Kompresyon tedavisi, venöz ödem ve venöz hipertansiyon gibi venöz hastalıkların tedavisinde önemli bir yöntemdir. Kompresyon terapötik tekniğinin düzenli kullanımının temel amacı, kan akışını nihai olarak düzenleyerek bacak şişmesini azaltmak ve geri dönüşlü kan akışının tekrar oluşmasını önlemektir. Çoğunlukla kompresyon çorapları terapötik giysi olarak tavsiye edilir. Bu çalışmada, interlok örgü yapısındaki kumaş kullanılarak dikişli bir kompresyon çorabı geliştirilmiştir. Üretilen çorabı karşılaştırmak için yuvarlak örgü MERZ CC4 model makinesi kullanılarak üç çorap örneği üretilmiştir. Sonuçlar, geliştirilen çorabın kompresyon sınıfı I'in tüm gereksinimlerini karşıladığını göstermektedir. İstatistiksel analizler, kumaş parametrelerinin, özellikle de kumaş ağırlığının, belirleme katsayısı, korelasyon katsayısı (r) ve hataların karelerinin toplamı (MSE) değerlerine göre sıkıştırma basıncı yoğunluğunu etkili bir şekilde açıkladığını ortaya koymaktadır. Bu araştırmada dikişli kompresyon çoraplarının ve geleneksel kompresyon çoraplarının kompresyon basıncını tahmin etmek için Laplace Yasası ile seçilmiş mevcut matematiksel modeller kullanılmıştır ve benzer sonuçlar sergiledikleri görülmüştür. Veri noktalarının regresyon çizgisi etrafındaki dağılımı çok yakın olduğu görülmüştür. Bu da dikişli çorapların sıkıştırma basıncında daha yüksek bir sapma göstermediğini belirtmektedir.
1. Attaran, R. R. and Ochoa Chaar, C. I. (2017) Compression therapy for venous disease, Phlebology: The Journal of Venous Disease, 32(2), 81–88. doi:10.1177/0268355516633382
2. Bera, M., Chattopadhay, R. and Gupta, D. (2015) Effect of linear density of inlay yarns on the structural characteristics of knitted fabric tube and pressure generation on cylinder, Journal of the Textile Institute, 106(1), 39–46. doi:10.1080/00405000.2014.902166
3. Berszakiewicz, A., Sieroń, A., Krasiński, Z., Cholewka, A. and Stanek, A. (2020) Compression therapy in venous diseases: current forms of compression materials and techniques, Advances in
Dermatology and Allergology, 37(6), 836–841. doi:10.5114/ada.2019.86991
4. BS 6612:1985 (1985) British Standard Specification for Graduated compression hosiery British Standards Institution.
5. Certificat qualite-produits (1999) Referentiel technique prescrit pour les ortheses elastiques de contention des membres ASQUAL.
6. Dubuis, L., Rohan, P.-Y., Avril, S., Badel, P. and Debayle, J. (2012) Patient-specific FE model of the leg under elastic compression 10th International Symposium on Computer Methods in
Biomechanics and Biomedical Engineering, Berlin, Germany.
7. Duvall, J., Granberry, R., Dunne, L. E., Holschuh, B., Johnson, C., Kelly, K., Johnson, B. and Joyner, M. (2017) The design and development of active compression garments for orthostatic intolerance,
2017 Design of Medical Devices Conference, doi:10.1115/DMD2017-3480
8. Felty, C. L. and Rooke, T. W. (2005) Compression therapy for chronic venous insufficiency, Seminars in Vascular Surgery, 18(1), 36–40. doi:10.1053/j.semvascsurg.2004.12.010
9. Gaied, I., Drapier, S. and Lun, B. (2006) Experimental assessment and analytical 2D predictions of the stocking pressures induced on a model leg by medical compressive stockings, Journal of
Biomechanics, 39(16), 3017–3025. doi:10.1016/j.jbiomech.2005.10.022
10. Kırcı, F., Karamanlargil, E., Duru, S. C., Nergis, B. and Candan, C. (2021) Comfort properties of medical compression stockings from biodesigned and cotton fibers, Fibers and Polymers, 22(10), 2929–
2936. doi:10.1007/s12221-021-0615-8
11. Kumar, B., Hu, J., Pan, N. and Narayana, H. (2016) A smart orthopedic compression device based on a polymeric stress memory actuator, Materials & Design, 97, 222–229.
