Araştırma Makalesi
BibTex RIS Kaynak Göster

BİR LOJİSTİK DAĞITIM AĞININ GENETİK ALGORİTMA İLE YENİDEN TASARLANMASI

Yıl 2024, , 375 - 392, 30.08.2024
https://doi.org/10.17482/uumfd.1224095

Öz

Lojistik yönetimi, özellikle ticaretin küreselleşmesi ve endüstriyel döngülerin hızlandığı bir ekonomik ortamda, ekonomik rekabet gücü, zaman ve hizmet kalitesi açısından hedeflerine ulaşmak isteyen herhangi bir şirket için stratejik bir konu haline gelmiştir. Bu gelişmeler, teknolojik alt yapıların gelişmesi, ticaret akışlarının artan karmaşıklığı, artan rekabet ve sürdürülebilir kalkınmadan kaynaklanan ekonomi eğilimlerden etkilenmiştir. Bu nedenle lojistik ağların tasarımı ve planlaması hem işletmeler hem de araştırmacılar için giderek daha önemli hale gelmiştir. Bu çalışmada, gönderilerin üreticilerin bulunduğu şehirlerden perakendecilerin bulunduğu şehirlere, doğrudan veya yerleri model tarafından belirlenecek olan bir dizi dağıtım merkezi aracılığıyla dağıtıldığı bir deterministik model oluşturulmuştur. Her varış şehrine sadece bir dağıtım merkezi atanırken, her dağıtım merkezi birden fazla varış şehrine hizmet verebilmektedir. Model, dağıtım merkezlerinin nereye yerleştirileceğine karar vermekte ve lojistik işletme maliyetini en aza indirmeyi amaçlamaktadır. Model, her bir dağıtım merkezi için kapasite kısıtını dikkate almaktadır. Problemi çözmek için genetik algoritma tabanlı bir yöntem geliştirilmiştir. Genetik algoritma modeli Python dili ile kodlanmıştır. Genetik algoritma çözümü, Genel Cebirsel Modelleme Sistemi (GAMS) tarafından elde edilen optimal çözümle karşılaştırılarak küçük boyutlu problemler üzerinde doğrulanmıştır.

