Derleme
BibTex RIS Kaynak Göster

INVESTIGATION OF 4D PRINTING TECHNOLOGY AND APPLICATION AREAS

Yıl 2020, Cilt: 12 Sayı: 3, 108 - 117, 30.12.2020

Öz

It is known that three-dimensional (3D) printing technology which enables to transform an imagination into 3D real product, has started to take place in many different areas from the space-aviation sector to the health sector and its usage is gradually increasing. With the unstoppable development of technology, the emergence of new materials and manufacturing methods or the necessity of developing existing ones has become an inevitable fact. Four-dimensional (4D) printing technology which also includes 3D printing technology as one of the steps of 4D printing and this 4D printing technology allows the 3D printed products from smart materials to change their shape over time when these 3D printed products are stimulated by external stimulus such as heat, water, light or etc. In this study, 4D printing technology and components have been examined and some useful information has been tried to be presented to our country's researchers and engineers about the development process and potential application areas of this technology.

Kaynakça

  • Tibbits, S. 2019. The emergence of “4D printing”, https://www.ted.com/talks/skylar_tibbits_the_emergence_of_4d_printing (Erişim tarihi: 18.08.2019).
  • Ge Q, Qi HJ, Dunn ML. Active Materials by Four-Dimension Printing. Appl. Phys. Lett., 103, 131901, 2013.
  • Raviv D, Zhao W, McKnelly C, Papadopoulou A, Kadambi A, Shi B, Hirsch S, Dikovsky D, Zyracki M, Olguin C. Active Printed Materials for Complex Self-Evolving Deformations. Sci. Rep. 4, 7422, 1-8, 2014.
  • Pei, E. 4D Printing: dawn of an emerging technology cycle. Assem. Autom. 34(4), 310-314, 2014.
  • Ding Z, Yuan C, Peng X, Wang T, Qi HJ, Dunn ML. Direct 4D printing via active composite materials. Sci. Adv. 3(4), 1-6, 2017.
  • Gladman AS, Matsumoto EA, Nuzzo RG, Mahadevan L, Lewis JA. Biomimetic 4D printing. Nat. Mater. 15(4), 413-418, 2016.
  • Kuksenok O, Balazs AC. Stimuli-responsive behavior of composites integrating thermo-responsive gels with photo-responsive fibers. Mater. Horiz. 3, 53-62, 2016.
  • Nadgorny M, Xiao Z, Chen C, Connal LA. ACS Appl. Mater. Interfaces. 8(42):28946-28954, 2016.
  • Sciencedirect. 2020. https://www.sciencedirect.com/search/advanced?qs=%224D%20printing%22 (Erişim tarihi: 22.01.2020).
  • Mordorintelligence, 2020. https://www.mordorintelligence.com/industry-reports/4d-printing-market (Erişim tarihi: 10.01.2020).
  • Walker MJ. Hype Cycle for Emerging Technologies, Gartner, Stamford, CT, 2018.
  • Momeni F, Seyed MMHN, Liu X, Ni J. A review of 4D printing. Materials and Design, 122, 42-79, 2017.
  • Javaid M, Haleem M. 4D printing applications in medical field: A brief review. Clinical Epidemiology and Global Health, Article in Press., 2019.
  • [14] Tibbits S, McKnelly C, Olguin C, Dikovsky D, Hirsch S. 4D Printing and universal transformation, Materials Agency. 539-548, 2014.
  • Wang G, Wang CN, Zhang YC, Liu TT, Lv JP, Shen X, Guo MR. Demonstrating printed paper actuator, in Ext. Abstr. 2018 CHI Conf. Hum. Factors Comput. Syst. - CHI ’18. 1–4, 2018.
  • Miao S, Cui H, Nowicki M, Xia L, Zhou X, Lee SJ, Zhu W, Sarkar K, Zhang Z, Zhang LG. Stereolithographic 4D bioprinting of multiresponsive architectures for neural engineering, Adv. Biosyst. 2(9), 1-19, 2018.
  • Koch L, Deiwick A, Chichkov B. Laser-Based Cell Printing. 3D Printing and Biofabrication, Cham: Springer International Publishing. 303–329, 2018.
  • Dadbakhsh, S., Speirs, M., Kruth, J.P., Schrooten, J., Luyten J, Humbeeck JV. Effect of SLM parameters on transformation temperatures of shape memory nickel titanium parts. Adv. Eng. Mater. 16 (9), 1140–1146, 2014.
