Steel reinforced concrete facing members, which are used to fix geosynthetic reinforcements working against tensile forces inside soils and to resist active lateral earth pressures, have certain disadvantages, such as massiveness and corrosion. In addition, the aforementioned conventional panels are not economical since they frequently require maintenance and repair in terms of long term stability. In this study, the utility of alternative composite panels is evaluated with the various arrangement and type of fiber reinforcements and a typical foam concrete. Panel tests and three point bending tests are realized to determine the experimental behavior of steel, carbon fiber (CFRP) and glass fiber reinforced (GFRP) specimens, as well as unreinforced examples. Although CFRP wrapped specimens cannot reach expected levels, samples with GFRP present favorable performance as well as being cheaper. Specimens with mat GFRP enhance both strength and deformation capacities according to the results of axial and lateral deformations under diagonal loading condition. In addition, chopped GFRP applied foam concrete specimens have more strength in terms of bending test results, but CFRP reinforcements increase their displacement capacity.
This study was financially supported through a collaborative project between university and industry within the Eskisehir Research Development Zone (ID: 62177).
Kaynakça
1. Ahmad, A. and Singh, Y. (2021) In-plane behaviour of expanded polystyrene core reinforced concrete sandwich panels, Construction and Building Materials, 269, 121804. doi:10.1016/j.conbuildmat.2020.121804
2. Ahmadi, H. and Bezuijen, A. (2018) Full-scale mechanically stabilized earth (MSE) walls under strip footing load, Geotextiles and Geomembranes, 46(3), 297-311. doi:10.1016/j.geotexmem.2017.12.002
3. ASTM C293/C293M (2016). Standard test method for flexural strength of concrete (Using simple beam with center-point loading), American Society for Testing and Materials, West
Conshohocken, United States.
4. ASTM E519/E519M (2021). Standard test method for diagonal tension (shear) in masonry assemblages, American Society for Testing and Materials, West Conshohocken, United States.
5. Banthia, N., Bindiganavile, V., Jones, J. and Novak, J. (2012) Fiber-reinforced concrete in precast concrete applications: Research leads to innovative products, PCI Journal, 57(3), 33-46.
doi:10.15554/pcij.06012012.33.46
6. Benayoune, A., Samad, A. A. A., Abang Ali, A. A. and Trikha, D. N. (2007) Response of pre-cast reinforced composite sandwich panels to axial loading, Construction and Building Materials, 21, 677-
685. doi:10.1016/j.conbuildmat.2005.12.011
7. Bui, T. T., Bost, M., Limam, A., Rajot, J. P. and Robit, P. (2020) Modular precast concrete facing for soil-nailed retaining walls: laboratory study and in situ validation, Innovative Infrastructure Solutions, 5(1), 1-14. doi:10.1007/s41062-019-0250-z
8. Corradi, M., Tedeschi, C., Binda, L. and Borri, A. (2008) Experimental evaluation of shear and compression strength of masonry wall before and after reinforcement: Deep repointing, Construction
and Building Materials, 22, 463-472. doi:10.1016/j.conbuildmat.2006.11.021
9. Evirgen, B., Tunaboyu, O., Büyük, B., Çil, G. T. (2022) Behavior of the lightened reinforced soil panels filled with polystyrene foam, Journal of Engineering Sciences and Design, 10(4), 1315-1324.
doi:10.49392/jesd.1049392
10. Henriksen, T., Lo, S. and Knaack, U. (2015) Advances in the application of thin-walled glass fiber reinforced concrete elements, Advances in Civil Engineering Materials, 4(1), 115-130.
doi:10.1520/ACEM20140045
11. Khan, M. and Ali, M (2016) Use of glass and nylon fibers in concrete for controlling early age micro cracking in bridge decks, Construction and Building Materials, 125, 800-808.
doi:10.1016/j.conbuildmat.2016.08.111
12. Kızılkanat, A. B., Kabay, N., Akyüncü, V., Chowdhury, S. and Akça, A. H. (2015) Mechanical properties and fracture behavior of basalt and glass fiber reinforced concrete: An experimental study,
Construction and Building Materials, 100, 218-224. doi:10.1016/j.conbuildmat.2015.10.006
13. Kim, J. H. and You, Y. C. (2015) Composite behavior of a novel insulated concrete sandwich wall panel reinforced with GFRP shear grids: Effects of insulation types, Materials, 8(3), 899-913.