doi:10.1016/j.matdes.2016.02.092
12. Leung, W. Y., Yuen, D. W., Ng, S. P. and Shi, S. Q. (2010) Pressure prediction model for compression garment design, Journal of Burn Care & Research, 31(5), 716–727.
doi:10.1097/BCR.0b013e3181eebea0
13. Liu, R., Guo, X., Lao, T. T. and Little, T. (2017) A critical review on compression textiles for compression therapy: textile-based compression interventions for chronic venous insufficiency, Textile
Research Journal, 87(9), 1121–1141. doi:10.1177/0040517516646041
14. Liu, R., Guo, X., Peng, Q., Zhang, L., Lao, T. T., Little, T., Liu, J. and Chan, E. (2018) Stratified body shape-driven sizing system via three-dimensional digital anthropometry for compression textiles of
lower extremities, Textile Research Journal, 88(18), 2055–2075. doi:10.1177/0040517517715094
15. Liu, R., Lao, T. T. and Wang, S. (2013) Technical knitting and ergonomical design of 3d seamless compression hosiery and pressure performances in vivo and in vitro, Fibers and Polymers, 14(8), 1391–1399. doi:10.1007/s12221-013-1391-x
16. Macintyre, L., Baird, M. and Weedall, P. (2004) The study of pressure delivery for hypertrophic scar treatment, International Journal of Clothing Science and Technology, 16(1/2), 173–183.
doi:10.1108/09556220410520450
17. Maleki, H., Aghajani, M., Sadeghi, A. H. and Jeddi, A. A. A. (2011) On the pressure behavior of tubular weft knitted fabrics constructed from textured polyester yarns, Journal of Engineered Fibers and
Fabrics, 6(2), 30–39. doi:10.1177/155892501100600204
18. Oğlakcıoğlu, N. and Marmaralı, A. (2010) Rejenere selüloz li̇fleri̇ni̇n kompresyon çoraplarının ısıl konfor özelli̇kleri̇ne etki̇si̇, Tekstil ve Mühendis, 17(77), 6–12.
19. Partsch, H. (2006) Do we still need compression bandages? haemodynamic effects of compression stockings and bandages, Phlebology: The Journal of Venous Disease, 21(3), 132–138.
doi:10.1258/026835506778253283
20. Partsch, H., Partsch, B. and Braun, W. (2006) Interface pressure and stiffness of ready made compression stockings: comparison of in vivo and in vitro measurements, Journal of Vascular Surgery,
44(4), 809–814. doi:10.1016/j.jvs.2006.06.024
21. Pettys-Baker, R., Schleif, N., Lee, J. W., Utset-Ward, S., Berglund, M. E., Dunne, L. E., Holschuh, B., Johnson, C., Kelly, K., Johnson, B. and Joyner, M. (2018) Tension-controlled active compression garment
for treatment of orthostatic intolerance, 2018 Design of Medical Devices Conference, doi:10.1115/DMD2018-6884
22. RAL-GZ 387:2000 (2008) RAL Deutsches Institut für Gütesicherung und Kennzeichnung, Medical Compression Hosiery Quality Assurance RAL-GZ 387/1.