  • Jamal M, Kadam SS, Xiao R, Jivan F, Onn TM, Fernandes TD, Nguyen Gracias DH. Bio-origami hydrogel scaffolds composed of photo crosslinked PEG bilayers. Adv. Healthc. Mater. 2, 1142–1150, 2013.
  • Zhang, Q, Zhang K, Hu G. Smart three-dimensional lightweight structure triggered from a thin composite sheet via 3D printing technique. Sci. Rep. 6, 1-8, 2016.
  • Bakarich SE, Gorkin R, Spinks GM. 4D printing with mechanically robust, thermally actuating hydrogels. Macromol. Rapid Commun. 36, 1211–1217, 2015.
  • Addington M, Schodek D. Smart Materials and Technologies for the Architecture and Design Professions. UK, London: Taylor & Francis Group, 2016.
  • Lee AY, An J, Chua CK. Two-Way 4D Printing: A Review on the Reversibility of 3D-Printed Shape Memory Materials. Engineering, 3(5):663-674, 2017.
  • David EH, Wang KW, Smith EC. Dual-stack Piezoelectric Device with Bidirectional Actuation and Improved Performance. Journal of Intelligent Material Systems and Structures, 15(7), 565-574, 2004.
  • Wang, G. Research on the Dynamic Model of the Bi-directional Smart Active Structure with two Piezoelectric Stacks. International Conference on Control and Automation, Seoul, South Korea, 2984-2989, 2007.
  • Sun I, Hoang WM, Ding Z, Zhao Y, Wang CC, Purnawali H. Stimulus-responsive shape memory materials: a review. Mater Design, 33; 577-640, 2012.
  • Aschwanden M, Stemmer A. Polymeric, electrically tunable diffraction grating based on artificial muscles, Opt Lett., 31; 2610-2612, 2006.
  • Naciri J, Jeon H, Keller P, Ratna B. Nematic elastomer fiber with mechanical properties of a muscle (Patent), 2004.
  • Carmen M, Henriquez G, Mauricio A, Vallejos S, Hernandez JR. Polymers for additive manufacturing and 4D-Printing: Materials, methodologies, and biomedical applications. Polymer Science (In Press), 2019.
  • John DW. Dielectric elastomers as high-performance electroactive polymers, Dielectric Elastomers as Electromechanical Transducers, 2008.
  • Mouritz AP. Titanium alloys for aerospace structures and engines. Introduction to Aerospace Materials, 202-223, 2012.
  • Chandrasekaran M. Forging of metals and alloys for biomedical applications. Metals for Biomedical Devices, 2010.
  • Sumita M, Yoneyama T. Bioengineering. Comprehensive Structural Integrity, 2003.
  • Gopi M, Kumar PR, Sravanth P, Aravind S. 2019. Shape memory polymers. http://www.dstuns.iitm.ac.in/teaching-and presentations/teaching/undergraduate%20courses/vy305-molecular-architecture-and-evolution-of-functions/presentations/presentations-2007/seminar-1/P9.pdf (Erişim tarihi: 11.12.2019),
  • Thakur S. Shape Memory Polymers for Smart Textile Applications, Chapter 12. Textiles for Advanced Applications, 323-337, 2017.
  • Sokolowski W, Metcalfe A, Hayashi S, Yahia LH, Raymond J. Medical applications of shape memory polymers. Biomed. Mater. 2, 23–27, 2007.
  • Erkeçoğlu S, Sezer AD, Bucak S. Smart delivery systems with shape memory and self-folding polymers. In: Sezer AD (ed) Smart drug delivery system.://doi.org/10.5772/62199, 2016.
  • Huang WM, Ding Z, Wang CC, Wei J, Zhao Y, Purnawali H. Shape memory materials, Mater Today, 13; 54-61, 2010.
  • Xie T, Rousseau IA. Facile tailoring of the thermal transition temperatures of epoxy shape memory polymers. Polymer, 50; 1852-1856, 2009.
  • Yang B, Huang WM, Li C, Li I. Effects of moisture on the thermomechanical properties of a polyurethane shape memory polymer. Polymer, 47, 1348-1356, 2006.
  • Lenh J, Lu H, Liu Y, Huang WM. Du S. Shape-memory polymers – a class of novel smart materials. MRS Bull, 34, 848-855, 2009.
  • Liu C, Qin H, Mather PT. Review of progress in shapememory polymers. J Mater Chem 16:1543–1558, 2007.
  • Uchino K. Antiferroelectric shape memory ceramics. Actuators, 5(11), 1-23, 2016.
  • Kabir MH, Watanabe Y, Gong J, Furukawa H. The Applications of Shape Memory Gel as a Smart Material. Proc. of SPIE, 1, 1-4, 2014.