Kaynakça

  • Agustina, D., Lee C. K. M. ve Piplani R. (2014) Vehicle scheduling and routing at a cross docking center for food supply chains, International Journal of Production Economics, 152, 29–41. doi:10.1016/j.ijpe.2014.01.002
  • Aravendan, M. ve Panneerselvam, R. (2014) Literature Review on Network Design Problems in Closed Loop and Reverse Supply Chains, Intelligent Information Management, 6, 104-117. doi:10.4236/iim.2014.63012
  • Ayvaz, B., Kusakcı, A.O., Ozturk, F. ve Sırakaya, M. (2018) Biyodizel Tedarik Zinciri Ağ Tasarımı İçin Çok Amaçlı Karma Tam Sayılı Doğrusal Programlama Modeli Önerisi, Uludağ University Journal of The Faculty of Engineering, 23(4), 55-70. doi:10.17482/uumfd.455307
  • Beamon, B.M. (1998) Supply chain design and analysis: Models and methods, International Journal of Production Economics, 55(3), 281-294. doi:10.1016/S0925-5273(98)00079-6
  • Baniamerian A., Bashiri M. ve Zabihi F. (2017) Two phase genetic algorithm for vehicle routing and scheduling problem with cross-docking and time windows considering customer satisfaction, Journal of Industrial Engineering International, 14(1), 15–30. doi:10.1007/s40092-017-0203-0
  • Baniamerian A., Bashiri M. ve Tavakkoli-Moghaddam R. (2019) Modified variable neighborhood search and genetic algorithm for profitable heterogeneous vehicle routing problem with crossdocking, Applied Soft Computing, 75, 441–460. doi: 10.1016/j.asoc.2018.11.029
  • Beamon, B.M. (1998) Supply chain design and analysis: Models and methods, International Journal of Production Economics, 55(3), 281-294. doi:10.1016/S0925-5273(98)00079-6
  • Bediroğlu, Y. ve Yıldırım, V. (2020) Lojistik Merkez Yer Seçimi İçin CBS & ÇÖKV Ara Yüzü Geliştirilmesi ve Ordu İli Pilot Bölge Çalışması, Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi, 9(1), 323-334. doi:10.28948/ngumuh.561680
  • Brahami, M.A., Dahane, M., Souier, M. (2022) Sustainable capacitated facility location/network design problem: a Non-dominated Sorting Genetic Algorithm based multiobjective approach. Annals of Operations Research, 311, 821–852, doi:10.1007/s10479-020-03659-9
  • Bräysy, O. ve Gendreau, M. (2001) Genetic algorithms for the vehicle routing problem with time windows. Arpakannus, (1), 33-38.
  • Calvo, M.A., Navarro, A. ve Peria, C.R. (2015) Project management and key knowledge to improve business results through the efqm excellence model, International Journal of Project Management, 33(8), 1638-1651. doi:10.1016/j.ijproman.2015.01.010
  • Cao, E. Ve Lai, M. (2007) An improved genetic algorithm for the Vehicle Routing Problem with Simultaneous Delivery and Pick-up Service, In Proceedings of the 6th Wuhan International Conference on E-Business, 2100-2106. doi: 10.1109/ICNC.2007.209
  • Chopra, S. ve Meindl, P. (2010) Supply Chain Management: Strategy, Planning and Operations, Prentice Hall, New Jersey.
  • Cui H., Qiu J., Cao J., Guo M., Chen X. ve Gorbachev S. (2023) Route optimization in township logistics distribution considering customer satisfaction based on adaptive genetic algorithm, Mathematics and Computers in Simulation, 204, 28-42, ISSN 0378-4754. doi:10.1016/j.matcom.2022.05.020
  • Demirel, N., Gökçen, H., Akçayol, M.A. ve Demirel, E. (2011) Çok Aşamalı Bütünleşik Lojistik Ağı Optimizasyonu Probleminin Melez Genetik Algoritma ile Çözümü, Journal of the Faculty of Engineering and Architecture of Gazi University, 26(4), 929-936.
  • Govindan, K., Fattahi, M. ve Keyvanshokooh, E. (2017) Supply chain network design under uncertainty: A comprehensive review and future research directions, European Journal of Operational Research, 263, 108-141. doi:10.1016/j.ejor.2017.04.009
