Ability to translate to a goal position under the constraints imposed by complex environmental conditions is a key capability for biological and artificial systems alike. Over billions of years evolutionary processes have developed a wide range of solutions to address mobility needs in air, in water and on land. The efficacy of such biological locomotors is beyond the capabilities of engineering solutions that has been produced to this date. Nature has been and will surely remain to be a source of inspiration for engineers in their quest to bring "real mobility" to their creations. In recent years a new class of dynamic legged terrestrial robotic systems [1, 4] have been developed inspired by, but without mimicking, the examples from the Nature. The experimental work with these platforms over the past decade has led to an improved appreciation of legged locomotion. This paper is an overview of fundamental advantages dynamic legged locomotion offers over the classical wheeled and tracked approaches
Legged mobility legged locomotion terrestrial robotic systems RHex RiSE
Diğer ID | JA38AV42CD |
---|---|
Bölüm | Araştırma Makalesi |
Yazarlar | |
Yayımlanma Tarihi | 1 Mart 2011 |
Yayımlandığı Sayı | Yıl 2011 Cilt: 3 Sayı: 1 |
Dergi isminin Türkçe kısaltması "UTBD" ingilizce kısaltması "IJTS" şeklindedir.
Dergimizde yayınlanan makalelerin tüm bilimsel sorumluluğu yazar(lar)a aittir. Editör, yardımcı editör ve yayıncı dergide yayınlanan yazılar için herhangi bir sorumluluk kabul etmez.