  • Osada Y, Matsuda A. Shape memory in hydrogels. Nature, 376, 219, 1995.
  • Kabir MH, Gong J, Watanabe Y, Makino M, Furukawa H. Mater. Lett, 108, 239–242, 2013.
  • Amano Y, Hidema R, Gong J, Furukawa H. Creation of Shape-memory Gels with Inter-crosslinking Network Structure. Chemistry Letters, 41(10), 1029-1031, 2012.
  • Yokoo T, Hidema R, Furukawa. Surf. Sci. Nanotech., 10, 243-247, 2012.
  • Harada S, Hidema R, Gong J, Furukawa H. Intelligent Button Developed Using Smart Soft and Wet Materials. Chemistry Letters, 41(10), 1047-1049, 2012.
  • Huang W, Zhao Y, Wang CC, Purnawali ZDH, Tang C, Zhang JL. Thermo/chemo-responsive shape memory effect in polymers: A sketch of working mechanisms, fundamentals and optimization. J. Polym. Res. 19, 1–34, 2012.
  • Manen T, Janbaz S, Zadpoor A. Programming the shapeshifting of fat soft matter. Mater Today 21(2):144–163, 2018.
  • Nam S, Pei E. A taxonomy of shape-changing behavior for 4D printed parts using shape-memory polymers, Progress in Additive Manufacturing, 4:167–184, 2019.
  • Tibbits S. 4D printing: multi-material shape change. Archit Des 84(1):116–121, 2014.
  • Wu J, Yuan C, Ding Z, Isakov M, Mao Y, Wang T, Dunn M, Qi H. Multi-shape active composites by 3D printing of digital shape-memory polymers. Sci. Rep 6:24224, 2016.
  • Wang W, Yao L, Zhang T, Cheng C, Levine D, Ishii H. Transformative appetite: shape-changing food transforms from 2D to 3D by water interaction through cooking. In: ACM 978-1-4503-4655-9/417/05, 2017.
  • Hu G, Damanpack A, Bodaghi M, Liao W. Increasing dimension of structures by 4D printing shape-memory polymers via fused deposition modeling. Smart Mater 26, 1-11, 2017.
  • Bakarich S, Gorkin R, Panhuis M, Spinks G. 3D/4D printing hydrogel composites: a pathway to functional devices. MRS Adv 1(8):521–526, 2015.
  • Mark, C. (2014). “4D” printing: the next level of additive manufacturing. http://www.asme.org/engineering-topics/articles/manufacturing-processing/4d-printing-next-level-additive-manufacturing. (Erişim tarihi: 25.01.2020).
  • Ge Q, AH, Sakhaei H. Lee CK, Dunn NX. Fang ML, Dunn. Multimaterial 4D Printing with Tailorable Shape Memory Polymers, Sci. Rep. 6, 31110, 2016.
  • Leist SK, Gao D, Chiou R, Zhou J. Investigating the shape memory properties of 4D printed polylactic acid (PLA) and the concept of 4D printing onto nylon fabrics for the creation of smart textiles, Virtual Phys. Prototyp. 12, 290–300, 2017.
  • Zarek M, Mansour N, Shapira S, Cohn D. 4D printing of shape memory‐based personalized endoluminal medical devices. Macromol Rapid Commun., 38(2), 1-6, 2016.
  • Miao S, Castro N, Nowicki M, et al. 4D printing of polymeric materials for tissue and organ regeneration. Mater Today., 20(10), 577–591, 2017.
  • Saunders S. 2017. 4D printing technique could Be used to develop 3D printed human organs for transplant patients. https://3dprint.com/196141/4d-printing-humanorgans/. (Erişim tarihi: 12.08.2019).
  • Akbari S, Sakhaeim AH, Kowsari K., et al. Enhanced multi-material 4D printing with active hinges. Smart Mater Struct., 27(6), 1–23, 2018.
  • Castro NJ, Meinert C, Levett P, Hutmacher DW. Current developments in multifunctional smart materials for 3D/4D bioprinting. Current Opinion in Biomedical Engineering., 2, 67–75, 2017.
  • Zhang F, Wang L, Zheng Z, Liu Y. Magnetic programming of 4D printed shape memory composite structures. Composites Part A 125, 1-7, 2019.
  • Zhao T, Yu R, Li X, Cheng B, Zhang Y, Yang X, Zhao X, Zhao Y, Huang W. 4D printing of shape memory polyurethane via stereolithography. European Polymer Journal 101, 120-126, 2018.
  • NASA, Refabricator 2019. https://www.nasa.gov/mission_pages/centers/marshall/images/refabricator.html (Erişim tarihi: 14.09.2019).
  • 4D Printing, 2019. 4D Printing May Bolster Arsenal of US Army, https://www.livescience.com/40888-army-4d-printing-grant.html (Erişim tarihi: 15.09.2019