doi:10.3390/ma8030899
14. Koerner, R. M. and Koerner, G. R. (2011) The importance of drainage control for geosynthetic reinforced mechanically stabilized earth walls. Journal of GeoEngineering, 6(1), 3-13.
doi:10.6310/jog.2011.6(1).1
15. Lee, K. Z. Z., Chang, N. Y. and Ko, H. Y. (2010) Numerical simulation of geosynthetic-reinforced soil walls under seismic shaking, Geotextiles and Geomembranes, 28, 317-334.
doi:10.1016/j.geotexmem.2009.09.008
16. Lelli, M., Laneri, R. and Rimoldi, P. (2015) Innovative reinforced soil structures for high walls and slopes combining polymeric and metallic reinforcements, Procedia Engineering, 125, 397-405.
doi:10.1016/j.proeng.2015.11.099
17. Longo, F., Cascardi, A., Lassandro, P. and Aiello, M. A. (2021) Thermal and seismic capacity improvements for masonry building heritage: A unified retrofitting system. Sustainability, 13, 1111.
doi:10.3390/su13031111
18. Lv, Y., Cheng, H. M. and Ma, Z. G. (2012) Fatigue performances of glass fiber reinforced concrete in flexure, Procedia Engineering, 31, 550-556. doi:10.1016/j.proeng.2012.01.1066
19. Manos, G. C., Melidis, L., Katakalos, K., Kotoulas, L., Anastasiadis, A. and Chatziastrou, C. (2021) Masonry panels with external thermal insulation subjected to in-plane diagonal compression, Case
Studies in Construction Materials, 14, e00538. doi:10.1016/j.cscm.2021.e00538
20. Mohamad, N., Omar, W. and Abdullah, R. (2011) Precast lightweight foamed concrete sandwich panel (PLFP) tested under axial load: Preliminary results, Advanced Materials Research, 250, 1153-
1162. doi:10.4028/www.scientific.net/AMR.250-253.1153
21. Morales-Alonso, D., Cendón, D. A., Gálvez, F., Erice, B. and Sánchez-Gálvez, V. (2011) Analysis of the fracture of reinforced concrete flat elements subjected to explosions. Experimental procedure
and numerical validation, Anales de Mecánica de la Fractura, 28(2), 433-438.
22. Nicholson, P. G. (2015) Soil Improvement and Ground Modification Methods, Butterworth-Heinemann.
23. Panah, A. K., Yazdi, M. and Ghalandarzadeh, A. (2015) Shaking table tests on soil retaining walls reinforced by polymeric strips, Geotextiles and Geomembranes, 43, 148-161.
doi:10.1016/j.geotexmem.2015.01.001
24. Ren, F., Huang, Q. and Wang, G. (2020) Shaking table tests on reinforced soil retaining walls subjected to the combined effects of rainfall and earthquakes, Engineering Geology, 267, 105475.
doi:10.1016/j.enggeo.2020.105475
25. Roca, P. and Araiza, G. (2010) Shear response of brick masonry small assemblages strengthened with bonded FRP laminates for in-plane reinforcement, Construction and Building Materials, 24,
1372-1384. doi:10.1016/j.conbuildmat.2010.01.005
26. Sarı, M. S. and Büyük, B. (2023). Toprakarme duvarlar için polimer şerit ile beton panel birleşim aparatı, Patent, TR2019/20777.
27. Soriano, J. G. (2012). GFRP shear grid for precast, prestressed concrete sandwich wall panels, M.Sc. Dissertation, North Carolina State University, North Carolina.
28. TS-EN 14475 (2006). Execution of special geotechnical works - Reinforced fill, Turkish Standards Institute, Ankara.
29. Tunaboyu, O. (2017). Investigation of the infilled reinforced concrete frames without openings causing short column by analytical and experimental methods, Ph.D. Dissertation, Institute of
Science and Technology, Anadolu University, Eskisehir.