  • Guerrero-Lorente, J., Gabor, A.F. ve Ponce-Cueto, E. (2020) Omnichannel logistics network design with integrated customer preference for deliveries and returns, Computers & Industrial Engineering, 160, 107569. doi:10.1016/j.cie.2020.106433
  • Guo, K. (2020) Research on location selection model of distribution network with constrained line constraints based on genetic algorithm. Neural Computing & Application, 32, 1679–1689. doi:10.1007/s00521-019-04257-y
  • Ghoseiri K., Ghannadpour S.F. (2010) Multi-objective vehicle routing problem with time windows using goal programming and genetic algorithm, Applied Soft Computing, 10:1096–1107. doi: 10.1016/j.asoc.2010.04.001
  • Hassanat, A., Almohammadi, K., Alkafaween, E., Bunawas, E., Hammouri, A. ve Prasath, S. (2019) Choosing Mutation and Crossover Ratios for Genetic Algorithms-A Review with a New Dynamic Approach, Information, 10, 390. doi:10.3390/info10120390
  • Hiremath, N.C., Sahu, S. ve Tiwari, M.K. (2013) Multi Objective Outbound Logistics Network Design for a Manufacturing Supply Chain, Journal of Intelligent Manufacturing, 24, 1071-1084. doi:10.1007/s10845-012-0635-8
  • Koç, Ç., Özceylan, E., Kesen, S.E., Çil, Z.A. ve Mete, S. (2018) Forward supply Chain network design problem: Heuristic approaches, Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi, 24(4), 749-763. doi:10.5505/pajes.2018.72324
  • Kong P., Lian Z., He M., Peng X., Song J. ve Lan Y. (2020) Design optimization of composite curved rod for wind tunnel virtual flight test based on multi-island genetic algorithm, Journal of Physics: Conference Series, 1624(4), Article ID 042027. doi: 10.1088/1742-6596/1624/4/042027
  • Kudova, P. (2007) Clustering Genetic Algorithm, 18th International Workshop on Database and Expert Systems Applications, 138-142. doi:10.1109/DEXA.2007.65
  • Kumar, M., Husian, M., Upreti, N. ve Gupta, D. (2010) Genetic Algorithm: Review and Application, International Journal of Information Technology and Knowledge Management, 2(2), 451-454. doi:10.2139/ssrn.3529843
  • Kumar, S.N. ve Panneerselvam, R. (2012) A survey on the vehicle routing problem and its variants, Intelligent Information Management, 4(3), 66–74. doi:10.4236/iim.2012.43010
  • Lahrichiac, N., GabrielCrainicab, T., Gendreauac, M., Walter, R., CeraselaCrisanae, G., ve Vidalad, T. (2015) An integrative cooperative search framework for multi-decision-attribute combinatorial optimization: application to the mdpvrp sciencedirect, European Journal of Operational Research, 246(2), 400–412. doi:10.1016/j.ejor.2015.05.007
  • Laporte, G. (2009) Fifty years of vehicle routing, Transportation Science, Canada Research Chair in Distribution Management, HEC Montreal, 43, 408-416. doi: 10.1287/trsc.1090.0301
  • Lau, H.C., Chan, T.M., Tsui, W.T. ve Pang, W.K. (2010) Application of genetic algorithms to solve the multidepot vehicle routing problem, IEEE Transactions on Automation Science and Engineering, 7(2), 383-392. doi:10.1109/TASE.2009.2019265
  • Liu, D., Zhao, S., Jiang, W. ve Liu, J. (2014) Research of intermodal integrated optimization model of total logistics cost based on economies of scale, Computer Engineering & Applications, 50(14), 255–312. doi:10.3901/JME.2014.11.093
  • Mirjalili, S. (2019) Evolutionary Algorithms and Neural Networks, Studies in Computational Intelligence. doi:10.1007/978-3-319-93025-1
  • Okyere, S., Yang, J. ve Adams, C.A. (2022) Optimizing the Sustainable Multimodal Freight Transport and Logistics System Based on the Genetic Algorithm, Sustainability, 14(18):11577, doi:10.3390/su141811577