4 boyutlu baskı teknolojisi ve uygulama alanlarının araştırılması

Yıl 2020, Cilt: 12 Sayı: 3, 108 - 117, 30.12.2020

Öz

Hayal gücünü üç boyutlu olarak gerçek bir ürüne dönüştürmeye olanak sağlayan üç boyutlu baskı (3D Printing) teknolojisinin uzay-havacılık sektöründen sağlık sektörüne dek birçok farklı alanda yer almaya başladığı ve kullanımının da giderek arttığı bilinmektedir. Teknolojinin durdurulamaz gelişimi ile birlikte yeni malzemelerin ve imalat yöntemlerinin ortaya çıkması ya da var olanların geliştirilmesinin gerekliliği de kaçınılmaz bir gerçek haline gelmiştir. İçerisinde üç boyutlu (3B) baskı teknolojisini de barındıran dört boyutlu (4B) baskı teknolojisi de bu adımlardan yalnızca birisi olarak karşımıza çıkmakta olup, akıllı malzemeden üç boyutlu olarak basılmış ürünlerin, ısı, su, ışık vb. dış uyarıcılarla uyarılması ile bu ürünlerin zamanla şekil değiştirmesine olanak tanımaktadır. Yapılan bu çalışmada ise 4B baskı teknolojisi ve bileşenleri incelenerek, bu teknolojinin gelişim süreci ve potansiyel uygulama alanları hakkında ülkemiz araştırmacılarına ve mühendislerine bir takım faydalı bilgiler sunulmaya çalışılmıştır.

