Derleme
BibTex RIS Kaynak Göster

POLİMERLERİN ELEKTRİK İLETKENLİĞİ

Yıl 2022, , 1249 - 1264, 31.12.2022
https://doi.org/10.17482/uumfd.1124984

Öz

İletken polimerler ve karışımları, diğer iletken malzemelerle kıyaslandığında, düşük yoğunluğa sahip, korozyon direnci yüksek işlenmesi kolay, düşük maliyetli ve kullanılan katkılarla birlikte metal ile kıyaslanabilir özellikte iletkenlik değerine sahip olmaktadır. Son yıllarda, metal – plastik değişimi üzerine birçok Ar-Ge çalışması yapılmıştır. Bu çalışmalarda, havacılık, uzay ve savunma sanayi, otomotiv ve otomotiv yan sanayinde kullanılmak üzere önemli polimer ve karışımları geliştirilmiştir. Metallerin en önemli özelliklerinden elektrik iletkenliği, elektromanyetik kalkanlama ve radyasyon emme, geliştirilen polimer ve karışımları ile sağlanabilmektedir. Polimer malzemelerin diğer avantajları ile, gelecekte bu sektörlerde daha fazla metalin yerini alacaktır. Bu çalışmada, polimerler ve karışımlarının elektriksel özellikleri ile ilgili özellikle son yıllarda yapılan ulusal ve uluslararası araştırma makaleleri derlenmiştir.

Destekleyen Kurum

EPSAN PLASTİK

Teşekkür

Çalışmalarımızda bizlerden desteğini hiç bir zaman esirgemeyen Epsan Plastik ailesine teşekkür ederiz.