  • Possel, B., Wismans, L., Berkum, E. ve Bliemer, M., (2018) The multi-objective network design problem using minimizing externalities as objectives: comparison of a genetic algorithm and simulated annealing g framework, Transportation, 45(2), 1–28. doi:10.1007/s11116-016-9738-y
  • Ren, T., Luo, T., Jia, B., Yang, B., Wang, L. ve Xing, L. (2023) Improved ant colony optimization for the vehicle routing problem with split pickup and split delivery, Swarm and Evolutionary Computation, 77, 101228. doi:10.1016/j.swevo.2023.101228
  • Saddoune, M., Desaulniers, G., Elhallaoui, I ve Soumis, F. (2011) Integrated airline crew scheduling: a bi-dynamic constraint aggregation method using neighborhoods, European Journal of Operational Research, 212(3), 445–454. doi: 10.1016/j.ejor.2011.02.009
  • Sadjadi, S. J., Jafari, M. ve Amini, T. (2009) A new mathematical modeling and a genetic algorithm search for milk run problem (an auto industry supply chain case study), Ce International Journal of Advanced Manufacturing Technology, 44(1-2), 194–200. doi:10.1007/s00170-008-1648-5
  • Sarıkaya, H.A., Çalıkan, E. ve Türkbey, O. (2014) Bütünleşik Tedarik Zinciri Ağında Tesis Yeri Seçimi İçin Bulanık Çok Amaçlı Programlama Modeli, Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi, 20(5), 150-161. doi:10.5505/pajes.2014.98853
  • Shakeriana, H., Dehnavia, H.D. ve Shaterib, F.A. (2016) Framework for the implementation of knowledge management in supply chain management, Procedia - Social and Behavioral Sciences, 230, 176 – 183. doi:10.1016/j.sbspro.2016.09.022
  • Sicilia, J.A., Quemadab, C., Royoc, B. ve Escuínd, D. (2016) An optimization algorithm for solving the rich vehicle routing problem based on variable neighborhood search and tabu search metaheuristics. Journal of Computational and Applied Mathematics, 291:468–477. doi: 10.1016/j.cam.2015.03.050
  • Stock, J.R., Boyer, S.L. ve Harmon, T. (2010) Research opportunities in supply chain management, Journal of the Academy of Marketing Science, 38, 32-41. doi:10.1007/s11747- 009-0136-2\
  • Tiwari, K.V ve Sharma, S.K. (2023) An optimization model for vehicle routing problem in last-mile delivery, Expert Systems with Applications, 222, 119789. doi:10.1016/j.eswa.2023.119789
  • Torun, H. ve Canbulut, G. (2019) İki aşamalı tedarik zinciri koordinasyonunun bulanık talep altında analizi, Journal of the Faculty of Engineering and Architecture of Gazi University, 34(3), 1315-1328. doi:10.17341/gazimmfd.460528
  • Wang, F., Ying, Z., Teng F., (2014) Low carbon logistics distribution route optimization research based on chaos ant colony algorithm, Journal of Investigative Medicine, 62(1), 105.
  • Wasil, E., Gulczynski, D., Golden, B (2011) The multi-depot split delivery vehicle routing problem: An integer programming-based heuristic, new test problems, and computational results, Computers & Industrial Engineering, 61, 794–804. doi:10.1016/j.cie.2011.05.012
  • Wenxue, R.A.N., Xinling, S.H.I., Huasen, F.U. ve Guomin, Y.A.N.G. (2013) Application research on ant colony algorithm in logistic distribution route-optimization of fresh agricultural products, International Journal of Digital Content Technology and its Applications, 7(6), 391–399. doi:10.4156/jdcta.vol7.issue6.44
  • Yıldız, K., Tabak, Ç., Yerlikaya, M.A. ve Efe, B. (2022) A Logistics Model Suggestion for A Logistics Centre to Be Established: An Application in Aegean and Central Anatolia Region, Gazi University Journal of Science, 35(1), 73-90. doi:10.35378/gujs.844650
  • Zhang, Y. (2022) Logistics distribution scheduling model of supply chain based on genetic algorithm, Journal of Industrial and Production Engineering, 39(2), 83–88. doi: 10.1080/21681015.2021.1958938