30. Viswanadham, B. V. S., Razeghi, H. R., Mamaghanian, J. and Manikumar, C. H. S. G. (2017) Centrifuge model study on geogrid reinforced soil walls with marginal backfills with and without chimney
sand drain, Geotextiles and Geomembranes, 45(5), 430-446. doi:10.1016/j.geotexmem.2017.06.005
31. Xin, H., Liu, Y., He, J., Fan, H. and Zhang, Y. (2015) Fatigue behavior of hybrid GFRP-concrete bridge decks under sagging moment, Steel and Composite Structures, 18(4), 925-946.
doi:10.12989/scs.2015.18.4.925
32. Xu, C., Luo, M., Shen, P., Han, J. and Ren, F. (2020) Seismic performance of a whole geosynthetic reinforced soil – integrated bridge system (GRS-IBS) in shaking table test, Geotextiles and
Geomembranes, 48, 315-330. doi:10.1016/j.geotexmem.2019.12.004
33. Yang, Y., Xue, Y., Yu, Y., Liu, R. and Ke, S. (2017) Study of the design and mechanical performance of a GFRP-concrete composite deck, Steel and Composite Structures, 24(6), 679-688.
doi:10.12989/scs.2017.24.6.679
34. Yıldız, N. B. and Arslan, H. (2018) Use of glass fiber reinforced concrete panels on exteriors, 9th National Roof & Facade Conference, Istanbul, Turkey.
Donatılı Zeminler için Alternatif Hafif Kompozit Panel Elemanları
Zemindeki çekme kuvvetlerine karşı çalışan ve aktif yanal toprak basınçlarına karşı koyan geosentetik donatıları sabitlemek için kullanılan çelik donatılı beton panel elemanlarının ağırlık ve korozyon gibi bazı dezavantajları vardır. Buna ek olarak, bahsi geçen geleneksel paneller, sıklıkla bakım ve onarım gerektirdiklerinden uzun süreli stabilite açısından ekonomik değildirler. Bu çalışmada, çeşitli dizilim ve tipteki fiber donatılarla güçlendirilen özgün köpük beton ile alternatif kompozit panellerin kullanılabilirliği değerlendirilmiştir. Çelik, karbon fiber (CFRP) ve cam fiber donatılı (GFRP) numunelerin yanı sıra donatısız numunelerin deneysel davranışını belirlemek için panel testleri ve üç nokta eğilme testleri gerçekleştirilmiştir. CFRP sargılı numuneler beklenen seviyelere ulaşamasa da GFRP ile güçlendirilen numuneler daha ucuz olmasının yanı sıra olumlu performans göstermektedir. Keçe formundaki GFRP'li numuneler, diyagonal yükleme koşulları altında eksenel ve yanal deformasyonların sonuçlarına göre hem mukavemet hem de deformasyon kapasitelerini arttırmaktadır. Ayrıca kırpılmış GFRP uygulanmış köpük beton numuneler eğilme testi sonuçları açısından daha fazla mukavemete sahipken, CFRP donatılar deplasman kapasitelerini arttırmaktadır.
1. Ahmad, A. and Singh, Y. (2021) In-plane behaviour of expanded polystyrene core reinforced concrete sandwich panels, Construction and Building Materials, 269, 121804. doi:10.1016/j.conbuildmat.2020.121804
2. Ahmadi, H. and Bezuijen, A. (2018) Full-scale mechanically stabilized earth (MSE) walls under strip footing load, Geotextiles and Geomembranes, 46(3), 297-311. doi:10.1016/j.geotexmem.2017.12.002
3. ASTM C293/C293M (2016). Standard test method for flexural strength of concrete (Using simple beam with center-point loading), American Society for Testing and Materials, West
Conshohocken, United States.
4. ASTM E519/E519M (2021). Standard test method for diagonal tension (shear) in masonry assemblages, American Society for Testing and Materials, West Conshohocken, United States.
