Araştırma Makalesi
BibTex RIS Kaynak Göster

SOLITON WAVE GENERATION ON NONLINEAR TRANSMISSION LINES USING A PARTICLE SWARM OPTIMIZATION (PSO) ALGORITHM

Yıl 2022, , 389 - 402, 30.04.2022
https://doi.org/10.17482/uumfd.1066491

Öz

In this article, analysis, designing, and generation of soliton waves are performed using nonlinear transmission lines (NLTLs). As a result of performing mathematical analysis processes, circuit parameters and values are determined. A particle swarm optimization (PSO) algorithm is used to determine the parameters and their values. The parameters obtained from the optimization are used to design a nonlinear transmission line. The circuit designed over the determined parameters is simulated with the LTspice program. Then, experiments of the created circuit design are carried out. The simulation data and the experimental implementation data are compared for the nonlinear transmission line circuit. Simulation and experiment results are found to be compatible.

Kaynakça

  • 1. Aksoy, A., and Yenikaya, S. (2021). Doğrusal olmayan iletim hatlarındaki RF soliton dalga tasarımı. X. URSI-Turkish Scientific Congress National General Council Meeting, Gebze Technical University, Kocaeli, Turkey, Sep. 7-9, 2021 (in Turkish).
  • 2. Azad, A. W., Khan, F., Caruso, A. (2020, March). Self-sustaining High-power RF Signal Generation Using LDMOS Based Power Amplifier and Nonlinear Transmission Line. In 2020 IEEE Applied Power Electronics Conference and Exposition (APEC) (pp. 3567-3572). doi: 10.1109/APEC39645.2020.9124616.
  • 3. Aziz, F., Asif, A., & Bint-e-Munir, F. (2020). Analytical modeling of electrical solitons in a nonlinear transmission line using Schamel–Korteweg deVries equation. Chaos, Solitons & Fractals, 134, 109737. doi: https://doi.org/10.1016/j.chaos.2020.109737
  • 4. Brown, M. P. and Smith, P. W. (1997, June). High power, pulsed soliton generation at radio and microwave frequencies. In Digest of Technical Papers. 11th IEEE International Pulsed Power Conference (Cat. No. 97CH36127) (Vol. 1, pp. 346-354). IEEE. doi: 10.1109/PPC.1997.679354.
  • 5. Darling, J. D. and Smith, P. W. (2008). High-power pulsed RF extraction from nonlinear lumped element transmission lines. IEEE Transactions On Plasma Science, 36(5), 2598-2603. doi: 10.1109/TPS.2008.2004371.
  • 6. Elizondo-Decanini, J. M., Coleman, D., Moorman, M., Petney, S., Dudley, E., Youngman, K. and Myers, K. (2015). Soliton production with nonlinear homogeneous lines. IEEE Transactions On Plasma Science, 43(12), 4136-4142. doi: 10.1109/TPS.2015.2497233.
  • 7. Hasegawa, A., Tappert, F. (1973). Transmission of stationary nonlinear optical pulses in dispersive dielectric fibers. I. Anomalous Dispersion. Applied Physics Letters, 23(3), 142-144. doi: https://doi.org/10.1063/1.1654836.
  • 8. Ikezi, H., Wojtowicz, S. S., Waltz, R. E., DeGrassie, J. S. and Baker, D. R. (1988). High‐power soliton generation at microwave frequencies. Journal of Applied Physics, 64(6), 3277-3281. doi: https://doi.org/10.1063/1.341517.
  • 9. Neto, L. P. S., Moraes, H. M., Rossi, J. O., Barroso, J. J., Rangel, E. G. L. (2020). Increasing the voltage modulation depth of the RF produced by NLTL. IEEE Transactions on Plasma Science, 48(10), 3367-3372. doi: 10.1109/TPS.2020.3000216.