23. Sell, H., Vikatmaa, P., Albäck, A., Lepäntalo, M., Malmivaara, A., Mahmoud, O. and Venermo, M. (2014) Compression therapy versus surgery in the treatment of patients with varicose veins: a RCT,
European Journal of Vascular and Endovascular Surgery, 47(6), 670–677. doi:10.1016/j.ejvs.2014.02.015
24. Siddique, H. F., Mazari, A. A., Havelka, A. and Kus, Z. (2020) Performance characterization and pressure prediction of compression socks, Fibers and Polymers, 21(3), 657–670. doi:10.1007/s12221-020-
9420-z
25. Siddique, H. F., Mazari, A. A., Havelka, A., Mansoor, T., Ali, A. and Azeem, M. (2018) Development of V-shaped compression socks on conventional socks knitting machine, AUTEX Research Journal,
18(4), 377–384. doi:10.1515/aut-2018-0014
26. Stolk, R., Wegen van der-Franken, C. P. M. and Neumann, H. A. M. (2004) A method for measuring the dynamic behavior of medical compression hosiery during walking, Dermatologic Surgery,
30(5), 729–736. doi:10.1111/j.1524-4725.2004.30203.x
27. Wang, Y. and Gu, L. (2022) Patient-specific medical compression stockings (MCSs) development based on mathematic model and non-contact 3D body scanning, The Journal of The Textile
Institute, 1–10. doi:10.1080/00405000.2022.2111644
DEVELOPMENT OF SEAMED COMPRESSION SOCKS AND COMPARISON WITH CLASS I SOCKS USING EXISTING MATHEMATICAL MODELS
Compression therapy is an important method for treating venous diseases such as venous edema and venous hypertension. Regular compression therapy's main objective is to diminish leg swelling by controlling blood flow and avoiding the recurrence of reversible blood flow. Compression socks are often recommended as therapeutic garments. In this study, a seamed compression sock was developed using fabric with an interlock knit structure. Three other sock samples were produced by using circular knitting MERZ CC4 model machine for comparison. The results demonstrate that the developed sock meets all the requirements of compression class I. Statistical analysis reveals that fabric parameters, particularly fabric weight, effectively explain compression pressure intensity according to the values of coefficient of determination, coefficient of correlation (r), and means sum of square errors (MSE). In this work, Laplace's Law and a few preexisting mathematical models were used to calculate the compression pressure of both standard compression socks and socks with seams, with results that were essentially similar. The points of data are tightly clustered around line of regression, showing that there is little variation in the compression pressure for socks with seams.
1. Attaran, R. R. and Ochoa Chaar, C. I. (2017) Compression therapy for venous disease, Phlebology: The Journal of Venous Disease, 32(2), 81–88. doi:10.1177/0268355516633382
2. Bera, M., Chattopadhay, R. and Gupta, D. (2015) Effect of linear density of inlay yarns on the structural characteristics of knitted fabric tube and pressure generation on cylinder, Journal of the Textile Institute, 106(1), 39–46. doi:10.1080/00405000.2014.902166
3. Berszakiewicz, A., Sieroń, A., Krasiński, Z., Cholewka, A. and Stanek, A. (2020) Compression therapy in venous diseases: current forms of compression materials and techniques, Advances in
Dermatology and Allergology, 37(6), 836–841. doi:10.5114/ada.2019.86991
4. BS 6612:1985 (1985) British Standard Specification for Graduated compression hosiery British Standards Institution.
5. Certificat qualite-produits (1999) Referentiel technique prescrit pour les ortheses elastiques de contention des membres ASQUAL.
6. Dubuis, L., Rohan, P.-Y., Avril, S., Badel, P. and Debayle, J. (2012) Patient-specific FE model of the leg under elastic compression 10th International Symposium on Computer Methods in
Biomechanics and Biomedical Engineering, Berlin, Germany.
7. Duvall, J., Granberry, R., Dunne, L. E., Holschuh, B., Johnson, C., Kelly, K., Johnson, B. and Joyner, M. (2017) The design and development of active compression garments for orthostatic intolerance,
2017 Design of Medical Devices Conference, doi:10.1115/DMD2017-3480
8. Felty, C. L. and Rooke, T. W. (2005) Compression therapy for chronic venous insufficiency, Seminars in Vascular Surgery, 18(1), 36–40. doi:10.1053/j.semvascsurg.2004.12.010
9. Gaied, I., Drapier, S. and Lun, B. (2006) Experimental assessment and analytical 2D predictions of the stocking pressures induced on a model leg by medical compressive stockings, Journal of
Biomechanics, 39(16), 3017–3025. doi:10.1016/j.jbiomech.2005.10.022
10. Kırcı, F., Karamanlargil, E., Duru, S. C., Nergis, B. and Candan, C. (2021) Comfort properties of medical compression stockings from biodesigned and cotton fibers, Fibers and Polymers, 22(10), 2929–
2936. doi:10.1007/s12221-021-0615-8
11. Kumar, B., Hu, J., Pan, N. and Narayana, H. (2016) A smart orthopedic compression device based on a polymeric stress memory actuator, Materials & Design, 97, 222–229.
doi:10.1016/j.matdes.2016.02.092
12. Leung, W. Y., Yuen, D. W., Ng, S. P. and Shi, S. Q. (2010) Pressure prediction model for compression garment design, Journal of Burn Care & Research, 31(5), 716–727.