5. Banthia, N., Bindiganavile, V., Jones, J. and Novak, J. (2012) Fiber-reinforced concrete in precast concrete applications: Research leads to innovative products, PCI Journal, 57(3), 33-46.
doi:10.15554/pcij.06012012.33.46
6. Benayoune, A., Samad, A. A. A., Abang Ali, A. A. and Trikha, D. N. (2007) Response of pre-cast reinforced composite sandwich panels to axial loading, Construction and Building Materials, 21, 677-
685. doi:10.1016/j.conbuildmat.2005.12.011
7. Bui, T. T., Bost, M., Limam, A., Rajot, J. P. and Robit, P. (2020) Modular precast concrete facing for soil-nailed retaining walls: laboratory study and in situ validation, Innovative Infrastructure Solutions, 5(1), 1-14. doi:10.1007/s41062-019-0250-z
8. Corradi, M., Tedeschi, C., Binda, L. and Borri, A. (2008) Experimental evaluation of shear and compression strength of masonry wall before and after reinforcement: Deep repointing, Construction
and Building Materials, 22, 463-472. doi:10.1016/j.conbuildmat.2006.11.021
9. Evirgen, B., Tunaboyu, O., Büyük, B., Çil, G. T. (2022) Behavior of the lightened reinforced soil panels filled with polystyrene foam, Journal of Engineering Sciences and Design, 10(4), 1315-1324.
doi:10.49392/jesd.1049392
10. Henriksen, T., Lo, S. and Knaack, U. (2015) Advances in the application of thin-walled glass fiber reinforced concrete elements, Advances in Civil Engineering Materials, 4(1), 115-130.
doi:10.1520/ACEM20140045
11. Khan, M. and Ali, M (2016) Use of glass and nylon fibers in concrete for controlling early age micro cracking in bridge decks, Construction and Building Materials, 125, 800-808.
doi:10.1016/j.conbuildmat.2016.08.111
12. Kızılkanat, A. B., Kabay, N., Akyüncü, V., Chowdhury, S. and Akça, A. H. (2015) Mechanical properties and fracture behavior of basalt and glass fiber reinforced concrete: An experimental study,
Construction and Building Materials, 100, 218-224. doi:10.1016/j.conbuildmat.2015.10.006
13. Kim, J. H. and You, Y. C. (2015) Composite behavior of a novel insulated concrete sandwich wall panel reinforced with GFRP shear grids: Effects of insulation types, Materials, 8(3), 899-913.
doi:10.3390/ma8030899
14. Koerner, R. M. and Koerner, G. R. (2011) The importance of drainage control for geosynthetic reinforced mechanically stabilized earth walls. Journal of GeoEngineering, 6(1), 3-13.
doi:10.6310/jog.2011.6(1).1
15. Lee, K. Z. Z., Chang, N. Y. and Ko, H. Y. (2010) Numerical simulation of geosynthetic-reinforced soil walls under seismic shaking, Geotextiles and Geomembranes, 28, 317-334.
doi:10.1016/j.geotexmem.2009.09.008
16. Lelli, M., Laneri, R. and Rimoldi, P. (2015) Innovative reinforced soil structures for high walls and slopes combining polymeric and metallic reinforcements, Procedia Engineering, 125, 397-405.
doi:10.1016/j.proeng.2015.11.099
17. Longo, F., Cascardi, A., Lassandro, P. and Aiello, M. A. (2021) Thermal and seismic capacity improvements for masonry building heritage: A unified retrofitting system. Sustainability, 13, 1111.
doi:10.3390/su13031111
18. Lv, Y., Cheng, H. M. and Ma, Z. G. (2012) Fatigue performances of glass fiber reinforced concrete in flexure, Procedia Engineering, 31, 550-556. doi:10.1016/j.proeng.2012.01.1066
19. Manos, G. C., Melidis, L., Katakalos, K., Kotoulas, L., Anastasiadis, A. and Chatziastrou, C. (2021) Masonry panels with external thermal insulation subjected to in-plane diagonal compression, Case
Studies in Construction Materials, 14, e00538. doi:10.1016/j.cscm.2021.e00538
20. Mohamad, N., Omar, W. and Abdullah, R. (2011) Precast lightweight foamed concrete sandwich panel (PLFP) tested under axial load: Preliminary results, Advanced Materials Research, 250, 1153-
1162. doi:10.4028/www.scientific.net/AMR.250-253.1153
21. Morales-Alonso, D., Cendón, D. A., Gálvez, F., Erice, B. and Sánchez-Gálvez, V. (2011) Analysis of the fracture of reinforced concrete flat elements subjected to explosions. Experimental procedure
and numerical validation, Anales de Mecánica de la Fractura, 28(2), 433-438.