Kaynakça

  • 1. Altun, M., Karteri, İ., Güneş, M. ve Alma, M. H., Grafen Katkılı Odun-Plastik Nanokompozitlerinin Elektromanyetik Özellikleri ve Elektromanyetik Kalkanlama Etkinliği Karşılaştırmalı Çalışması, KSU. Journal of Engineering Sciences, 20(1), 38-47.
  • 2. Gao, H., Guo, H., Song, J., Park, K ve Goodenoug, J.B. (2015) A Composite Gel Polymer Glass Fiber Electrolyte for Sodium Ion Batteries, Advanced Energy Materials, 1402235. doi:10.1002/aenm.201402235
  • 3. Hwang, S (2016), Tensile, electrical conductivity and EMI shielding properties of solid and foamed PBT/carbon fiber composites, Composites Part B:Engineering, 1-8. doi: 10.1016/j.compositesb.2016.05.028
  • 4. Ighalo, J.O ve Adeniyi, A.G., (2020) Utilization of Recycled Polystyrene and Aluminum Wastes in the Development of Conductive Plastic Composites: Evaluation of Electrical Properties, Handbook of Enviromental Materials Management, 1-9. doi:10.1007/978-3-319-58538-3_228-1
  • 5. Lei, T., Cao, Y., Fan, Y., Liu, C., Yuan, S.ve Pei, J. (2011) High-Performance Air-Stable Organic Field-Effect Transistors: Isoindigo-Based Conjugated Polymers, Journal of the American Chemical Society, 6099–6101. doi: 10.1021/ja111066r
  • 6. Li, H., Lu, X., Yuan, D., Sun, J., Erden, F., Wang, F. Ve He, C. (2017) Lightweight flexible carbon nanotube/polyaniline films with outstanding EMI shielding property, Journal of Materials Chemistry C, 8694- 8698. doi: 10.1039/C7TC02394D
  • 7. Osman, Z., Md Isa, K.B., Ahmad, A. (2010) A comparative study of lithium and sodium salts in PAN-based ion conducting polymer electrolytes. Ionics 16, 431–435. doi: 10.1007/s11581-009-0410-9
  • 8. Park, M., Lee, H., Jang, J., Park, J.H., Kim, C.H., Kim, S.Y. ve Kim, J. (2019) Phenyl glycidyl ether as an effective noncovalent functionalization agent for multiwalled carbon nanotube reinforced polyamide 6 nanocomposite fibers, Composites Sicience and Technology, 96-102. doi: 10.1016/j.compscitech.2019.04.021
  • 9. Rios, P.F., Ophir, A., Kenig, S., Efrati, R., Zonder, L. Ve Popovits-Biro, R. (2010) Impact of Injection-Molding Processing Parameters on the Electrical, Mechanical, and Thermal Properties of Thermoplastic/Carbon Nanotube Nanocomposites, Journal of Applied Polymer Science, 70-78. doi: 10.1002/app.32983
  • 10. Slinova, M., Zhang, S., Bllet, B., Malik, A., Price, N., Landry, E., Gu, X., Xiang, P. Ve Rondeau- Gagné (2019) Branched Polyethylene as a Plasticizing Additive to Modulate the Mechanical Properties of π- Conjugated Polymers, Macromolecules, 7870–7877. doi: 10.1021/acs.macromol.9b01697
  • 11. Shakir, M.F. Rashid, I.A., Tariq, A., Nawab, Y., Afzal, A., Nabeel, M., Naseem, A. ve Hamid, U. (2020) EMI Shielding Characteristics of Electrically Conductive Polymer Blends of PS/PANI in Microwave and IR Region, Progress and Challenges in Developing Electromagenic Interference Materials, 1660–1665. doi: 10.1007/s11664-019-07631-7
  • 12. Sun, J., Wang, L., Yang, Q., Shen, Y. ve Zhang, X. (2020) Preparation of copper-cobalt-nickel ferrite/graphene oxide/polyaniline composite and its applications in microwave absorption coating, Progress in Organic Coatings, 105552. doi: 0.1016/j.porgcoat.2020.105552
  • 13. Yılmaz, R. (2014), Elektromanyetik Kalkanlama Özelliği Olan Malzemeler, Electronic Journal of Vocational Colleges.
  • 14. Yokozeki, T., Goto, T., Takahashi, T., Qian, D., Itou, S. Hirano, Y., Ishida, Y., Ishibashi, M., Ishida, Y., Ishibashi, M. ve Ogasawara, T. (2015) Development And Characterization Of CFRP Using A Polyaniline- Based Conductive Thermoset Matrix, Composites Science and Technology, 277-281. doi: 10.1016/j.compscitech.2015.06.016
  • 15. Yoo, T.W., Lee, Y.K., Lim, S.J., Yoon, H.G. ve Kim, W.N. (2014) Effects of hybrid fillers on the electromagnetic interference shielding effectiveness of polyamide 6/conductive filler composites, Journal of Materials Science, 1701–1708. doi: 10.1007/s10853-013-7855-y
  • 16. Zhang, L., Wang, L. B. ve See, K. Y. (2013), Effect of Carbon Nanofiber Reinforcement on Electromagnetic Interference Shielding Effectiveness of Syntactic Foam, Journal of Materials Science, 48, 7757- 7763. doi: 10.1007/s10853-013-7597-x
  • 17. Więckowski T.W., Janukiewicz J.M. (2006), Methods For Evaluating The Shielding Effectiveness of Textiles, Fibres & Textiles in Eastern Europe, 14(5), 18-22.

Electrical Conductivity of The Polymers

Yıl 2022, , 1249 - 1264, 31.12.2022
https://doi.org/10.17482/uumfd.1124984

Öz

Conductive polymers and their blends are compared to other conductive materials, they significantly lighter, good corrosion resistance, easy processability, cost effective and they are comparable with metals. Recent years, lots of R&D works have been conducting for the metal - plastic replacement. These developed materials will be used for aviation, space and defence industry, automotive and automotive subsidiary industry. The most important aspects of the metals are electrical conductivity, electromagnetic interference and radiation shielding are provided with using improved polymers and their blends. Polymers along with their other advantages will replace the metal in the future. In this study, national and international research articles have been compiled on the electrical properties of polymers and their blends, especially in recent years.

