Araştırma Makalesi
BibTex RIS Kaynak Göster

DYNAMIC MODELING AND CONTROL OF AN ELECTRO-MECHANICAL FIN LOADING SYSTEM

Yıl 2022, , 1163 - 1176, 31.12.2022
https://doi.org/10.17482/uumfd.1121360

Öz

In this study, the design of an electro-mechanical fin loading system which is utilized to simulate the effects of the aerodynamic moment occurring in an atmospheric flight on a missile system is dealt with. In this extent, the dynamic modeling of the dedicated loading system is constructed and then the control system is designed on that model. As the control algorithm, the classical control system operating with regard of the PID (proportional plus integral plus derivative) control action and the robust control system designed according to the H∞ norm are taken into consideration. Once the mentioned control systems are built, the relevant computer simulations are performed with the inclusion of a realistic control actuation system model in accordance with the consistent numerical values of the necessary parameters. As a result of this work, it is observed that the robust control system yields more satisfactory results than its classical counterpart even under more severe conditions.

Kaynakça

  • 1. Arulmozhiyal, R., Murali, M. and Manikanadan, R. (2015) Modeling and simulation of control actuation system, ARPN Journal of Engineering and Applied Sciences, 10 (4), 1778-1782.
  • 2. Blasi, L., Borrelli, M., D’Amato, E., di Grazia, L. E., Mattei, M. and Notaro, I. (2021) Modeling and control of a modular iron bird, Aerospace, 8(2), 39. doi: 10.3390/aerospace8020039
  • 3. Borrelli, M., D’Amato, E., Emanuel di Grazia, L., Mattei, M. and Notaro, I. (2020). MPC load control for aircraft actuator testing, 2020 7th International Conference on Control, Decision and Information Technologies (CoDIT), Prague, Czech Republic.
  • 4. https://www.ideal-aerosmith.com/ideal-product/aeroload-simulation-system, Date of access: 25.05.2022, Subject: Aerodynamic Loading System.
  • 5. Jing, C. H., Xu, H. G. and Jiang, J. H. (2019). Dynamic surface disturbance rejection control for electro-hydraulic load simulator, Mech. Syst. Signal. Process. 134.
  • 6. Kassem, A. M., Sayed, K., El-Zohri, E. H. and Ali, H. H. (2017) An integral square error-based model predictive controller for two area load frequency control, Advances in Energy Research, 5(1), 79-90. doi: 10.12989/eri.2017.5.1.079
  • 7. Low K. H., Wang, H. and Wang M. Y. (2005) On the development of a real time control system by using xPC target: Solution to robotic system control, 2005 IEEE International Conference on Automation Science and Engineering, Edmonton, Canada, 345-350.
  • 8. Maekawa, H. (1999) Compact servo driver for torque control of DC-servo motor based on voltage control, 1999 IEEE/ASME International Conference on Advanced Intelligent Mechatronics, Atlanta, USA, 341-346.
  • 9. Muniraj, M. and Arulmozhiyal, R. (2015) Modeling and simulation of control actuation system with fuzzy-PID logic conrolled brushless motor drives for missiles glider applications, The Scientific World Journal, Hindawi Publishing Corporation, 1-11. doi: 10.1155/2015/723298
  • 10. Nam, Y., Lee, J. and Sung K. H. (2000) Force control system design for aerodynamic load simulator, American Control Conference, Chicago, Illinois, USA, 3043-3046.
  • 11. Ogata K. (1997) Modern Control Engineering, Third Edition, Prentice-Hall, USA.
  • 12. Özkan B. (2005) Dynamic Modeling, Guidance and Control of Homing Missiles, PhD Thesis, Mechanical Engineering Department, Middle East Technical University, Ankara, Turkey.
  • 13. Özkan, B. (2017) Dynamic modeling and control of a hydraulic fin loading system using ıntegral backstepping method, Dokuz Eylül University, Faculty of Engineering Journal of Science and Engineering, 19-56. doi: 10.21205/deufmd.2017195636
  • 14. Özkan B., Yıldız E. N. and Dönmez B. (2008) Precise position control of a gimbaled camera system, AIAA Guidance, Navigation, and Control Conference and Exhibit, Honolulu, Hawaii, USA.
  • 15. Özakalın, M. U., Salamci, M. U. and Özkan, B. (2014) Implementation of the sliding mode control with constant and varying sliding surfaces to a hydraulically-actuated fin loading system, 19th IFAC World Congress, Cape Town, South Africa.
  • 16. Page J. L. and Willis K. E. (1998) Designing motion systems for hardware-in-the-loop simulation, Carco Electronics Publications, USA.
  • 17. Tekin, R. and Şahin, M. (2008) Development of a test device fort he loading tests of a missile control actuation system (in Turkish), SAVTEK 2008-Defense Technologies Conference, 601-607, Middle East Technical University, Ankara, Turkey.