Re-design of a logistics distribution network with genetic algorithm

Yıl 2024, , 375 - 392, 30.08.2024
https://doi.org/10.17482/uumfd.1224095

Öz

Logistics management has become a critical part of any company that wants to achieve its goals through capacity, time, and service quality in a financial environment. These improvements have been influenced by economic tendencies stemming from the development of technological infrastructures and an increasing complication of commerce flows. Therefore, the design of logistics networks has become an important issue for both businesses and researchers. In this study, a deterministic model is created in which the shipments are distributed from origin cities to destination cities, either directly or through distribution centers whose locations will be determined by the model. While only one distribution center is assigned to each destination city, each distribution center can serve more than one destination city. The model decides where distribution centers will be located and aims to minimize logistics operating cost. The model considers capacity constraint for each distribution center. A genetic algorithmbased method has been developed to solve the problem. The genetic algorithm model is coded in Python. The genetic algorithm solution is validated on small-sized problems by comparing it with optimal solution obtained by the General Algebraic Modeling System (GAMS).

Kaynakça

  • Agustina, D., Lee C. K. M. ve Piplani R. (2014) Vehicle scheduling and routing at a cross docking center for food supply chains, International Journal of Production Economics, 152, 29–41. doi:10.1016/j.ijpe.2014.01.002
  • Aravendan, M. ve Panneerselvam, R. (2014) Literature Review on Network Design Problems in Closed Loop and Reverse Supply Chains, Intelligent Information Management, 6, 104-117. doi:10.4236/iim.2014.63012
  • Ayvaz, B., Kusakcı, A.O., Ozturk, F. ve Sırakaya, M. (2018) Biyodizel Tedarik Zinciri Ağ Tasarımı İçin Çok Amaçlı Karma Tam Sayılı Doğrusal Programlama Modeli Önerisi, Uludağ University Journal of The Faculty of Engineering, 23(4), 55-70. doi:10.17482/uumfd.455307
  • Beamon, B.M. (1998) Supply chain design and analysis: Models and methods, International Journal of Production Economics, 55(3), 281-294. doi:10.1016/S0925-5273(98)00079-6
  • Baniamerian A., Bashiri M. ve Zabihi F. (2017) Two phase genetic algorithm for vehicle routing and scheduling problem with cross-docking and time windows considering customer satisfaction, Journal of Industrial Engineering International, 14(1), 15–30. doi:10.1007/s40092-017-0203-0
  • Baniamerian A., Bashiri M. ve Tavakkoli-Moghaddam R. (2019) Modified variable neighborhood search and genetic algorithm for profitable heterogeneous vehicle routing problem with crossdocking, Applied Soft Computing, 75, 441–460. doi: 10.1016/j.asoc.2018.11.029
  • Beamon, B.M. (1998) Supply chain design and analysis: Models and methods, International Journal of Production Economics, 55(3), 281-294. doi:10.1016/S0925-5273(98)00079-6
  • Bediroğlu, Y. ve Yıldırım, V. (2020) Lojistik Merkez Yer Seçimi İçin CBS & ÇÖKV Ara Yüzü Geliştirilmesi ve Ordu İli Pilot Bölge Çalışması, Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi, 9(1), 323-334. doi:10.28948/ngumuh.561680
  • Brahami, M.A., Dahane, M., Souier, M. (2022) Sustainable capacitated facility location/network design problem: a Non-dominated Sorting Genetic Algorithm based multiobjective approach. Annals of Operations Research, 311, 821–852, doi:10.1007/s10479-020-03659-9
  • Bräysy, O. ve Gendreau, M. (2001) Genetic algorithms for the vehicle routing problem with time windows. Arpakannus, (1), 33-38.
  • Calvo, M.A., Navarro, A. ve Peria, C.R. (2015) Project management and key knowledge to improve business results through the efqm excellence model, International Journal of Project Management, 33(8), 1638-1651. doi:10.1016/j.ijproman.2015.01.010
  • Cao, E. Ve Lai, M. (2007) An improved genetic algorithm for the Vehicle Routing Problem with Simultaneous Delivery and Pick-up Service, In Proceedings of the 6th Wuhan International Conference on E-Business, 2100-2106. doi: 10.1109/ICNC.2007.209