Kaynakça

  • Tibbits, S. 2019. The emergence of “4D printing”, https://www.ted.com/talks/skylar_tibbits_the_emergence_of_4d_printing (Erişim tarihi: 18.08.2019).
  • Ge Q, Qi HJ, Dunn ML. Active Materials by Four-Dimension Printing. Appl. Phys. Lett., 103, 131901, 2013.
  • Raviv D, Zhao W, McKnelly C, Papadopoulou A, Kadambi A, Shi B, Hirsch S, Dikovsky D, Zyracki M, Olguin C. Active Printed Materials for Complex Self-Evolving Deformations. Sci. Rep. 4, 7422, 1-8, 2014.
  • Pei, E. 4D Printing: dawn of an emerging technology cycle. Assem. Autom. 34(4), 310-314, 2014.
  • Ding Z, Yuan C, Peng X, Wang T, Qi HJ, Dunn ML. Direct 4D printing via active composite materials. Sci. Adv. 3(4), 1-6, 2017.
  • Gladman AS, Matsumoto EA, Nuzzo RG, Mahadevan L, Lewis JA. Biomimetic 4D printing. Nat. Mater. 15(4), 413-418, 2016.
  • Kuksenok O, Balazs AC. Stimuli-responsive behavior of composites integrating thermo-responsive gels with photo-responsive fibers. Mater. Horiz. 3, 53-62, 2016.
  • Nadgorny M, Xiao Z, Chen C, Connal LA. ACS Appl. Mater. Interfaces. 8(42):28946-28954, 2016.
  • Sciencedirect. 2020. https://www.sciencedirect.com/search/advanced?qs=%224D%20printing%22 (Erişim tarihi: 22.01.2020).
  • Mordorintelligence, 2020. https://www.mordorintelligence.com/industry-reports/4d-printing-market (Erişim tarihi: 10.01.2020).
  • Walker MJ. Hype Cycle for Emerging Technologies, Gartner, Stamford, CT, 2018.
  • Momeni F, Seyed MMHN, Liu X, Ni J. A review of 4D printing. Materials and Design, 122, 42-79, 2017.
  • Javaid M, Haleem M. 4D printing applications in medical field: A brief review. Clinical Epidemiology and Global Health, Article in Press., 2019.
  • [14] Tibbits S, McKnelly C, Olguin C, Dikovsky D, Hirsch S. 4D Printing and universal transformation, Materials Agency. 539-548, 2014.
  • Wang G, Wang CN, Zhang YC, Liu TT, Lv JP, Shen X, Guo MR. Demonstrating printed paper actuator, in Ext. Abstr. 2018 CHI Conf. Hum. Factors Comput. Syst. - CHI ’18. 1–4, 2018.
  • Miao S, Cui H, Nowicki M, Xia L, Zhou X, Lee SJ, Zhu W, Sarkar K, Zhang Z, Zhang LG. Stereolithographic 4D bioprinting of multiresponsive architectures for neural engineering, Adv. Biosyst. 2(9), 1-19, 2018.
  • Koch L, Deiwick A, Chichkov B. Laser-Based Cell Printing. 3D Printing and Biofabrication, Cham: Springer International Publishing. 303–329, 2018.
  • Dadbakhsh, S., Speirs, M., Kruth, J.P., Schrooten, J., Luyten J, Humbeeck JV. Effect of SLM parameters on transformation temperatures of shape memory nickel titanium parts. Adv. Eng. Mater. 16 (9), 1140–1146, 2014.
  • Jamal M, Kadam SS, Xiao R, Jivan F, Onn TM, Fernandes TD, Nguyen Gracias DH. Bio-origami hydrogel scaffolds composed of photo crosslinked PEG bilayers. Adv. Healthc. Mater. 2, 1142–1150, 2013.
  • Zhang, Q, Zhang K, Hu G. Smart three-dimensional lightweight structure triggered from a thin composite sheet via 3D printing technique. Sci. Rep. 6, 1-8, 2016.
  • Bakarich SE, Gorkin R, Spinks GM. 4D printing with mechanically robust, thermally actuating hydrogels. Macromol. Rapid Commun. 36, 1211–1217, 2015.
  • Addington M, Schodek D. Smart Materials and Technologies for the Architecture and Design Professions. UK, London: Taylor & Francis Group, 2016.
  • Lee AY, An J, Chua CK. Two-Way 4D Printing: A Review on the Reversibility of 3D-Printed Shape Memory Materials. Engineering, 3(5):663-674, 2017.
  • David EH, Wang KW, Smith EC. Dual-stack Piezoelectric Device with Bidirectional Actuation and Improved Performance. Journal of Intelligent Material Systems and Structures, 15(7), 565-574, 2004.