  • 10. Neto, L. P. S., Rossi, J. O., Barroso, J. J. and Schamiloglu, E. (2018). Hybrid nonlinear transmission lines used for RF soliton generation. IEEE Transactions on Plasma Science, 46(10), 3648-3652. doi: 10.1109/TPS.2018.2864214.
  • 11. Neto, L. P. S., Rossi, J. O., Barroso, J. J., Schamiloglu, E. (2016). High-power RF generation from nonlinear transmission lines with barium titanate ceramic capacitors. IEEE Transactions on Plasma Science, 44(12), 3424-3431. doi: 10.1109/TPS.2016.2628324.
  • 12. Nikoo, M. S., Hashemi, S. M. A., Farzaneh, F. (2018). Theoretical analysis of RF pulse termination in nonlinear transmission lines. IEEE Transactions on Microwave Theory and Techniques, 66(7), 3234-3244. doi: 10.1109/TMTT.2018.2865952.
  • 13. Nikoo, M. S., Hashemi, S. M. A. (2017). Analysis of the power transfer to a nonlinear transmission line. IEEE Transactions on Microwave Theory and Techniques, 65(11), 4073-4083. doi: 10.1109/TMTT.2017.2701366.
  • 14. Nikoo, M. S., Hashemi, S. M. A., Farzaneh, F. (2017). Theory of terminated nonlinear transmission lines. IEEE Transactions on Microwave theory and Techniques, 66(1), 91-99. doi: 10.1109/TMTT.2017.2731958.
  • 15. Raimundi, L. R., Rossi, J. O., Rangel, E. G. L., Silva, L. C., Schamiloglu, E. (2018). High-voltage capacitive nonlinear transmission lines for RF generation based on silicon carbide Schottky diodes. IEEE Transactions on Plasma Science, 47(1), 566-573. doi: 10.1109/TPS.2018.2873491.
  • 16. Rangel, E. G. L., Barroso, J. J., Rossi, J. O., Yamasaki, F. S., Neto, L. P. S., Schamiloglu, E. (2016). Influence of input pulse shape on RF generation in nonlinear transmission lines. IEEE Transactions on Plasma Science, 44(10), 2258-2267. doi: 10.1109/TPS.2016.2593606.
  • 17. Ricketts, D. S., Li, X., Sun, N., Woo, K., Ham, D. (2007). On the self-generation of electrical soliton pulses. IEEE Journal of Solid-State Circuits, 42(8), 1657-1668. doi: 10.1109/JSSC.2007.900291.
  • 18. Ricketts, D. S., Li, X., Ham, D. (2006). Electrical soliton oscillator. IEEE Transactions on Microwave Theory and Techniques, 54(1), 373-382. doi: 10.1109/TMTT.2005.861652.
  • 19. Rossi, J. O., & Rizzo, P. N. (2009, June). Study of hybrid nonlinear transmission lines for high power RF generation. In 2009 IEEE Pulsed Power Conference (pp. 46-50). doi: 10.1109/PPC.2009.5386200.
  • 20. Russell, J. S. (1845). Report on Waves: Made to the meetings of the british association in 1842-43.
  • 21. Xie, F., Wang, C., Xia, L., Yuan, B., Mao, J. (2018, September). A Method of Inductor Selection for nltls Circuits Applied in High Repetition Pulse Generator. In 2018 11th UK-Europe-China Workshop on Millimeter Waves and Terahertz Technologies (UCMMT) (Vol. 1, pp. 1-3). IEEE. doi: 10.1109/UCMMT45316.2018.9015785.
  • 22. Yildirim, O. O., & Ham, D. (2014). High-dimensional chaos from self-sustained collisions of solitons. Applied Physics Letters, 104(24), 244109. doi: https://doi.org/10.1063/1.4884943.
  • 23. Yildirim, O. O., Ricketts, D. S. and Ham, D. (2009). Reflection soliton oscillator. IEEE Transactions on Microwave Theory And Techniques, 57(10), 2344-2353. doi: 10.1109/TMTT.2009.2029025.

