Sci, 2024;59:21605–21648.
  • Yousif E, Ahmed D, Zainulabdeen K, Jawad A. Photo-physical and morphological study of polymers: a review, Phys Chem Res, 2023;11(2):409–424.
  • Decker C. Oxidative degradation of poly(vinyl chloride), J Appl Polym Sci, 1976;20:3321–3336.
  • Troitskii BB, Troitskaya LS. Degenerated branching of chain in poly(vinyl chloride) thermal degradation, European Polymer Journal, 1999;35:2215-2224. doi:10.1016/S0014-3057(98)00312-4.
  • Andrady AL. Ultraviolet radiation and polymers. In: Mark JE, editor. Physical properties of polymers handbook. 2nd ed. New York: Springer; 2007. p. 857-866. doi:10.1007/978-0-387-69002-5_51.
  • Veronelli M, Mauro M, Bresadola S. Influence of thermal dehydrochlorination on the photooxidation kinetics of PVC samples, Polymer Degradation and Stability, 1999;66:349–357.
  • Lu T, Solis-Ramos E, Yi Y, Kumosa M. UV degradation model for polymers and polymer matrix composites, Polymer Degradation and Stability, 2018;154:203–210.
  • Pimentel Real LE, Ferrari AM, Botelho do Rego AM. Comparison of different photo-oxidation conditions of poly(vinyl chloride) for outdoor applications, Polymer Testing, 2008;27:743–751.
  • Folarin OM, Sadiku ER. Thermal stabilizers for poly(vinyl chloride): A review, International Journal of the Physical Sciences, 2011;6(18):4323-4330. doi:10.5897/IJPS11.654.
  • Schiller M, Everard M. Metals in PVC stabilization considered under the aspect of sustainability-one vision, J Vinyl Addit Technol, 2013;19(1):17-24. doi:10.1002/vnl.20328.
  • Wilén C-E, Auer M, Strandén J, Nä1sman JH, Rotzinger B, Steinmann A, King RE III, Zweifel H, Drewes R. Synthesis of novel hindered amine light stabilizers (HALS) and their copolymerization with ethylene or propylene over both soluble and supported metallocene catalyst systems, Macromolecules, 2000;33:5011-5026. doi:10.1021/ma992080k.
  • Bojinov VB, Simeonov DB. Synthesis of novel bifunctional polymer stabilizers—a combination of HALS and UV absorber, Journal of Photochemistry and Photobiology A: Chemistry, 2006;180:205-212. doi:10.1016/j.jphotochem.2005.10.029.
  • Step EN, Turro NJ, Klemchuk PP, Gande ME. Model studies on the mechanism of HALS stabilization, Die Angewandte Makromolekulare Chemie, 1995;232:65-83. doi:10.1002/apmc.1995.052320106.
  • Deliniere H, Lefranc J, Deuz√© F, Lacrampe MF, et al. Optimization of the UV stabilization of a plasticized PVC film for exterior automotive applications, AIP Conf Proc, 2020;2205(1):020007. doi:10.1063/1.5142922.
  • Suzuki T, Kitamura S, Khota R, Sugihara K, Fujimoto N, Ohta S. Estrogenic and antiandrogenic activities of 17 benzophenone derivatives used as UV stabilizers and sunscreens. Toxicology and Applied Pharmacology, 2005;203:9–17.
  • Hadi AG, Yousif E, El-Hiti GA, Jawad K, Alotaibi MH, Ahmed DS, et al. Long-term effect of ultraviolet irradiation on poly(vinyl chloride) films containing naproxen diorganotin(IV) complexes, Molecules, 2019;24:2396.
  • Zhao Y, Dan Y. Preparation and characterization of a high molecular weight UV-stabilizer based on a derivative of 2,4-dihydroxybenzophenone and its application in polymer materials, Journal of Applied Polymer Science, 2006;102:2203-2211. doi:10.1002/app.24530.
  • Zhao Y, Dan Y. Synthesis and characterization of a polymerizable benzophenone derivative and its application in styrenic polymers as UV-stabilizer, European Polymer Journal, 2007;43(10):4541-4551.
  • Ainali NM, Bikiaris DN, Lambropoulou DA. Joint physicochemical effects of UV-B irradiation on microplastics formation: The case of poly(vinyl chloride) and poly(methyl methacrylate), Polymer Degradation and Stability, 2025;238:111366.
  • Yang H, Li X, Guo M, Cao X, Zheng X, Bao D. UV-induced microplastics (MPs) aging leads to comprehensive toxicity, Marine Pollution Bulletin, 2023;189:114745.
  • Tüzüm Demir AP, Ulutan S. Assessment of degradation of plasticized poly(vinyl chloride) films through polyene formation under isothermal conditions, J Appl Polym Sci, 2018;135(17):46092. doi:10.1002/app.46092.
  • Braun D. Thermal degradation of polyvinyl chloride, Pure Appl Chem, 1971;26(2):173-192. doi:10.1351/pac197126020173.