Kaynakça

  • 1. Altun, M., Karteri, İ., Güneş, M. ve Alma, M. H., Grafen Katkılı Odun-Plastik Nanokompozitlerinin Elektromanyetik Özellikleri ve Elektromanyetik Kalkanlama Etkinliği Karşılaştırmalı Çalışması, KSU. Journal of Engineering Sciences, 20(1), 38-47.
  • 2. Gao, H., Guo, H., Song, J., Park, K ve Goodenoug, J.B. (2015) A Composite Gel Polymer Glass Fiber Electrolyte for Sodium Ion Batteries, Advanced Energy Materials, 1402235. doi:10.1002/aenm.201402235
  • 3. Hwang, S (2016), Tensile, electrical conductivity and EMI shielding properties of solid and foamed PBT/carbon fiber composites, Composites Part B:Engineering, 1-8. doi: 10.1016/j.compositesb.2016.05.028
  • 4. Ighalo, J.O ve Adeniyi, A.G., (2020) Utilization of Recycled Polystyrene and Aluminum Wastes in the Development of Conductive Plastic Composites: Evaluation of Electrical Properties, Handbook of Enviromental Materials Management, 1-9. doi:10.1007/978-3-319-58538-3_228-1
  • 5. Lei, T., Cao, Y., Fan, Y., Liu, C., Yuan, S.ve Pei, J. (2011) High-Performance Air-Stable Organic Field-Effect Transistors: Isoindigo-Based Conjugated Polymers, Journal of the American Chemical Society, 6099–6101. doi: 10.1021/ja111066r
  • 6. Li, H., Lu, X., Yuan, D., Sun, J., Erden, F., Wang, F. Ve He, C. (2017) Lightweight flexible carbon nanotube/polyaniline films with outstanding EMI shielding property, Journal of Materials Chemistry C, 8694- 8698. doi: 10.1039/C7TC02394D
  • 7. Osman, Z., Md Isa, K.B., Ahmad, A. (2010) A comparative study of lithium and sodium salts in PAN-based ion conducting polymer electrolytes. Ionics 16, 431–435. doi: 10.1007/s11581-009-0410-9
  • 8. Park, M., Lee, H., Jang, J., Park, J.H., Kim, C.H., Kim, S.Y. ve Kim, J. (2019) Phenyl glycidyl ether as an effective noncovalent functionalization agent for multiwalled carbon nanotube reinforced polyamide 6 nanocomposite fibers, Composites Sicience and Technology, 96-102. doi: 10.1016/j.compscitech.2019.04.021
  • 9. Rios, P.F., Ophir, A., Kenig, S., Efrati, R., Zonder, L. Ve Popovits-Biro, R. (2010) Impact of Injection-Molding Processing Parameters on the Electrical, Mechanical, and Thermal Properties of Thermoplastic/Carbon Nanotube Nanocomposites, Journal of Applied Polymer Science, 70-78. doi: 10.1002/app.32983
  • 10. Slinova, M., Zhang, S., Bllet, B., Malik, A., Price, N., Landry, E., Gu, X., Xiang, P. Ve Rondeau- Gagné (2019) Branched Polyethylene as a Plasticizing Additive to Modulate the Mechanical Properties of π- Conjugated Polymers, Macromolecules, 7870–7877. doi: 10.1021/acs.macromol.9b01697
  • 11. Shakir, M.F. Rashid, I.A., Tariq, A., Nawab, Y., Afzal, A., Nabeel, M., Naseem, A. ve Hamid, U. (2020) EMI Shielding Characteristics of Electrically Conductive Polymer Blends of PS/PANI in Microwave and IR Region, Progress and Challenges in Developing Electromagenic Interference Materials, 1660–1665. doi: 10.1007/s11664-019-07631-7
  • 12. Sun, J., Wang, L., Yang, Q., Shen, Y. ve Zhang, X. (2020) Preparation of copper-cobalt-nickel ferrite/graphene oxide/polyaniline composite and its applications in microwave absorption coating, Progress in Organic Coatings, 105552. doi: 0.1016/j.porgcoat.2020.105552
  • 13. Yılmaz, R. (2014), Elektromanyetik Kalkanlama Özelliği Olan Malzemeler, Electronic Journal of Vocational Colleges.
  • 14. Yokozeki, T., Goto, T., Takahashi, T., Qian, D., Itou, S. Hirano, Y., Ishida, Y., Ishibashi, M., Ishida, Y., Ishibashi, M. ve Ogasawara, T. (2015) Development And Characterization Of CFRP Using A Polyaniline- Based Conductive Thermoset Matrix, Composites Science and Technology, 277-281. doi: 10.1016/j.compscitech.2015.06.016
  • 15. Yoo, T.W., Lee, Y.K., Lim, S.J., Yoon, H.G. ve Kim, W.N. (2014) Effects of hybrid fillers on the electromagnetic interference shielding effectiveness of polyamide 6/conductive filler composites, Journal of Materials Science, 1701–1708. doi: 10.1007/s10853-013-7855-y
  • 16. Zhang, L., Wang, L. B. ve See, K. Y. (2013), Effect of Carbon Nanofiber Reinforcement on Electromagnetic Interference Shielding Effectiveness of Syntactic Foam, Journal of Materials Science, 48, 7757- 7763. doi: 10.1007/s10853-013-7597-x
  • 17. Więckowski T.W., Janukiewicz J.M. (2006), Methods For Evaluating The Shielding Effectiveness of Textiles, Fibres & Textiles in Eastern Europe, 14(5), 18-22.
Toplam 17 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Kompozit ve Hibrit Malzemeler
Bölüm Derleme Makaleler
Yazarlar