Elektromekanik Eyletimli Bir Kanat Yükleme Cihazının Dinamik Modellemesi ve Denetimi

Yıl 2022, , 1163 - 1176, 31.12.2022
https://doi.org/10.17482/uumfd.1121360

Öz

Bu çalışmada, atmosfer içerisinde uçan bir füzeye etkiyen aerodinamik moment etkisinin yerde benzetimini yapmak amacıyla tasarlanan elektromekanik eyletimli bir kanat yükleme cihazının tasarımı ele alınmaktadır. Bu kapsamda, göz önüne alınan kanat yükleme cihazının dinamik modeli çıkarılmış ve ardından bu model üzerine denetim sistemi tasarlanmıştır. Denetim sistemi olarak, PID (oransal, tümlevsel ve türevsel) denetim işlemini esas alan klasik denetim sistemi ile H∞ normunu esas alarak sentezlenen gürbüz denetim sistemi uygulanmıştır. Denetim sistemi oluşturulduktan sonra, ilgili parametreler için belirlenen tutarlı sayısal değerler kullanılarak modellenen gerçekçi bir kontrol tahrik sistemi de toplam sistem şemasına dahil edilerek bilgisayar benzetimleri gerçekleştirilmiştir. Benzetimler sonucunda, çok daha zorlu işletim koşulları altında dahi gürbüz denetim sisteminin klasik denetim sistemine nazaran daha tatminkâr çıktılar ürettiği gözlenmiştir.

Kaynakça

  • 1. Arulmozhiyal, R., Murali, M. and Manikanadan, R. (2015) Modeling and simulation of control actuation system, ARPN Journal of Engineering and Applied Sciences, 10 (4), 1778-1782.
  • 2. Blasi, L., Borrelli, M., D’Amato, E., di Grazia, L. E., Mattei, M. and Notaro, I. (2021) Modeling and control of a modular iron bird, Aerospace, 8(2), 39. doi: 10.3390/aerospace8020039
  • 3. Borrelli, M., D’Amato, E., Emanuel di Grazia, L., Mattei, M. and Notaro, I. (2020). MPC load control for aircraft actuator testing, 2020 7th International Conference on Control, Decision and Information Technologies (CoDIT), Prague, Czech Republic.
  • 4. https://www.ideal-aerosmith.com/ideal-product/aeroload-simulation-system, Date of access: 25.05.2022, Subject: Aerodynamic Loading System.
  • 5. Jing, C. H., Xu, H. G. and Jiang, J. H. (2019). Dynamic surface disturbance rejection control for electro-hydraulic load simulator, Mech. Syst. Signal. Process. 134.
  • 6. Kassem, A. M., Sayed, K., El-Zohri, E. H. and Ali, H. H. (2017) An integral square error-based model predictive controller for two area load frequency control, Advances in Energy Research, 5(1), 79-90. doi: 10.12989/eri.2017.5.1.079
  • 7. Low K. H., Wang, H. and Wang M. Y. (2005) On the development of a real time control system by using xPC target: Solution to robotic system control, 2005 IEEE International Conference on Automation Science and Engineering, Edmonton, Canada, 345-350.
  • 8. Maekawa, H. (1999) Compact servo driver for torque control of DC-servo motor based on voltage control, 1999 IEEE/ASME International Conference on Advanced Intelligent Mechatronics, Atlanta, USA, 341-346.
  • 9. Muniraj, M. and Arulmozhiyal, R. (2015) Modeling and simulation of control actuation system with fuzzy-PID logic conrolled brushless motor drives for missiles glider applications, The Scientific World Journal, Hindawi Publishing Corporation, 1-11. doi: 10.1155/2015/723298
  • 10. Nam, Y., Lee, J. and Sung K. H. (2000) Force control system design for aerodynamic load simulator, American Control Conference, Chicago, Illinois, USA, 3043-3046.
  • 11. Ogata K. (1997) Modern Control Engineering, Third Edition, Prentice-Hall, USA.
  • 12. Özkan B. (2005) Dynamic Modeling, Guidance and Control of Homing Missiles, PhD Thesis, Mechanical Engineering Department, Middle East Technical University, Ankara, Turkey.
  • 13. Özkan, B. (2017) Dynamic modeling and control of a hydraulic fin loading system using ıntegral backstepping method, Dokuz Eylül University, Faculty of Engineering Journal of Science and Engineering, 19-56. doi: 10.21205/deufmd.2017195636
  • 14. Özkan B., Yıldız E. N. and Dönmez B. (2008) Precise position control of a gimbaled camera system, AIAA Guidance, Navigation, and Control Conference and Exhibit, Honolulu, Hawaii, USA.
  • 15. Özakalın, M. U., Salamci, M. U. and Özkan, B. (2014) Implementation of the sliding mode control with constant and varying sliding surfaces to a hydraulically-actuated fin loading system, 19th IFAC World Congress, Cape Town, South Africa.
  • 16. Page J. L. and Willis K. E. (1998) Designing motion systems for hardware-in-the-loop simulation, Carco Electronics Publications, USA.
  • 17. Tekin, R. and Şahin, M. (2008) Development of a test device fort he loading tests of a missile control actuation system (in Turkish), SAVTEK 2008-Defense Technologies Conference, 601-607, Middle East Technical University, Ankara, Turkey.
Toplam 17 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Otomasyon Mühendisliği
Bölüm Araştırma Makaleleri
Yazarlar