  • Chopra, S. ve Meindl, P. (2010) Supply Chain Management: Strategy, Planning and Operations, Prentice Hall, New Jersey.
  • Cui H., Qiu J., Cao J., Guo M., Chen X. ve Gorbachev S. (2023) Route optimization in township logistics distribution considering customer satisfaction based on adaptive genetic algorithm, Mathematics and Computers in Simulation, 204, 28-42, ISSN 0378-4754. doi:10.1016/j.matcom.2022.05.020
  • Demirel, N., Gökçen, H., Akçayol, M.A. ve Demirel, E. (2011) Çok Aşamalı Bütünleşik Lojistik Ağı Optimizasyonu Probleminin Melez Genetik Algoritma ile Çözümü, Journal of the Faculty of Engineering and Architecture of Gazi University, 26(4), 929-936.
  • Govindan, K., Fattahi, M. ve Keyvanshokooh, E. (2017) Supply chain network design under uncertainty: A comprehensive review and future research directions, European Journal of Operational Research, 263, 108-141. doi:10.1016/j.ejor.2017.04.009
  • Guerrero-Lorente, J., Gabor, A.F. ve Ponce-Cueto, E. (2020) Omnichannel logistics network design with integrated customer preference for deliveries and returns, Computers & Industrial Engineering, 160, 107569. doi:10.1016/j.cie.2020.106433
  • Guo, K. (2020) Research on location selection model of distribution network with constrained line constraints based on genetic algorithm. Neural Computing & Application, 32, 1679–1689. doi:10.1007/s00521-019-04257-y
  • Ghoseiri K., Ghannadpour S.F. (2010) Multi-objective vehicle routing problem with time windows using goal programming and genetic algorithm, Applied Soft Computing, 10:1096–1107. doi: 10.1016/j.asoc.2010.04.001
  • Hassanat, A., Almohammadi, K., Alkafaween, E., Bunawas, E., Hammouri, A. ve Prasath, S. (2019) Choosing Mutation and Crossover Ratios for Genetic Algorithms-A Review with a New Dynamic Approach, Information, 10, 390. doi:10.3390/info10120390
  • Hiremath, N.C., Sahu, S. ve Tiwari, M.K. (2013) Multi Objective Outbound Logistics Network Design for a Manufacturing Supply Chain, Journal of Intelligent Manufacturing, 24, 1071-1084. doi:10.1007/s10845-012-0635-8
  • Koç, Ç., Özceylan, E., Kesen, S.E., Çil, Z.A. ve Mete, S. (2018) Forward supply Chain network design problem: Heuristic approaches, Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi, 24(4), 749-763. doi:10.5505/pajes.2018.72324
  • Kong P., Lian Z., He M., Peng X., Song J. ve Lan Y. (2020) Design optimization of composite curved rod for wind tunnel virtual flight test based on multi-island genetic algorithm, Journal of Physics: Conference Series, 1624(4), Article ID 042027. doi: 10.1088/1742-6596/1624/4/042027
  • Kudova, P. (2007) Clustering Genetic Algorithm, 18th International Workshop on Database and Expert Systems Applications, 138-142. doi:10.1109/DEXA.2007.65
  • Kumar, M., Husian, M., Upreti, N. ve Gupta, D. (2010) Genetic Algorithm: Review and Application, International Journal of Information Technology and Knowledge Management, 2(2), 451-454. doi:10.2139/ssrn.3529843
  • Kumar, S.N. ve Panneerselvam, R. (2012) A survey on the vehicle routing problem and its variants, Intelligent Information Management, 4(3), 66–74. doi:10.4236/iim.2012.43010
  • Lahrichiac, N., GabrielCrainicab, T., Gendreauac, M., Walter, R., CeraselaCrisanae, G., ve Vidalad, T. (2015) An integrative cooperative search framework for multi-decision-attribute combinatorial optimization: application to the mdpvrp sciencedirect, European Journal of Operational Research, 246(2), 400–412. doi:10.1016/j.ejor.2015.05.007
  • Laporte, G. (2009) Fifty years of vehicle routing, Transportation Science, Canada Research Chair in Distribution Management, HEC Montreal, 43, 408-416. doi: 10.1287/trsc.1090.0301
  • Lau, H.C., Chan, T.M., Tsui, W.T. ve Pang, W.K. (2010) Application of genetic algorithms to solve the multidepot vehicle routing problem, IEEE Transactions on Automation Science and Engineering, 7(2), 383-392. doi:10.1109/TASE.2009.2019265
  • Liu, D., Zhao, S., Jiang, W. ve Liu, J. (2014) Research of intermodal integrated optimization model of total logistics cost based on economies of scale, Computer Engineering & Applications, 50(14), 255–312. doi:10.3901/JME.2014.11.093