  • Starnes WH Jr. Fifty Years with PVC, The Chemist (Journal of the American Institute of Chemists), 2021;92(1).
  • Lv Y, Liu J, Luo Z, Wang H, Wei Z. Construction of chain segment structure models, and effects on the initial stage of the thermal degradation of poly(vinyl chloride), RSC Adv, 2017;7:37268–37275. doi:10.1039/c7ra07615k.
  • Benavides R, Castillo BM, Castaneda AO, Lopez GM, Arias G. Different thermo-oxidative degradation routes in poly(vinyl chloride), Polymer Degradation and Stability, 2001;73:417–423.
  • Thongpin C, Santavitee O, Sombatsompop N. Degradation mechanism and mechanical properties of PVC in PVC-PE melt blends: effects of molecular architecture, content, and MFI of PE, J Vinyl Addit Technol, 2006;12(3):115-123. doi:10.1002/vnl.20079.
  • Tahira BE, Khan MI, Saeed R, Akhwan S. A review: Thermal degradation and stabilization of poly(vinyl chloride), International Journal of Research (IJR), 2014;1(6). doi:10.29121/ijr.v1.i6.2014.
  • Meng H, Liu J, Xia Y, Hu B, Sun H, Li J, Lu Q. Migration and transformation mechanism of Cl during polyvinyl chloride pyrolysis: the role of structural defects, Polym Degrad Stab, 2024;224:110750. doi:10.1016/j.polymdegradstab.2024.110750.
  • Starnes WH Jr. Structural and mechanistic aspects of the thermal degradation of poly(vinyl chloride), Prog Polym Sci, 2002;27(12):2133-2170.
  • Tüzüm Demir AP, Ulutan S. Migration of phthalate and non-phthalate plasticizers out of plasticized PVC films into air, J Appl Polym Sci, 2013. doi:10.1002/app.38291.
  • Robeson LM. Applications of polymer blends: Emphasis on recent advances, Polymer Engineering and Science, 1984;24(8). doi:10.1002/pen.760240803
  • Singh P, Katiyar P, Singh H. Impact of compatibilization on polypropylene (PP) and acrylonitrile butadiene styrene (ABS) blend: A review, Materials Today: Proceedings, 2023;78:189-197. doi:10.1016/j.matpr.2023.03.017.
  • Marturano V, Cerruti P, Ambrogi V. Polymer additives, Physical Sciences Reviews, 2017;20160130. doi:10.1515/psr-2016-0130
  • Chaochanchaikul K, Rosarpitak V, Sombatsompop N. Structural and thermal stabilizations of PVC and wood/PVC composites by metal stearates and organotin, BioResources, 2011;6:3115-3131. doi:10.15376/biores.6.3.3115-3131.
  • Korkusuz Ç, Tüzüm Demir AP. Evaluation of the thermal stabilization behavior of hydrotalcite against organic stabilizers for plasticized PVC films, Polymer Bulletin, 2020;77:4805-4831. doi:10.1007/s00289-019-02977-8.
  • Putrawana IDGA, Indarto A, Octavia Y. Thermal stabilization of polyvinyl chloride by calcium and zinc carboxylates derived from by-product of palm oil refining, Heliyon, 2022;8:e10079. doi:10.1016/j.heliyon.2022.e10079.
  • Panthi G, Bajagain R, Kwon JH, Hong Y, Chaudhary DK, Kim PG. The release, degradation, and distribution of PVC microplastic-originated phthalate and non-phthalate plasticizers in sediments, Journal of Hazardous Materials, 2024;470:134167. doi:10.1016/j.jhazmat.2023.134167.
  • Saeed S, Iqbal A, Deeba F. Biodegradation study of polyethylene and PVC using naturally occurring plastic degrading microbes, Archives of Microbiology, 2022;204(3):497. doi:10.1007/s00203-022-03081-8.
  • Alshehrei F. Biodegradation of synthetic and natural plastic by microorganisms, Journal of Applied & Environmental Microbiology, 2017;5(1):8-19. doi:10.12691/jaem-5-1-2.
  • Temporiti ME, Nicola L, Nielsen E, Tosi S. Fungal enzymes involved in plastics biodegradation, Microorganisms, 2022;10:1180. doi:10.3390/microorganisms10061180.
  • Shah AA, Hasan F, Hameed A, Ahmed S. Biological degradation of plastics: a comprehensive review, Biotechnology Advances, 2008;26:246-265.
  • Peng BY, Chen Z, Chen J, Yu H, Zhou X, Criddle CS, Wu WM, Zhang Y. Biodegradation of Polyvinyl Chloride (PVC) in Tenebrio molitor (Coleoptera: Tenebrionidae) larvae, Environment International, 2020;145:106106.