doi:10.1097/BCR.0b013e3181eebea0
13. Liu, R., Guo, X., Lao, T. T. and Little, T. (2017) A critical review on compression textiles for compression therapy: textile-based compression interventions for chronic venous insufficiency, Textile
Research Journal, 87(9), 1121–1141. doi:10.1177/0040517516646041
14. Liu, R., Guo, X., Peng, Q., Zhang, L., Lao, T. T., Little, T., Liu, J. and Chan, E. (2018) Stratified body shape-driven sizing system via three-dimensional digital anthropometry for compression textiles of
lower extremities, Textile Research Journal, 88(18), 2055–2075. doi:10.1177/0040517517715094
15. Liu, R., Lao, T. T. and Wang, S. (2013) Technical knitting and ergonomical design of 3d seamless compression hosiery and pressure performances in vivo and in vitro, Fibers and Polymers, 14(8), 1391–1399. doi:10.1007/s12221-013-1391-x
16. Macintyre, L., Baird, M. and Weedall, P. (2004) The study of pressure delivery for hypertrophic scar treatment, International Journal of Clothing Science and Technology, 16(1/2), 173–183.
doi:10.1108/09556220410520450
17. Maleki, H., Aghajani, M., Sadeghi, A. H. and Jeddi, A. A. A. (2011) On the pressure behavior of tubular weft knitted fabrics constructed from textured polyester yarns, Journal of Engineered Fibers and
Fabrics, 6(2), 30–39. doi:10.1177/155892501100600204
18. Oğlakcıoğlu, N. and Marmaralı, A. (2010) Rejenere selüloz li̇fleri̇ni̇n kompresyon çoraplarının ısıl konfor özelli̇kleri̇ne etki̇si̇, Tekstil ve Mühendis, 17(77), 6–12.
19. Partsch, H. (2006) Do we still need compression bandages? haemodynamic effects of compression stockings and bandages, Phlebology: The Journal of Venous Disease, 21(3), 132–138.
doi:10.1258/026835506778253283
20. Partsch, H., Partsch, B. and Braun, W. (2006) Interface pressure and stiffness of ready made compression stockings: comparison of in vivo and in vitro measurements, Journal of Vascular Surgery,
44(4), 809–814. doi:10.1016/j.jvs.2006.06.024
21. Pettys-Baker, R., Schleif, N., Lee, J. W., Utset-Ward, S., Berglund, M. E., Dunne, L. E., Holschuh, B., Johnson, C., Kelly, K., Johnson, B. and Joyner, M. (2018) Tension-controlled active compression garment
for treatment of orthostatic intolerance, 2018 Design of Medical Devices Conference, doi:10.1115/DMD2018-6884
22. RAL-GZ 387:2000 (2008) RAL Deutsches Institut für Gütesicherung und Kennzeichnung, Medical Compression Hosiery Quality Assurance RAL-GZ 387/1.
23. Sell, H., Vikatmaa, P., Albäck, A., Lepäntalo, M., Malmivaara, A., Mahmoud, O. and Venermo, M. (2014) Compression therapy versus surgery in the treatment of patients with varicose veins: a RCT,
European Journal of Vascular and Endovascular Surgery, 47(6), 670–677. doi:10.1016/j.ejvs.2014.02.015
24. Siddique, H. F., Mazari, A. A., Havelka, A. and Kus, Z. (2020) Performance characterization and pressure prediction of compression socks, Fibers and Polymers, 21(3), 657–670. doi:10.1007/s12221-020-
9420-z
25. Siddique, H. F., Mazari, A. A., Havelka, A., Mansoor, T., Ali, A. and Azeem, M. (2018) Development of V-shaped compression socks on conventional socks knitting machine, AUTEX Research Journal,
18(4), 377–384. doi:10.1515/aut-2018-0014
26. Stolk, R., Wegen van der-Franken, C. P. M. and Neumann, H. A. M. (2004) A method for measuring the dynamic behavior of medical compression hosiery during walking, Dermatologic Surgery,
30(5), 729–736. doi:10.1111/j.1524-4725.2004.30203.x
27. Wang, Y. and Gu, L. (2022) Patient-specific medical compression stockings (MCSs) development based on mathematic model and non-contact 3D body scanning, The Journal of The Textile
Institute, 1–10. doi:10.1080/00405000.2022.2111644
Akçagün, E., Siddique, H., & Yılmaz, A. (2023). DEVELOPMENT OF SEAMED COMPRESSION SOCKS AND COMPARISON WITH CLASS I SOCKS USING EXISTING MATHEMATICAL MODELS. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi, 28(3), 741-760. https://doi.org/10.17482/uumfd.1268849
AMA
Akçagün E, Siddique H, Yılmaz A. DEVELOPMENT OF SEAMED COMPRESSION SOCKS AND COMPARISON WITH CLASS I SOCKS USING EXISTING MATHEMATICAL MODELS. UUJFE. Aralık 2023;28(3):741-760. doi:10.17482/uumfd.1268849
Chicago
Akçagün, Engin, Hafiz Siddique, ve Abdurrrahim Yılmaz. “DEVELOPMENT OF SEAMED COMPRESSION SOCKS AND COMPARISON WITH CLASS I SOCKS USING EXISTING MATHEMATICAL MODELS”. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi 28, sy. 3 (Aralık 2023): 741-60. https://doi.org/10.17482/uumfd.1268849.