Parçacık Sürü Optimizasyon (PSO) Algoritması Kullanılarak Doğrusal Olmayan İletim Hatlarında Soliton Dalga Üretimi

Yıl 2022, , 389 - 402, 30.04.2022
https://doi.org/10.17482/uumfd.1066491

Öz

Bu makalede, doğrusal olmayan iletim hatları kullanılarak, soliton dalgasının analizi, tasarım modellemesi, ve üretimi gerçekleştirilmiştir. Matematiksel analiz işlemlerinin gerçekleştirilmesi sonucu devre parametreleri ve değerleri belirlenmiştir. Parametreleri ve değerlerini belirlemek için parçacık sürü optimizasyonu (PSO) algoritması kullanılmıştır. Optimizasyon sonucunda elde edilen parametreler kullanılarak doğrusal olmayan iletim hattı tasarlanmıştır. Belirlenen parametreler üzerinden tasarlanan devre, LTspice programı ile simüle edilmiştir. Daha sonra, oluşturulan devre tasarımının deneyleri gerçekleştirilmiştir. Doğrusal olmayan iletim hattı devresinin; simulasyon verileri ile deneysel gerçekleme verileri karşılaştırılmıştır. Simulasyon verileri ve deneysel gerçekleme verilerinin uyumlu olduğu görülmüştür.