  • El-Hiti GA, Ahmed DS, Yousif E, Al-Khazrajy OSA, Abdallh M, Alanazi SA. Modifications of polymers through the addition of ultraviolet absorbers to reduce the aging effect of accelerated and natural irradiation, Polymers (Basel), 2022;14:20. doi:10.3390/polym14010020.
  • Xia B, Sui Q, Du Y, Wang L, Jing J, Zhu L, Zhao X, Sun X, Booth AM, Chen B, Qu K, Xing B. Secondary PVC microplastics are more toxic than primary PVC microplastics to Oryzias melastigma embryos, Journal of Hazardous Materials, 2022;424:127421. doi:10.1016/j.jhazmat.2021.127421.
  • Giacomucci L, Raddadi N, Soccio M, Lotti N, Fava F. Biodegradation of polyvinyl chloride plastic films by enriched anaerobic marine consortia, Marine Environmental Research, 2020;158:104949.
  • Alshehrei F. Biodegradation of synthetic and natural plastic by microorganisms, Journal of Applied & Environmental Microbiology, 2017;5(1):8-19. doi:10.12691/jaem-5-1-2.
  • Mazitova AK, Vikhareva IN, Maskova AR, Gareeva NB, Shaikhullin IR. Study of the effect of additives on biodegradation of PVC materials, Nanotechnologies in Construction, 2020;12(2):94–99. doi:10.15828/2075-8545-2020-12-2-94-99.
  • Lucas N, Bienaimé C, Belloy C, Queneudec M, Silvestre F, Nava-Saucedo JE. Polymer biodegradation: mechanisms and estimation techniques, Chemosphere, 2008;73:429–442.
  • Barilia S, Bernetti A, Sannino C, Montegiove N, Calzoni E, Cesaretti A, Pinchuk I, Pezzolla D, Turchetti B, Buzzini P, Emiliani C, Gigliotti G. Impact of PVC microplastics on soil chemical and microbiological parameters, Environmental Research, 2023;229:115891.
  • Giacomucci L, Raddadi N, Soccio M, Lotti N, Fava F. Polyvinyl chloride biodegradation by Pseudomonas citronellolis and Bacillus flexus, New Biotechnology, 2019;52:35-41.
  • Arun KJ, Meena M. Application of PVC-a superior material in the fields of science and technology, Polymer Plastics Technology and Materials, 2024;63(15):2089-2107. doi:10.1080/25740881.2024.2365288.
  • Wilkes CE, Daniels CA, Summers JW. PVC handbook. 2nd ed. Munich: Hanser Publishers; 2005. ISBN: 3-446-22714-8.
  • Martinsson E, Hjertberg T, Sörvik E. Catalytic effect of HCl on the dehydrochlorination of poly(vinyl chloride), Macromolecules, 1988;21(1):136-139. doi:10.1021/ma00174a032.
  • Kumagai S, Xinsheng W, Yoshimura N. Surface degradation phenomena of outdoor insulating materials due to acid rain, Trans IEE Japan, 1996;116-A(12):662-[end].
  • Ding L, Yu X, Guo X, Zhang Y, Ouyang Z, Liu P, Zhang C, Wang T, Jia H, Zhu L. The photodegradation processes and mechanisms of polyvinyl chloride and polyethylene terephthalate microplastic in aquatic environments: important role of clay minerals, Water Research, 2022;208:117879.
  • Delpla I, Bouchard C, Dorea C, Rodriguez MJ. Assessment of rain event effects on source water quality degradation and subsequent water treatment operations, Science of the Total Environment, 2023;866:161085. doi:10.1016/j.scitotenv.2023.161085.
  • Duan J, Zheng D, Tam NF-Y, Brigante M, Mailhot G, Zhou H, Wu Y, Dong W. Neglected but crucial role played by rainwater in the photodegradation of plastic, ACS EST Water, 2024;4:2859-2870.
  • Matykiewiczová N, Klánová J, Klán P. Photochemical degradation of PCBs in snow. Environ Sci Technol, 2007;41:8308-8314.
  • Rabinovitch EB, Summers JW, Northcott WE. Changes in properties of rigid PVC during weathering, Journal of Vinyl Technology, 1993;15(4):214-218. doi:10.1002/vnl.730150407.
  • Nawrot AP, Migała K, Luks B, Pakszys P, Głowacki P. Chemistry of snow cover and acidic snowfall during a season with a high level of air pollution on the Hans Glacier, Spitsbergen, Polar Science, 2016;10:249-261. doi:10.1016/j.polar.2016.07.002.
  • Zhang X, Liu C, Liu J, Zhang Z, Gong Y, Li H. Release of microplastics from typical rainwater facilities during aging process, Science of the Total Environment, 2022;813:152674.
  • Alabi OA, Ologbonjaye KI, Awosolu O, Alalade OE. Public and environmental health effects of plastic wastes disposal: a review, Journal of Toxicology and Risk Assessment, 2019;5(2):021. doi:10.23937/2572-4061.1510021.