EndNote
Akçagün E, Siddique H, Yılmaz A (01 Aralık 2023) DEVELOPMENT OF SEAMED COMPRESSION SOCKS AND COMPARISON WITH CLASS I SOCKS USING EXISTING MATHEMATICAL MODELS. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi 28 3 741–760.
IEEE
E. Akçagün, H. Siddique, ve A. Yılmaz, “DEVELOPMENT OF SEAMED COMPRESSION SOCKS AND COMPARISON WITH CLASS I SOCKS USING EXISTING MATHEMATICAL MODELS”, UUJFE, c. 28, sy. 3, ss. 741–760, 2023, doi: 10.17482/uumfd.1268849.
ISNAD
Akçagün, Engin vd. “DEVELOPMENT OF SEAMED COMPRESSION SOCKS AND COMPARISON WITH CLASS I SOCKS USING EXISTING MATHEMATICAL MODELS”. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi 28/3 (Aralık 2023), 741-760. https://doi.org/10.17482/uumfd.1268849.
JAMA
Akçagün E, Siddique H, Yılmaz A. DEVELOPMENT OF SEAMED COMPRESSION SOCKS AND COMPARISON WITH CLASS I SOCKS USING EXISTING MATHEMATICAL MODELS. UUJFE. 2023;28:741–760.
MLA
Akçagün, Engin vd. “DEVELOPMENT OF SEAMED COMPRESSION SOCKS AND COMPARISON WITH CLASS I SOCKS USING EXISTING MATHEMATICAL MODELS”. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi, c. 28, sy. 3, 2023, ss. 741-60, doi:10.17482/uumfd.1268849.
Vancouver
Akçagün E, Siddique H, Yılmaz A. DEVELOPMENT OF SEAMED COMPRESSION SOCKS AND COMPARISON WITH CLASS I SOCKS USING EXISTING MATHEMATICAL MODELS. UUJFE. 2023;28(3):741-60.
30.03.2021- Nisan 2021 (26/1) sayımızdan itibaren TR-Dizin yeni kuralları gereği, dergimizde basılacak makalelerde, ilk gönderim aşamasında Telif Hakkı Formu yanısıra, Çıkar Çatışması Bildirim Formu ve Yazar Katkısı Bildirim Formu da tüm yazarlarca imzalanarak gönderilmelidir. Yayınlanacak makalelerde de makale metni içinde "Çıkar Çatışması" ve "Yazar Katkısı" bölümleri yer alacaktır. İlk gönderim aşamasında doldurulması gereken yeni formlara "Yazım Kuralları" ve "Makale Gönderim Süreci" sayfalarımızdan ulaşılabilir. (Değerlendirme süreci bu tarihten önce tamamlanıp basımı bekleyen makalelerin yanısıra değerlendirme süreci devam eden makaleler için, yazarlar tarafından ilgili formlar doldurularak sisteme yüklenmelidir). Makale şablonları da, bu değişiklik doğrultusunda güncellenmiştir. Tüm yazarlarımıza önemle duyurulur.
Bursa Uludağ Üniversitesi, Mühendislik Fakültesi Dekanlığı, Görükle Kampüsü, Nilüfer, 16059 Bursa. Tel: (224) 294 1907, Faks: (224) 294 1903, e-posta: mmfd@uludag.edu.tr