Kaynakça

  • 1. Aksoy, A., and Yenikaya, S. (2021). Doğrusal olmayan iletim hatlarındaki RF soliton dalga tasarımı. X. URSI-Turkish Scientific Congress National General Council Meeting, Gebze Technical University, Kocaeli, Turkey, Sep. 7-9, 2021 (in Turkish).
  • 2. Azad, A. W., Khan, F., Caruso, A. (2020, March). Self-sustaining High-power RF Signal Generation Using LDMOS Based Power Amplifier and Nonlinear Transmission Line. In 2020 IEEE Applied Power Electronics Conference and Exposition (APEC) (pp. 3567-3572). doi: 10.1109/APEC39645.2020.9124616.
  • 3. Aziz, F., Asif, A., & Bint-e-Munir, F. (2020). Analytical modeling of electrical solitons in a nonlinear transmission line using Schamel–Korteweg deVries equation. Chaos, Solitons & Fractals, 134, 109737. doi: https://doi.org/10.1016/j.chaos.2020.109737
  • 4. Brown, M. P. and Smith, P. W. (1997, June). High power, pulsed soliton generation at radio and microwave frequencies. In Digest of Technical Papers. 11th IEEE International Pulsed Power Conference (Cat. No. 97CH36127) (Vol. 1, pp. 346-354). IEEE. doi: 10.1109/PPC.1997.679354.
  • 5. Darling, J. D. and Smith, P. W. (2008). High-power pulsed RF extraction from nonlinear lumped element transmission lines. IEEE Transactions On Plasma Science, 36(5), 2598-2603. doi: 10.1109/TPS.2008.2004371.
  • 6. Elizondo-Decanini, J. M., Coleman, D., Moorman, M., Petney, S., Dudley, E., Youngman, K. and Myers, K. (2015). Soliton production with nonlinear homogeneous lines. IEEE Transactions On Plasma Science, 43(12), 4136-4142. doi: 10.1109/TPS.2015.2497233.
  • 7. Hasegawa, A., Tappert, F. (1973). Transmission of stationary nonlinear optical pulses in dispersive dielectric fibers. I. Anomalous Dispersion. Applied Physics Letters, 23(3), 142-144. doi: https://doi.org/10.1063/1.1654836.
  • 8. Ikezi, H., Wojtowicz, S. S., Waltz, R. E., DeGrassie, J. S. and Baker, D. R. (1988). High‐power soliton generation at microwave frequencies. Journal of Applied Physics, 64(6), 3277-3281. doi: https://doi.org/10.1063/1.341517.
  • 9. Neto, L. P. S., Moraes, H. M., Rossi, J. O., Barroso, J. J., Rangel, E. G. L. (2020). Increasing the voltage modulation depth of the RF produced by NLTL. IEEE Transactions on Plasma Science, 48(10), 3367-3372. doi: 10.1109/TPS.2020.3000216.
  • 10. Neto, L. P. S., Rossi, J. O., Barroso, J. J. and Schamiloglu, E. (2018). Hybrid nonlinear transmission lines used for RF soliton generation. IEEE Transactions on Plasma Science, 46(10), 3648-3652. doi: 10.1109/TPS.2018.2864214.
  • 11. Neto, L. P. S., Rossi, J. O., Barroso, J. J., Schamiloglu, E. (2016). High-power RF generation from nonlinear transmission lines with barium titanate ceramic capacitors. IEEE Transactions on Plasma Science, 44(12), 3424-3431. doi: 10.1109/TPS.2016.2628324.
  • 12. Nikoo, M. S., Hashemi, S. M. A., Farzaneh, F. (2018). Theoretical analysis of RF pulse termination in nonlinear transmission lines. IEEE Transactions on Microwave Theory and Techniques, 66(7), 3234-3244. doi: 10.1109/TMTT.2018.2865952.
  • 13. Nikoo, M. S., Hashemi, S. M. A. (2017). Analysis of the power transfer to a nonlinear transmission line. IEEE Transactions on Microwave Theory and Techniques, 65(11), 4073-4083. doi: 10.1109/TMTT.2017.2701366.
  • 14. Nikoo, M. S., Hashemi, S. M. A., Farzaneh, F. (2017). Theory of terminated nonlinear transmission lines. IEEE Transactions on Microwave theory and Techniques, 66(1), 91-99. doi: 10.1109/TMTT.2017.2731958.
  • 15. Raimundi, L. R., Rossi, J. O., Rangel, E. G. L., Silva, L. C., Schamiloglu, E. (2018). High-voltage capacitive nonlinear transmission lines for RF generation based on silicon carbide Schottky diodes. IEEE Transactions on Plasma Science, 47(1), 566-573. doi: 10.1109/TPS.2018.2873491.
  • 16. Rangel, E. G. L., Barroso, J. J., Rossi, J. O., Yamasaki, F. S., Neto, L. P. S., Schamiloglu, E. (2016). Influence of input pulse shape on RF generation in nonlinear transmission lines. IEEE Transactions on Plasma Science, 44(10), 2258-2267. doi: 10.1109/TPS.2016.2593606.
  • 17. Ricketts, D. S., Li, X., Sun, N., Woo, K., Ham, D. (2007). On the self-generation of electrical soliton pulses. IEEE Journal of Solid-State Circuits, 42(8), 1657-1668. doi: 10.1109/JSSC.2007.900291.
  • 18. Ricketts, D. S., Li, X., Ham, D. (2006). Electrical soliton oscillator. IEEE Transactions on Microwave Theory and Techniques, 54(1), 373-382. doi: 10.1109/TMTT.2005.861652.
  • 19. Rossi, J. O., & Rizzo, P. N. (2009, June). Study of hybrid nonlinear transmission lines for high power RF generation. In 2009 IEEE Pulsed Power Conference (pp. 46-50). doi: 10.1109/PPC.2009.5386200.
  • 20. Russell, J. S. (1845). Report on Waves: Made to the meetings of the british association in 1842-43.
  • 21. Xie, F., Wang, C., Xia, L., Yuan, B., Mao, J. (2018, September). A Method of Inductor Selection for nltls Circuits Applied in High Repetition Pulse Generator. In 2018 11th UK-Europe-China Workshop on Millimeter Waves and Terahertz Technologies (UCMMT) (Vol. 1, pp. 1-3). IEEE. doi: 10.1109/UCMMT45316.2018.9015785.
  • 22. Yildirim, O. O., & Ham, D. (2014). High-dimensional chaos from self-sustained collisions of solitons. Applied Physics Letters, 104(24), 244109. doi: https://doi.org/10.1063/1.4884943.
  • 23. Yildirim, O. O., Ricketts, D. S. and Ham, D. (2009). Reflection soliton oscillator. IEEE Transactions on Microwave Theory And Techniques, 57(10), 2344-2353. doi: 10.1109/TMTT.2009.2029025.
Toplam 23 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Elektrik Mühendisliği
Bölüm Araştırma Makaleleri
Yazarlar

Abdullah Aksoy 0000-0002-2400-989X

Sibel Yenikaya 0000-0002-9423-1752

Yayımlanma Tarihi 30 Nisan 2022
Gönderilme Tarihi 1 Şubat 2022
Kabul Tarihi 23 Mart 2022
Yayımlandığı Sayı Yıl 2022