  • Gewert B, Plassmann MM, MacLeod M. Pathways for degradation of plastic polymers floating in the marine environment, Environ Sci Process Impacts, 2015;17:1513-[end].
  • Cai L, Wang J, Peng J, Wu Z, Tan X. Observation of the degradation of three types of plastic pellets exposed to UV irradiation in three different environments, Science of The Total Environment, 2018;628-629:740-747.
  • Khandare SD, Chaudhary DR, Jha B. Bioremediation of polyvinyl chloride (PVC) films by marine bacteria, Marine Pollution Bulletin, 2021;169:112566.
  • Khandare SD, Chaudhary DR, Jha B. Corrigendum to: Marine bacteria-based polyvinyl chloride (PVC) degradation by-products: toxicity analysis on Vigna radiata and edible seaweed Ulva lactuca, Marine Pollution Bulletin, 2022;180:113835.

Evaluation of PVC Degradation Mechanisms, Stabilization Approaches, and Microplastic Formation Potential under Environmental Conditions

Yıl 2025, Cilt: 9 Sayı: 2, 156 - 170, 30.12.2025
https://doi.org/10.47137/usufedbid.1719641

Öz

Environmental conditions to which the polymer is exposed may cause polymer degradation. This can weaken the polymers, shorten their service life, lead to waste and environmental health problems, and as a result, produce small and persistent particles known as microplastics (MPs) and nanoplastics (NPs). These particles can, in turn, create additional problems in terms of the degradation process, public health, and environmental health. In this article, the degradation mechanisms, stabilization approaches, and microplastic formation potential of poly(vinyl chloride) (PVC) under environmental effects, such as sunlight (UV degradation), temperature (thermal degradation), air (oxidative degradation), microorganisms (biological degradation), moisture (hydrolytic degradation), precipitation (rain, snow, etc.), and aquatic habitats (sea and ocean environments, etc.) have been evaluated. The release of microplastics into the environment as a result of PVC's degradation under environmental effects necessitates the development of new strategies for the management of plastic waste and stabilization approaches. From this perspective, it is important to further investigate the degradation processes of PVC and the effects of microplastics on the environment in greater detail. Therefore, this study is believed to contribute to the literature by addressing the degradation mechanisms of PVC polymer in various environments, stabilization strategies in view of the product's service life, and the formation and degradability of microplastics resulting from this process, all from a holistic perspective and with up-to-date approaches.

Proje Numarası

UPAP 06/ 2024/TP004

Kaynakça

  • Yu J, Sun L, Ma C, Qiao Yu, Yao H. Thermal degradation of PVC: A review, Waste Management, 2016; 48:300– 314.
  • Mersiowsky I. Long-term fate of PVC products and their additives in landfills, Progress in Polymer Science, 2002;27:2227–2277. doi:10.1016/S0079-6700(02)00072-0.
  • Colnik M, Kotnik P, Knez Ž, Škerget M. Degradation of polyvinyl chloride (PVC) waste with supercritical water, Processes, 2022;10:1940. doi:10.3390/pr10101940.
  • Jafari AJ. Analysis and control of harmful emissions from combustion processes, PhD Thesis, Brunel University, Centre for Environmental Research, 2000.
  • Kudzin MH, Piwowarska D, Festinger N, Chruściel JJ. Risks Associated with the Presence of Polyvinyl Chloride in the Environment and Methods for Its Disposal and Utilization, Materials (Basel), 2024;17:173. doi:10.3390/ma17010173.
  • Ivleva NP, Wiesheu AC, Niessner R. Microplastic in aquatic ecosystems, Angew Chem Int Ed, 2017;56:1720–1739. doi:10.1002/anie.201606957.
  • Ouyang Z, Zhang Z, Jing Y, Bai L, Zhao M, Hao X, Li X, Guo X. The photo-aging of polyvinyl chloride microplastics under different UV irradiations, Gondwana Research, 2022;108:72–80.
  • Andrady AL, Hamid H, Torikai A. Effects of solar UV and climate change on materials, Photochemical & Photobiological Sciences, 2010;9:275–294. doi:10.1039/c0pp90038a.
  • Edo GI, Ndudi W, Ali ABM, Yousif E, Zainulabdeen K, Onyibe PN, Ekokotu HA, Isoje EF, Igbuku UA, Essaghah AEA, Ahmed DS, Umar H, Ozsahin DU. Poly(vinyl chloride) (PVC): an updated review of its properties, polymerization, modification, recycling, and applications, J Mater Sci, 2024;59:21605–21648.
  • Yousif E, Ahmed D, Zainulabdeen K, Jawad A. Photo-physical and morphological study of polymers: a review, Phys Chem Res, 2023;11(2):409–424.
  • Decker C. Oxidative degradation of poly(vinyl chloride), J Appl Polym Sci, 1976;20:3321–3336.
  • Troitskii BB, Troitskaya LS. Degenerated branching of chain in poly(vinyl chloride) thermal degradation, European Polymer Journal, 1999;35:2215-2224. doi:10.1016/S0014-3057(98)00312-4.