Bülent Özkan 0000-0003-3112-9723

Yayımlanma Tarihi 31 Aralık 2022
Gönderilme Tarihi 25 Mayıs 2022
Kabul Tarihi 1 Eylül 2022
Yayımlandığı Sayı Yıl 2022

Kaynak Göster

APA Özkan, B. (2022). DYNAMIC MODELING AND CONTROL OF AN ELECTRO-MECHANICAL FIN LOADING SYSTEM. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi, 27(3), 1163-1176. https://doi.org/10.17482/uumfd.1121360
AMA Özkan B. DYNAMIC MODELING AND CONTROL OF AN ELECTRO-MECHANICAL FIN LOADING SYSTEM. UUJFE. Aralık 2022;27(3):1163-1176. doi:10.17482/uumfd.1121360
Chicago Özkan, Bülent. “DYNAMIC MODELING AND CONTROL OF AN ELECTRO-MECHANICAL FIN LOADING SYSTEM”. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi 27, sy. 3 (Aralık 2022): 1163-76. https://doi.org/10.17482/uumfd.1121360.
EndNote Özkan B (01 Aralık 2022) DYNAMIC MODELING AND CONTROL OF AN ELECTRO-MECHANICAL FIN LOADING SYSTEM. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi 27 3 1163–1176.
IEEE B. Özkan, “DYNAMIC MODELING AND CONTROL OF AN ELECTRO-MECHANICAL FIN LOADING SYSTEM”, UUJFE, c. 27, sy. 3, ss. 1163–1176, 2022, doi: 10.17482/uumfd.1121360.
ISNAD Özkan, Bülent. “DYNAMIC MODELING AND CONTROL OF AN ELECTRO-MECHANICAL FIN LOADING SYSTEM”. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi 27/3 (Aralık 2022), 1163-1176. https://doi.org/10.17482/uumfd.1121360.
JAMA Özkan B. DYNAMIC MODELING AND CONTROL OF AN ELECTRO-MECHANICAL FIN LOADING SYSTEM. UUJFE. 2022;27:1163–1176.
MLA Özkan, Bülent. “DYNAMIC MODELING AND CONTROL OF AN ELECTRO-MECHANICAL FIN LOADING SYSTEM”. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi, c. 27, sy. 3, 2022, ss. 1163-76, doi:10.17482/uumfd.1121360.
Vancouver Özkan B. DYNAMIC MODELING AND CONTROL OF AN ELECTRO-MECHANICAL FIN LOADING SYSTEM. UUJFE. 2022;27(3):1163-76.

DUYURU:

30.03.2021- Nisan 2021 (26/1) sayımızdan itibaren TR-Dizin yeni kuralları gereği, dergimizde basılacak makalelerde, ilk gönderim aşamasında Telif Hakkı Formu yanısıra, Çıkar Çatışması Bildirim Formu ve Yazar Katkısı Bildirim Formu da tüm yazarlarca imzalanarak gönderilmelidir. Yayınlanacak makalelerde de makale metni içinde "Çıkar Çatışması" ve "Yazar Katkısı" bölümleri yer alacaktır. İlk gönderim aşamasında doldurulması gereken yeni formlara "Yazım Kuralları" ve "Makale Gönderim Süreci" sayfalarımızdan ulaşılabilir. (Değerlendirme süreci bu tarihten önce tamamlanıp basımı bekleyen makalelerin yanısıra değerlendirme süreci devam eden makaleler için, yazarlar tarafından ilgili formlar doldurularak sisteme yüklenmelidir).  Makale şablonları da, bu değişiklik doğrultusunda güncellenmiştir. Tüm yazarlarımıza önemle duyurulur.

Bursa Uludağ Üniversitesi, Mühendislik Fakültesi Dekanlığı, Görükle Kampüsü, Nilüfer, 16059 Bursa. Tel: (224) 294 1907, Faks: (224) 294 1903, e-posta: mmfd@uludag.edu.tr