  • Wang, G. Research on the Dynamic Model of the Bi-directional Smart Active Structure with two Piezoelectric Stacks. International Conference on Control and Automation, Seoul, South Korea, 2984-2989, 2007.
  • Sun I, Hoang WM, Ding Z, Zhao Y, Wang CC, Purnawali H. Stimulus-responsive shape memory materials: a review. Mater Design, 33; 577-640, 2012.
  • Aschwanden M, Stemmer A. Polymeric, electrically tunable diffraction grating based on artificial muscles, Opt Lett., 31; 2610-2612, 2006.
  • Naciri J, Jeon H, Keller P, Ratna B. Nematic elastomer fiber with mechanical properties of a muscle (Patent), 2004.
  • Carmen M, Henriquez G, Mauricio A, Vallejos S, Hernandez JR. Polymers for additive manufacturing and 4D-Printing: Materials, methodologies, and biomedical applications. Polymer Science (In Press), 2019.
  • John DW. Dielectric elastomers as high-performance electroactive polymers, Dielectric Elastomers as Electromechanical Transducers, 2008.
  • Mouritz AP. Titanium alloys for aerospace structures and engines. Introduction to Aerospace Materials, 202-223, 2012.
  • Chandrasekaran M. Forging of metals and alloys for biomedical applications. Metals for Biomedical Devices, 2010.
  • Sumita M, Yoneyama T. Bioengineering. Comprehensive Structural Integrity, 2003.
  • Gopi M, Kumar PR, Sravanth P, Aravind S. 2019. Shape memory polymers. http://www.dstuns.iitm.ac.in/teaching-and presentations/teaching/undergraduate%20courses/vy305-molecular-architecture-and-evolution-of-functions/presentations/presentations-2007/seminar-1/P9.pdf (Erişim tarihi: 11.12.2019),
  • Thakur S. Shape Memory Polymers for Smart Textile Applications, Chapter 12. Textiles for Advanced Applications, 323-337, 2017.
  • Sokolowski W, Metcalfe A, Hayashi S, Yahia LH, Raymond J. Medical applications of shape memory polymers. Biomed. Mater. 2, 23–27, 2007.
  • Erkeçoğlu S, Sezer AD, Bucak S. Smart delivery systems with shape memory and self-folding polymers. In: Sezer AD (ed) Smart drug delivery system.://doi.org/10.5772/62199, 2016.
  • Huang WM, Ding Z, Wang CC, Wei J, Zhao Y, Purnawali H. Shape memory materials, Mater Today, 13; 54-61, 2010.
  • Xie T, Rousseau IA. Facile tailoring of the thermal transition temperatures of epoxy shape memory polymers. Polymer, 50; 1852-1856, 2009.
  • Yang B, Huang WM, Li C, Li I. Effects of moisture on the thermomechanical properties of a polyurethane shape memory polymer. Polymer, 47, 1348-1356, 2006.
  • Lenh J, Lu H, Liu Y, Huang WM. Du S. Shape-memory polymers – a class of novel smart materials. MRS Bull, 34, 848-855, 2009.
  • Liu C, Qin H, Mather PT. Review of progress in shapememory polymers. J Mater Chem 16:1543–1558, 2007.
  • Uchino K. Antiferroelectric shape memory ceramics. Actuators, 5(11), 1-23, 2016.
  • Kabir MH, Watanabe Y, Gong J, Furukawa H. The Applications of Shape Memory Gel as a Smart Material. Proc. of SPIE, 1, 1-4, 2014.
  • Osada Y, Matsuda A. Shape memory in hydrogels. Nature, 376, 219, 1995.
  • Kabir MH, Gong J, Watanabe Y, Makino M, Furukawa H. Mater. Lett, 108, 239–242, 2013.
  • Amano Y, Hidema R, Gong J, Furukawa H. Creation of Shape-memory Gels with Inter-crosslinking Network Structure. Chemistry Letters, 41(10), 1029-1031, 2012.
  • Yokoo T, Hidema R, Furukawa. Surf. Sci. Nanotech., 10, 243-247, 2012.
  • Harada S, Hidema R, Gong J, Furukawa H. Intelligent Button Developed Using Smart Soft and Wet Materials. Chemistry Letters, 41(10), 1047-1049, 2012.
  • Huang W, Zhao Y, Wang CC, Purnawali ZDH, Tang C, Zhang JL. Thermo/chemo-responsive shape memory effect in polymers: A sketch of working mechanisms, fundamentals and optimization. J. Polym. Res. 19, 1–34, 2012.
  • Manen T, Janbaz S, Zadpoor A. Programming the shapeshifting of fat soft matter. Mater Today 21(2):144–163, 2018.