  • Andrady AL. Ultraviolet radiation and polymers. In: Mark JE, editor. Physical properties of polymers handbook. 2nd ed. New York: Springer; 2007. p. 857-866. doi:10.1007/978-0-387-69002-5_51.
  • Veronelli M, Mauro M, Bresadola S. Influence of thermal dehydrochlorination on the photooxidation kinetics of PVC samples, Polymer Degradation and Stability, 1999;66:349–357.
  • Lu T, Solis-Ramos E, Yi Y, Kumosa M. UV degradation model for polymers and polymer matrix composites, Polymer Degradation and Stability, 2018;154:203–210.
  • Pimentel Real LE, Ferrari AM, Botelho do Rego AM. Comparison of different photo-oxidation conditions of poly(vinyl chloride) for outdoor applications, Polymer Testing, 2008;27:743–751.
  • Folarin OM, Sadiku ER. Thermal stabilizers for poly(vinyl chloride): A review, International Journal of the Physical Sciences, 2011;6(18):4323-4330. doi:10.5897/IJPS11.654.
  • Schiller M, Everard M. Metals in PVC stabilization considered under the aspect of sustainability-one vision, J Vinyl Addit Technol, 2013;19(1):17-24. doi:10.1002/vnl.20328.
  • Wilén C-E, Auer M, Strandén J, Nä1sman JH, Rotzinger B, Steinmann A, King RE III, Zweifel H, Drewes R. Synthesis of novel hindered amine light stabilizers (HALS) and their copolymerization with ethylene or propylene over both soluble and supported metallocene catalyst systems, Macromolecules, 2000;33:5011-5026. doi:10.1021/ma992080k.
  • Bojinov VB, Simeonov DB. Synthesis of novel bifunctional polymer stabilizers—a combination of HALS and UV absorber, Journal of Photochemistry and Photobiology A: Chemistry, 2006;180:205-212. doi:10.1016/j.jphotochem.2005.10.029.
  • Step EN, Turro NJ, Klemchuk PP, Gande ME. Model studies on the mechanism of HALS stabilization, Die Angewandte Makromolekulare Chemie, 1995;232:65-83. doi:10.1002/apmc.1995.052320106.
  • Deliniere H, Lefranc J, Deuz√© F, Lacrampe MF, et al. Optimization of the UV stabilization of a plasticized PVC film for exterior automotive applications, AIP Conf Proc, 2020;2205(1):020007. doi:10.1063/1.5142922.
  • Suzuki T, Kitamura S, Khota R, Sugihara K, Fujimoto N, Ohta S. Estrogenic and antiandrogenic activities of 17 benzophenone derivatives used as UV stabilizers and sunscreens. Toxicology and Applied Pharmacology, 2005;203:9–17.
  • Hadi AG, Yousif E, El-Hiti GA, Jawad K, Alotaibi MH, Ahmed DS, et al. Long-term effect of ultraviolet irradiation on poly(vinyl chloride) films containing naproxen diorganotin(IV) complexes, Molecules, 2019;24:2396.
  • Zhao Y, Dan Y. Preparation and characterization of a high molecular weight UV-stabilizer based on a derivative of 2,4-dihydroxybenzophenone and its application in polymer materials, Journal of Applied Polymer Science, 2006;102:2203-2211. doi:10.1002/app.24530.
  • Zhao Y, Dan Y. Synthesis and characterization of a polymerizable benzophenone derivative and its application in styrenic polymers as UV-stabilizer, European Polymer Journal, 2007;43(10):4541-4551.
  • Ainali NM, Bikiaris DN, Lambropoulou DA. Joint physicochemical effects of UV-B irradiation on microplastics formation: The case of poly(vinyl chloride) and poly(methyl methacrylate), Polymer Degradation and Stability, 2025;238:111366.
  • Yang H, Li X, Guo M, Cao X, Zheng X, Bao D. UV-induced microplastics (MPs) aging leads to comprehensive toxicity, Marine Pollution Bulletin, 2023;189:114745.
  • Tüzüm Demir AP, Ulutan S. Assessment of degradation of plasticized poly(vinyl chloride) films through polyene formation under isothermal conditions, J Appl Polym Sci, 2018;135(17):46092. doi:10.1002/app.46092.
  • Braun D. Thermal degradation of polyvinyl chloride, Pure Appl Chem, 1971;26(2):173-192. doi:10.1351/pac197126020173.
  • Starnes WH Jr. Fifty Years with PVC, The Chemist (Journal of the American Institute of Chemists), 2021;92(1).
  • Lv Y, Liu J, Luo Z, Wang H, Wei Z. Construction of chain segment structure models, and effects on the initial stage of the thermal degradation of poly(vinyl chloride), RSC Adv, 2017;7:37268–37275. doi:10.1039/c7ra07615k.