Kübra Karabacak 0000-0003-2600-2920

İbrahim Berk Çavuş 0000-0001-8834-3101

Onur Kıyılı 0000-0003-4442-1782

Yayımlanma Tarihi 31 Aralık 2022
Gönderilme Tarihi 2 Haziran 2022
Kabul Tarihi 15 Kasım 2022
Yayımlandığı Sayı Yıl 2022

Kaynak Göster

APA Karabacak, K., Çavuş, İ. B., & Kıyılı, O. (2022). POLİMERLERİN ELEKTRİK İLETKENLİĞİ. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi, 27(3), 1249-1264. https://doi.org/10.17482/uumfd.1124984
AMA Karabacak K, Çavuş İB, Kıyılı O. POLİMERLERİN ELEKTRİK İLETKENLİĞİ. UUJFE. Aralık 2022;27(3):1249-1264. doi:10.17482/uumfd.1124984
Chicago Karabacak, Kübra, İbrahim Berk Çavuş, ve Onur Kıyılı. “POLİMERLERİN ELEKTRİK İLETKENLİĞİ”. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi 27, sy. 3 (Aralık 2022): 1249-64. https://doi.org/10.17482/uumfd.1124984.
EndNote Karabacak K, Çavuş İB, Kıyılı O (01 Aralık 2022) POLİMERLERİN ELEKTRİK İLETKENLİĞİ. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi 27 3 1249–1264.
IEEE K. Karabacak, İ. B. Çavuş, ve O. Kıyılı, “POLİMERLERİN ELEKTRİK İLETKENLİĞİ”, UUJFE, c. 27, sy. 3, ss. 1249–1264, 2022, doi: 10.17482/uumfd.1124984.
ISNAD Karabacak, Kübra vd. “POLİMERLERİN ELEKTRİK İLETKENLİĞİ”. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi 27/3 (Aralık 2022), 1249-1264. https://doi.org/10.17482/uumfd.1124984.
JAMA Karabacak K, Çavuş İB, Kıyılı O. POLİMERLERİN ELEKTRİK İLETKENLİĞİ. UUJFE. 2022;27:1249–1264.
MLA Karabacak, Kübra vd. “POLİMERLERİN ELEKTRİK İLETKENLİĞİ”. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi, c. 27, sy. 3, 2022, ss. 1249-64, doi:10.17482/uumfd.1124984.
Vancouver Karabacak K, Çavuş İB, Kıyılı O. POLİMERLERİN ELEKTRİK İLETKENLİĞİ. UUJFE. 2022;27(3):1249-64.

Cited By

DUYURU:

30.03.2021- Nisan 2021 (26/1) sayımızdan itibaren TR-Dizin yeni kuralları gereği, dergimizde basılacak makalelerde, ilk gönderim aşamasında Telif Hakkı Formu yanısıra, Çıkar Çatışması Bildirim Formu ve Yazar Katkısı Bildirim Formu da tüm yazarlarca imzalanarak gönderilmelidir. Yayınlanacak makalelerde de makale metni içinde "Çıkar Çatışması" ve "Yazar Katkısı" bölümleri yer alacaktır. İlk gönderim aşamasında doldurulması gereken yeni formlara "Yazım Kuralları" ve "Makale Gönderim Süreci" sayfalarımızdan ulaşılabilir. (Değerlendirme süreci bu tarihten önce tamamlanıp basımı bekleyen makalelerin yanısıra değerlendirme süreci devam eden makaleler için, yazarlar tarafından ilgili formlar doldurularak sisteme yüklenmelidir).  Makale şablonları da, bu değişiklik doğrultusunda güncellenmiştir. Tüm yazarlarımıza önemle duyurulur.

Bursa Uludağ Üniversitesi, Mühendislik Fakültesi Dekanlığı, Görükle Kampüsü, Nilüfer, 16059 Bursa. Tel: (224) 294 1907, Faks: (224) 294 1903, e-posta: mmfd@uludag.edu.tr