Kaynak Göster

APA Aksoy, A., & Yenikaya, S. (2022). SOLITON WAVE GENERATION ON NONLINEAR TRANSMISSION LINES USING A PARTICLE SWARM OPTIMIZATION (PSO) ALGORITHM. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi, 27(1), 389-402. https://doi.org/10.17482/uumfd.1066491
AMA Aksoy A, Yenikaya S. SOLITON WAVE GENERATION ON NONLINEAR TRANSMISSION LINES USING A PARTICLE SWARM OPTIMIZATION (PSO) ALGORITHM. UUJFE. Nisan 2022;27(1):389-402. doi:10.17482/uumfd.1066491
Chicago Aksoy, Abdullah, ve Sibel Yenikaya. “SOLITON WAVE GENERATION ON NONLINEAR TRANSMISSION LINES USING A PARTICLE SWARM OPTIMIZATION (PSO) ALGORITHM”. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi 27, sy. 1 (Nisan 2022): 389-402. https://doi.org/10.17482/uumfd.1066491.
EndNote Aksoy A, Yenikaya S (01 Nisan 2022) SOLITON WAVE GENERATION ON NONLINEAR TRANSMISSION LINES USING A PARTICLE SWARM OPTIMIZATION (PSO) ALGORITHM. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi 27 1 389–402.
IEEE A. Aksoy ve S. Yenikaya, “SOLITON WAVE GENERATION ON NONLINEAR TRANSMISSION LINES USING A PARTICLE SWARM OPTIMIZATION (PSO) ALGORITHM”, UUJFE, c. 27, sy. 1, ss. 389–402, 2022, doi: 10.17482/uumfd.1066491.
ISNAD Aksoy, Abdullah - Yenikaya, Sibel. “SOLITON WAVE GENERATION ON NONLINEAR TRANSMISSION LINES USING A PARTICLE SWARM OPTIMIZATION (PSO) ALGORITHM”. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi 27/1 (Nisan 2022), 389-402. https://doi.org/10.17482/uumfd.1066491.
JAMA Aksoy A, Yenikaya S. SOLITON WAVE GENERATION ON NONLINEAR TRANSMISSION LINES USING A PARTICLE SWARM OPTIMIZATION (PSO) ALGORITHM. UUJFE. 2022;27:389–402.
MLA Aksoy, Abdullah ve Sibel Yenikaya. “SOLITON WAVE GENERATION ON NONLINEAR TRANSMISSION LINES USING A PARTICLE SWARM OPTIMIZATION (PSO) ALGORITHM”. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi, c. 27, sy. 1, 2022, ss. 389-02, doi:10.17482/uumfd.1066491.
Vancouver Aksoy A, Yenikaya S. SOLITON WAVE GENERATION ON NONLINEAR TRANSMISSION LINES USING A PARTICLE SWARM OPTIMIZATION (PSO) ALGORITHM. UUJFE. 2022;27(1):389-402.

DUYURU:

30.03.2021- Nisan 2021 (26/1) sayımızdan itibaren TR-Dizin yeni kuralları gereği, dergimizde basılacak makalelerde, ilk gönderim aşamasında Telif Hakkı Formu yanısıra, Çıkar Çatışması Bildirim Formu ve Yazar Katkısı Bildirim Formu da tüm yazarlarca imzalanarak gönderilmelidir. Yayınlanacak makalelerde de makale metni içinde "Çıkar Çatışması" ve "Yazar Katkısı" bölümleri yer alacaktır. İlk gönderim aşamasında doldurulması gereken yeni formlara "Yazım Kuralları" ve "Makale Gönderim Süreci" sayfalarımızdan ulaşılabilir. (Değerlendirme süreci bu tarihten önce tamamlanıp basımı bekleyen makalelerin yanısıra değerlendirme süreci devam eden makaleler için, yazarlar tarafından ilgili formlar doldurularak sisteme yüklenmelidir).  Makale şablonları da, bu değişiklik doğrultusunda güncellenmiştir. Tüm yazarlarımıza önemle duyurulur.

Bursa Uludağ Üniversitesi, Mühendislik Fakültesi Dekanlığı, Görükle Kampüsü, Nilüfer, 16059 Bursa. Tel: (224) 294 1907, Faks: (224) 294 1903, e-posta: mmfd@uludag.edu.tr