  • Benavides R, Castillo BM, Castaneda AO, Lopez GM, Arias G. Different thermo-oxidative degradation routes in poly(vinyl chloride), Polymer Degradation and Stability, 2001;73:417–423.
  • Thongpin C, Santavitee O, Sombatsompop N. Degradation mechanism and mechanical properties of PVC in PVC-PE melt blends: effects of molecular architecture, content, and MFI of PE, J Vinyl Addit Technol, 2006;12(3):115-123. doi:10.1002/vnl.20079.
  • Tahira BE, Khan MI, Saeed R, Akhwan S. A review: Thermal degradation and stabilization of poly(vinyl chloride), International Journal of Research (IJR), 2014;1(6). doi:10.29121/ijr.v1.i6.2014.
  • Meng H, Liu J, Xia Y, Hu B, Sun H, Li J, Lu Q. Migration and transformation mechanism of Cl during polyvinyl chloride pyrolysis: the role of structural defects, Polym Degrad Stab, 2024;224:110750. doi:10.1016/j.polymdegradstab.2024.110750.
  • Starnes WH Jr. Structural and mechanistic aspects of the thermal degradation of poly(vinyl chloride), Prog Polym Sci, 2002;27(12):2133-2170.
  • Tüzüm Demir AP, Ulutan S. Migration of phthalate and non-phthalate plasticizers out of plasticized PVC films into air, J Appl Polym Sci, 2013. doi:10.1002/app.38291.
  • Robeson LM. Applications of polymer blends: Emphasis on recent advances, Polymer Engineering and Science, 1984;24(8). doi:10.1002/pen.760240803
  • Singh P, Katiyar P, Singh H. Impact of compatibilization on polypropylene (PP) and acrylonitrile butadiene styrene (ABS) blend: A review, Materials Today: Proceedings, 2023;78:189-197. doi:10.1016/j.matpr.2023.03.017.
  • Marturano V, Cerruti P, Ambrogi V. Polymer additives, Physical Sciences Reviews, 2017;20160130. doi:10.1515/psr-2016-0130
  • Chaochanchaikul K, Rosarpitak V, Sombatsompop N. Structural and thermal stabilizations of PVC and wood/PVC composites by metal stearates and organotin, BioResources, 2011;6:3115-3131. doi:10.15376/biores.6.3.3115-3131.
  • Korkusuz Ç, Tüzüm Demir AP. Evaluation of the thermal stabilization behavior of hydrotalcite against organic stabilizers for plasticized PVC films, Polymer Bulletin, 2020;77:4805-4831. doi:10.1007/s00289-019-02977-8.
  • Putrawana IDGA, Indarto A, Octavia Y. Thermal stabilization of polyvinyl chloride by calcium and zinc carboxylates derived from by-product of palm oil refining, Heliyon, 2022;8:e10079. doi:10.1016/j.heliyon.2022.e10079.
  • Panthi G, Bajagain R, Kwon JH, Hong Y, Chaudhary DK, Kim PG. The release, degradation, and distribution of PVC microplastic-originated phthalate and non-phthalate plasticizers in sediments, Journal of Hazardous Materials, 2024;470:134167. doi:10.1016/j.jhazmat.2023.134167.
  • Saeed S, Iqbal A, Deeba F. Biodegradation study of polyethylene and PVC using naturally occurring plastic degrading microbes, Archives of Microbiology, 2022;204(3):497. doi:10.1007/s00203-022-03081-8.
  • Alshehrei F. Biodegradation of synthetic and natural plastic by microorganisms, Journal of Applied & Environmental Microbiology, 2017;5(1):8-19. doi:10.12691/jaem-5-1-2.
  • Temporiti ME, Nicola L, Nielsen E, Tosi S. Fungal enzymes involved in plastics biodegradation, Microorganisms, 2022;10:1180. doi:10.3390/microorganisms10061180.
  • Shah AA, Hasan F, Hameed A, Ahmed S. Biological degradation of plastics: a comprehensive review, Biotechnology Advances, 2008;26:246-265.
  • Peng BY, Chen Z, Chen J, Yu H, Zhou X, Criddle CS, Wu WM, Zhang Y. Biodegradation of Polyvinyl Chloride (PVC) in Tenebrio molitor (Coleoptera: Tenebrionidae) larvae, Environment International, 2020;145:106106.
  • El-Hiti GA, Ahmed DS, Yousif E, Al-Khazrajy OSA, Abdallh M, Alanazi SA. Modifications of polymers through the addition of ultraviolet absorbers to reduce the aging effect of accelerated and natural irradiation, Polymers (Basel), 2022;14:20. doi:10.3390/polym14010020.
  • Xia B, Sui Q, Du Y, Wang L, Jing J, Zhu L, Zhao X, Sun X, Booth AM, Chen B, Qu K, Xing B. Secondary PVC microplastics are more toxic than primary PVC microplastics to Oryzias melastigma embryos, Journal of Hazardous Materials, 2022;424:127421. doi:10.1016/j.jhazmat.2021.127421.