  • Nam S, Pei E. A taxonomy of shape-changing behavior for 4D printed parts using shape-memory polymers, Progress in Additive Manufacturing, 4:167–184, 2019.
  • Tibbits S. 4D printing: multi-material shape change. Archit Des 84(1):116–121, 2014.
  • Wu J, Yuan C, Ding Z, Isakov M, Mao Y, Wang T, Dunn M, Qi H. Multi-shape active composites by 3D printing of digital shape-memory polymers. Sci. Rep 6:24224, 2016.
  • Wang W, Yao L, Zhang T, Cheng C, Levine D, Ishii H. Transformative appetite: shape-changing food transforms from 2D to 3D by water interaction through cooking. In: ACM 978-1-4503-4655-9/417/05, 2017.
  • Hu G, Damanpack A, Bodaghi M, Liao W. Increasing dimension of structures by 4D printing shape-memory polymers via fused deposition modeling. Smart Mater 26, 1-11, 2017.
  • Bakarich S, Gorkin R, Panhuis M, Spinks G. 3D/4D printing hydrogel composites: a pathway to functional devices. MRS Adv 1(8):521–526, 2015.
  • Mark, C. (2014). “4D” printing: the next level of additive manufacturing. http://www.asme.org/engineering-topics/articles/manufacturing-processing/4d-printing-next-level-additive-manufacturing. (Erişim tarihi: 25.01.2020).
  • Ge Q, AH, Sakhaei H. Lee CK, Dunn NX. Fang ML, Dunn. Multimaterial 4D Printing with Tailorable Shape Memory Polymers, Sci. Rep. 6, 31110, 2016.
  • Leist SK, Gao D, Chiou R, Zhou J. Investigating the shape memory properties of 4D printed polylactic acid (PLA) and the concept of 4D printing onto nylon fabrics for the creation of smart textiles, Virtual Phys. Prototyp. 12, 290–300, 2017.
  • Zarek M, Mansour N, Shapira S, Cohn D. 4D printing of shape memory‐based personalized endoluminal medical devices. Macromol Rapid Commun., 38(2), 1-6, 2016.
  • Miao S, Castro N, Nowicki M, et al. 4D printing of polymeric materials for tissue and organ regeneration. Mater Today., 20(10), 577–591, 2017.
  • Saunders S. 2017. 4D printing technique could Be used to develop 3D printed human organs for transplant patients. https://3dprint.com/196141/4d-printing-humanorgans/. (Erişim tarihi: 12.08.2019).
  • Akbari S, Sakhaeim AH, Kowsari K., et al. Enhanced multi-material 4D printing with active hinges. Smart Mater Struct., 27(6), 1–23, 2018.
  • Castro NJ, Meinert C, Levett P, Hutmacher DW. Current developments in multifunctional smart materials for 3D/4D bioprinting. Current Opinion in Biomedical Engineering., 2, 67–75, 2017.
  • Zhang F, Wang L, Zheng Z, Liu Y. Magnetic programming of 4D printed shape memory composite structures. Composites Part A 125, 1-7, 2019.
  • Zhao T, Yu R, Li X, Cheng B, Zhang Y, Yang X, Zhao X, Zhao Y, Huang W. 4D printing of shape memory polyurethane via stereolithography. European Polymer Journal 101, 120-126, 2018.
  • NASA, Refabricator 2019. https://www.nasa.gov/mission_pages/centers/marshall/images/refabricator.html (Erişim tarihi: 14.09.2019).
  • 4D Printing, 2019. 4D Printing May Bolster Arsenal of US Army, https://www.livescience.com/40888-army-4d-printing-grant.html (Erişim tarihi: 15.09.2019
Toplam 69 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Makine Mühendisliği
Bölüm Derleme Makaleler
Yazarlar

Berkay Ergene

Bekir Yalçın

Yayımlanma Tarihi 30 Aralık 2020
Yayımlandığı Sayı Yıl 2020 Cilt: 12 Sayı: 3

Kaynak Göster

IEEE B. Ergene ve B. Yalçın, “4 boyutlu baskı teknolojisi ve uygulama alanlarının araştırılması”, UTBD, c. 12, sy. 3, ss. 108–117, 2020.

Dergi isminin Türkçe kısaltması "UTBD" ingilizce kısaltması "IJTS" şeklindedir.

Dergimizde yayınlanan makalelerin tüm bilimsel sorumluluğu yazar(lar)a aittir. Editör, yardımcı editör ve yayıncı dergide yayınlanan yazılar için herhangi bir sorumluluk kabul etmez.