  • Mirjalili, S. (2019) Evolutionary Algorithms and Neural Networks, Studies in Computational Intelligence. doi:10.1007/978-3-319-93025-1
  • Okyere, S., Yang, J. ve Adams, C.A. (2022) Optimizing the Sustainable Multimodal Freight Transport and Logistics System Based on the Genetic Algorithm, Sustainability, 14(18):11577, doi:10.3390/su141811577
  • Possel, B., Wismans, L., Berkum, E. ve Bliemer, M., (2018) The multi-objective network design problem using minimizing externalities as objectives: comparison of a genetic algorithm and simulated annealing g framework, Transportation, 45(2), 1–28. doi:10.1007/s11116-016-9738-y
  • Ren, T., Luo, T., Jia, B., Yang, B., Wang, L. ve Xing, L. (2023) Improved ant colony optimization for the vehicle routing problem with split pickup and split delivery, Swarm and Evolutionary Computation, 77, 101228. doi:10.1016/j.swevo.2023.101228
  • Saddoune, M., Desaulniers, G., Elhallaoui, I ve Soumis, F. (2011) Integrated airline crew scheduling: a bi-dynamic constraint aggregation method using neighborhoods, European Journal of Operational Research, 212(3), 445–454. doi: 10.1016/j.ejor.2011.02.009
  • Sadjadi, S. J., Jafari, M. ve Amini, T. (2009) A new mathematical modeling and a genetic algorithm search for milk run problem (an auto industry supply chain case study), Ce International Journal of Advanced Manufacturing Technology, 44(1-2), 194–200. doi:10.1007/s00170-008-1648-5
  • Sarıkaya, H.A., Çalıkan, E. ve Türkbey, O. (2014) Bütünleşik Tedarik Zinciri Ağında Tesis Yeri Seçimi İçin Bulanık Çok Amaçlı Programlama Modeli, Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi, 20(5), 150-161. doi:10.5505/pajes.2014.98853
  • Shakeriana, H., Dehnavia, H.D. ve Shaterib, F.A. (2016) Framework for the implementation of knowledge management in supply chain management, Procedia - Social and Behavioral Sciences, 230, 176 – 183. doi:10.1016/j.sbspro.2016.09.022
  • Sicilia, J.A., Quemadab, C., Royoc, B. ve Escuínd, D. (2016) An optimization algorithm for solving the rich vehicle routing problem based on variable neighborhood search and tabu search metaheuristics. Journal of Computational and Applied Mathematics, 291:468–477. doi: 10.1016/j.cam.2015.03.050
  • Stock, J.R., Boyer, S.L. ve Harmon, T. (2010) Research opportunities in supply chain management, Journal of the Academy of Marketing Science, 38, 32-41. doi:10.1007/s11747- 009-0136-2\
  • Tiwari, K.V ve Sharma, S.K. (2023) An optimization model for vehicle routing problem in last-mile delivery, Expert Systems with Applications, 222, 119789. doi:10.1016/j.eswa.2023.119789
  • Torun, H. ve Canbulut, G. (2019) İki aşamalı tedarik zinciri koordinasyonunun bulanık talep altında analizi, Journal of the Faculty of Engineering and Architecture of Gazi University, 34(3), 1315-1328. doi:10.17341/gazimmfd.460528
  • Wang, F., Ying, Z., Teng F., (2014) Low carbon logistics distribution route optimization research based on chaos ant colony algorithm, Journal of Investigative Medicine, 62(1), 105.
  • Wasil, E., Gulczynski, D., Golden, B (2011) The multi-depot split delivery vehicle routing problem: An integer programming-based heuristic, new test problems, and computational results, Computers & Industrial Engineering, 61, 794–804. doi:10.1016/j.cie.2011.05.012
  • Wenxue, R.A.N., Xinling, S.H.I., Huasen, F.U. ve Guomin, Y.A.N.G. (2013) Application research on ant colony algorithm in logistic distribution route-optimization of fresh agricultural products, International Journal of Digital Content Technology and its Applications, 7(6), 391–399. doi:10.4156/jdcta.vol7.issue6.44
  • Yıldız, K., Tabak, Ç., Yerlikaya, M.A. ve Efe, B. (2022) A Logistics Model Suggestion for A Logistics Centre to Be Established: An Application in Aegean and Central Anatolia Region, Gazi University Journal of Science, 35(1), 73-90. doi:10.35378/gujs.844650
  • Zhang, Y. (2022) Logistics distribution scheduling model of supply chain based on genetic algorithm, Journal of Industrial and Production Engineering, 39(2), 83–88. doi: 10.1080/21681015.2021.1958938
Toplam 47 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Endüstri Mühendisliği
Bölüm Araştırma Makaleleri
Yazarlar