  • Giacomucci L, Raddadi N, Soccio M, Lotti N, Fava F. Biodegradation of polyvinyl chloride plastic films by enriched anaerobic marine consortia, Marine Environmental Research, 2020;158:104949.
  • Alshehrei F. Biodegradation of synthetic and natural plastic by microorganisms, Journal of Applied & Environmental Microbiology, 2017;5(1):8-19. doi:10.12691/jaem-5-1-2.
  • Mazitova AK, Vikhareva IN, Maskova AR, Gareeva NB, Shaikhullin IR. Study of the effect of additives on biodegradation of PVC materials, Nanotechnologies in Construction, 2020;12(2):94–99. doi:10.15828/2075-8545-2020-12-2-94-99.
  • Lucas N, Bienaimé C, Belloy C, Queneudec M, Silvestre F, Nava-Saucedo JE. Polymer biodegradation: mechanisms and estimation techniques, Chemosphere, 2008;73:429–442.
  • Barilia S, Bernetti A, Sannino C, Montegiove N, Calzoni E, Cesaretti A, Pinchuk I, Pezzolla D, Turchetti B, Buzzini P, Emiliani C, Gigliotti G. Impact of PVC microplastics on soil chemical and microbiological parameters, Environmental Research, 2023;229:115891.
  • Giacomucci L, Raddadi N, Soccio M, Lotti N, Fava F. Polyvinyl chloride biodegradation by Pseudomonas citronellolis and Bacillus flexus, New Biotechnology, 2019;52:35-41.
  • Arun KJ, Meena M. Application of PVC-a superior material in the fields of science and technology, Polymer Plastics Technology and Materials, 2024;63(15):2089-2107. doi:10.1080/25740881.2024.2365288.
  • Wilkes CE, Daniels CA, Summers JW. PVC handbook. 2nd ed. Munich: Hanser Publishers; 2005. ISBN: 3-446-22714-8.
  • Martinsson E, Hjertberg T, Sörvik E. Catalytic effect of HCl on the dehydrochlorination of poly(vinyl chloride), Macromolecules, 1988;21(1):136-139. doi:10.1021/ma00174a032.
  • Kumagai S, Xinsheng W, Yoshimura N. Surface degradation phenomena of outdoor insulating materials due to acid rain, Trans IEE Japan, 1996;116-A(12):662-[end].
  • Ding L, Yu X, Guo X, Zhang Y, Ouyang Z, Liu P, Zhang C, Wang T, Jia H, Zhu L. The photodegradation processes and mechanisms of polyvinyl chloride and polyethylene terephthalate microplastic in aquatic environments: important role of clay minerals, Water Research, 2022;208:117879.
  • Delpla I, Bouchard C, Dorea C, Rodriguez MJ. Assessment of rain event effects on source water quality degradation and subsequent water treatment operations, Science of the Total Environment, 2023;866:161085. doi:10.1016/j.scitotenv.2023.161085.
  • Duan J, Zheng D, Tam NF-Y, Brigante M, Mailhot G, Zhou H, Wu Y, Dong W. Neglected but crucial role played by rainwater in the photodegradation of plastic, ACS EST Water, 2024;4:2859-2870.
  • Matykiewiczová N, Klánová J, Klán P. Photochemical degradation of PCBs in snow. Environ Sci Technol, 2007;41:8308-8314.
  • Rabinovitch EB, Summers JW, Northcott WE. Changes in properties of rigid PVC during weathering, Journal of Vinyl Technology, 1993;15(4):214-218. doi:10.1002/vnl.730150407.
  • Nawrot AP, Migała K, Luks B, Pakszys P, Głowacki P. Chemistry of snow cover and acidic snowfall during a season with a high level of air pollution on the Hans Glacier, Spitsbergen, Polar Science, 2016;10:249-261. doi:10.1016/j.polar.2016.07.002.
  • Zhang X, Liu C, Liu J, Zhang Z, Gong Y, Li H. Release of microplastics from typical rainwater facilities during aging process, Science of the Total Environment, 2022;813:152674.
  • Alabi OA, Ologbonjaye KI, Awosolu O, Alalade OE. Public and environmental health effects of plastic wastes disposal: a review, Journal of Toxicology and Risk Assessment, 2019;5(2):021. doi:10.23937/2572-4061.1510021.
  • Gewert B, Plassmann MM, MacLeod M. Pathways for degradation of plastic polymers floating in the marine environment, Environ Sci Process Impacts, 2015;17:1513-[end].
  • Cai L, Wang J, Peng J, Wu Z, Tan X. Observation of the degradation of three types of plastic pellets exposed to UV irradiation in three different environments, Science of The Total Environment, 2018;628-629:740-747.
  • Khandare SD, Chaudhary DR, Jha B. Bioremediation of polyvinyl chloride (PVC) films by marine bacteria, Marine Pollution Bulletin, 2021;169:112566.
  • Khandare SD, Chaudhary DR, Jha B. Corrigendum to: Marine bacteria-based polyvinyl chloride (PVC) degradation by-products: toxicity analysis on Vigna radiata and edible seaweed Ulva lactuca, Marine Pollution Bulletin, 2022;180:113835.
Toplam 74 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Fen Bilgisi Eğitimi
Bölüm Derleme
Yazarlar

Semra Karaoğlan Bu kişi benim 0000-0002-8761-9249

Ayşe Pınar Tüzüm Demir 0000-0002-0822-5728

Proje Numarası UPAP 06/ 2024/TP004
Gönderilme Tarihi 17 Haziran 2025
Kabul Tarihi 10 Ekim 2025
Yayımlanma Tarihi 30 Aralık 2025
Yayımlandığı Sayı Yıl 2025 Cilt: 9 Sayı: 2

Kaynak Göster

APA Karaoğlan, S., & Tüzüm Demir, A. P. (2025). PVC’nin Çevresel Koşullar Altındaki Bozunma Mekanizmaları, Stabilizasyon Yaklaşımları ve Mikroplastik Potansiyelinin Değerlendirilmesi. Uşak Üniversitesi Fen ve Doğa Bilimleri Dergisi, 9(2), 156-170. https://doi.org/10.47137/usufedbid.1719641
AMA 1.Karaoğlan S, Tüzüm Demir AP. PVC’nin Çevresel Koşullar Altındaki Bozunma Mekanizmaları, Stabilizasyon Yaklaşımları ve Mikroplastik Potansiyelinin Değerlendirilmesi. Uşak Üniversitesi Fen ve Doğa Bilimleri Dergisi. 2025;9(2):156-170. doi:10.47137/usufedbid.1719641
Chicago Karaoğlan, Semra, ve Ayşe Pınar Tüzüm Demir. 2025. “PVC’nin Çevresel Koşullar Altındaki Bozunma Mekanizmaları, Stabilizasyon Yaklaşımları ve Mikroplastik Potansiyelinin Değerlendirilmesi”. Uşak Üniversitesi Fen ve Doğa Bilimleri Dergisi 9 (2): 156-70. https://doi.org/10.47137/usufedbid.1719641.
EndNote Karaoğlan S, Tüzüm Demir AP (01 Aralık 2025) PVC’nin Çevresel Koşullar Altındaki Bozunma Mekanizmaları, Stabilizasyon Yaklaşımları ve Mikroplastik Potansiyelinin Değerlendirilmesi. Uşak Üniversitesi Fen ve Doğa Bilimleri Dergisi 9 2 156–170.
IEEE [1]S. Karaoğlan ve A. P. Tüzüm Demir, “PVC’nin Çevresel Koşullar Altındaki Bozunma Mekanizmaları, Stabilizasyon Yaklaşımları ve Mikroplastik Potansiyelinin Değerlendirilmesi”, Uşak Üniversitesi Fen ve Doğa Bilimleri Dergisi, c. 9, sy 2, ss. 156–170, Ara. 2025, doi: 10.47137/usufedbid.1719641.
ISNAD Karaoğlan, Semra - Tüzüm Demir, Ayşe Pınar. “PVC’nin Çevresel Koşullar Altındaki Bozunma Mekanizmaları, Stabilizasyon Yaklaşımları ve Mikroplastik Potansiyelinin Değerlendirilmesi”. Uşak Üniversitesi Fen ve Doğa Bilimleri Dergisi 9/2 (01 Aralık 2025): 156-170. https://doi.org/10.47137/usufedbid.1719641.
JAMA 1.Karaoğlan S, Tüzüm Demir AP. PVC’nin Çevresel Koşullar Altındaki Bozunma Mekanizmaları, Stabilizasyon Yaklaşımları ve Mikroplastik Potansiyelinin Değerlendirilmesi. Uşak Üniversitesi Fen ve Doğa Bilimleri Dergisi. 2025;9:156–170.
MLA Karaoğlan, Semra, ve Ayşe Pınar Tüzüm Demir. “PVC’nin Çevresel Koşullar Altındaki Bozunma Mekanizmaları, Stabilizasyon Yaklaşımları ve Mikroplastik Potansiyelinin Değerlendirilmesi”. Uşak Üniversitesi Fen ve Doğa Bilimleri Dergisi, c. 9, sy 2, Aralık 2025, ss. 156-70, doi:10.47137/usufedbid.1719641.
Vancouver 1.Karaoğlan S, Tüzüm Demir AP. PVC’nin Çevresel Koşullar Altındaki Bozunma Mekanizmaları, Stabilizasyon Yaklaşımları ve Mikroplastik Potansiyelinin Değerlendirilmesi. Uşak Üniversitesi Fen ve Doğa Bilimleri Dergisi [Internet]. 01 Aralık 2025;9(2):156-70. Erişim adresi: https://izlik.org/JA58HK25YP