Ahmet Mert Cam 0000-0003-3544-1925

Nezir Aydin 0000-0003-3621-0619

Erken Görünüm Tarihi 20 Ağustos 2024
Yayımlanma Tarihi 30 Ağustos 2024
Gönderilme Tarihi 25 Aralık 2022
Kabul Tarihi 11 Haziran 2024
Yayımlandığı Sayı Yıl 2024

Kaynak Göster

APA Cam, A. M., & Aydin, N. (2024). BİR LOJİSTİK DAĞITIM AĞININ GENETİK ALGORİTMA İLE YENİDEN TASARLANMASI. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi, 29(2), 375-392. https://doi.org/10.17482/uumfd.1224095
AMA Cam AM, Aydin N. BİR LOJİSTİK DAĞITIM AĞININ GENETİK ALGORİTMA İLE YENİDEN TASARLANMASI. UUJFE. Ağustos 2024;29(2):375-392. doi:10.17482/uumfd.1224095
Chicago Cam, Ahmet Mert, ve Nezir Aydin. “BİR LOJİSTİK DAĞITIM AĞININ GENETİK ALGORİTMA İLE YENİDEN TASARLANMASI”. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi 29, sy. 2 (Ağustos 2024): 375-92. https://doi.org/10.17482/uumfd.1224095.
EndNote Cam AM, Aydin N (01 Ağustos 2024) BİR LOJİSTİK DAĞITIM AĞININ GENETİK ALGORİTMA İLE YENİDEN TASARLANMASI. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi 29 2 375–392.
IEEE A. M. Cam ve N. Aydin, “BİR LOJİSTİK DAĞITIM AĞININ GENETİK ALGORİTMA İLE YENİDEN TASARLANMASI”, UUJFE, c. 29, sy. 2, ss. 375–392, 2024, doi: 10.17482/uumfd.1224095.
ISNAD Cam, Ahmet Mert - Aydin, Nezir. “BİR LOJİSTİK DAĞITIM AĞININ GENETİK ALGORİTMA İLE YENİDEN TASARLANMASI”. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi 29/2 (Ağustos 2024), 375-392. https://doi.org/10.17482/uumfd.1224095.
JAMA Cam AM, Aydin N. BİR LOJİSTİK DAĞITIM AĞININ GENETİK ALGORİTMA İLE YENİDEN TASARLANMASI. UUJFE. 2024;29:375–392.
MLA Cam, Ahmet Mert ve Nezir Aydin. “BİR LOJİSTİK DAĞITIM AĞININ GENETİK ALGORİTMA İLE YENİDEN TASARLANMASI”. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi, c. 29, sy. 2, 2024, ss. 375-92, doi:10.17482/uumfd.1224095.
Vancouver Cam AM, Aydin N. BİR LOJİSTİK DAĞITIM AĞININ GENETİK ALGORİTMA İLE YENİDEN TASARLANMASI. UUJFE. 2024;29(2):375-92.

DUYURU:

30.03.2021- Nisan 2021 (26/1) sayımızdan itibaren TR-Dizin yeni kuralları gereği, dergimizde basılacak makalelerde, ilk gönderim aşamasında Telif Hakkı Formu yanısıra, Çıkar Çatışması Bildirim Formu ve Yazar Katkısı Bildirim Formu da tüm yazarlarca imzalanarak gönderilmelidir. Yayınlanacak makalelerde de makale metni içinde "Çıkar Çatışması" ve "Yazar Katkısı" bölümleri yer alacaktır. İlk gönderim aşamasında doldurulması gereken yeni formlara "Yazım Kuralları" ve "Makale Gönderim Süreci" sayfalarımızdan ulaşılabilir. (Değerlendirme süreci bu tarihten önce tamamlanıp basımı bekleyen makalelerin yanısıra değerlendirme süreci devam eden makaleler için, yazarlar tarafından ilgili formlar doldurularak sisteme yüklenmelidir).  Makale şablonları da, bu değişiklik doğrultusunda güncellenmiştir. Tüm yazarlarımıza önemle duyurulur.

Bursa Uludağ Üniversitesi, Mühendislik Fakültesi Dekanlığı, Görükle Kampüsü, Nilüfer, 16059 Bursa. Tel: (224) 294 1907, Faks: (224) 294 1903, e-posta: mmfd@uludag.edu.tr