22. Nicholson, P. G. (2015) Soil Improvement and Ground Modification Methods, Butterworth-Heinemann.
23. Panah, A. K., Yazdi, M. and Ghalandarzadeh, A. (2015) Shaking table tests on soil retaining walls reinforced by polymeric strips, Geotextiles and Geomembranes, 43, 148-161.
doi:10.1016/j.geotexmem.2015.01.001
24. Ren, F., Huang, Q. and Wang, G. (2020) Shaking table tests on reinforced soil retaining walls subjected to the combined effects of rainfall and earthquakes, Engineering Geology, 267, 105475.
doi:10.1016/j.enggeo.2020.105475
25. Roca, P. and Araiza, G. (2010) Shear response of brick masonry small assemblages strengthened with bonded FRP laminates for in-plane reinforcement, Construction and Building Materials, 24,
1372-1384. doi:10.1016/j.conbuildmat.2010.01.005
26. Sarı, M. S. and Büyük, B. (2023). Toprakarme duvarlar için polimer şerit ile beton panel birleşim aparatı, Patent, TR2019/20777.
27. Soriano, J. G. (2012). GFRP shear grid for precast, prestressed concrete sandwich wall panels, M.Sc. Dissertation, North Carolina State University, North Carolina.
28. TS-EN 14475 (2006). Execution of special geotechnical works - Reinforced fill, Turkish Standards Institute, Ankara.
29. Tunaboyu, O. (2017). Investigation of the infilled reinforced concrete frames without openings causing short column by analytical and experimental methods, Ph.D. Dissertation, Institute of
Science and Technology, Anadolu University, Eskisehir.
30. Viswanadham, B. V. S., Razeghi, H. R., Mamaghanian, J. and Manikumar, C. H. S. G. (2017) Centrifuge model study on geogrid reinforced soil walls with marginal backfills with and without chimney
sand drain, Geotextiles and Geomembranes, 45(5), 430-446. doi:10.1016/j.geotexmem.2017.06.005
31. Xin, H., Liu, Y., He, J., Fan, H. and Zhang, Y. (2015) Fatigue behavior of hybrid GFRP-concrete bridge decks under sagging moment, Steel and Composite Structures, 18(4), 925-946.
doi:10.12989/scs.2015.18.4.925
32. Xu, C., Luo, M., Shen, P., Han, J. and Ren, F. (2020) Seismic performance of a whole geosynthetic reinforced soil – integrated bridge system (GRS-IBS) in shaking table test, Geotextiles and
Geomembranes, 48, 315-330. doi:10.1016/j.geotexmem.2019.12.004
33. Yang, Y., Xue, Y., Yu, Y., Liu, R. and Ke, S. (2017) Study of the design and mechanical performance of a GFRP-concrete composite deck, Steel and Composite Structures, 24(6), 679-688.
doi:10.12989/scs.2017.24.6.679
34. Yıldız, N. B. and Arslan, H. (2018) Use of glass fiber reinforced concrete panels on exteriors, 9th National Roof & Facade Conference, Istanbul, Turkey.
Evirgen, B., Tunaboyu, O., Büyük, B., Çil, G. T. (2023). ALTERNATIVE LIGHTWEIGHT COMPOSITE FACING MEMBERS FOR REINFORCED SOILS. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi, 28(3), 775-790. https://doi.org/10.17482/uumfd.1286985
AMA
Evirgen B, Tunaboyu O, Büyük B, Çil GT. ALTERNATIVE LIGHTWEIGHT COMPOSITE FACING MEMBERS FOR REINFORCED SOILS. UUJFE. Aralık 2023;28(3):775-790. doi:10.17482/uumfd.1286985
Chicago
Evirgen, Burak, Onur Tunaboyu, Barış Büyük, ve Gizem Tuğçe Çil. “ALTERNATIVE LIGHTWEIGHT COMPOSITE FACING MEMBERS FOR REINFORCED SOILS”. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi 28, sy. 3 (Aralık 2023): 775-90. https://doi.org/10.17482/uumfd.1286985.
EndNote
Evirgen B, Tunaboyu O, Büyük B, Çil GT (01 Aralık 2023) ALTERNATIVE LIGHTWEIGHT COMPOSITE FACING MEMBERS FOR REINFORCED SOILS. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi 28 3 775–790.
IEEE
B. Evirgen, O. Tunaboyu, B. Büyük, ve G. T. Çil, “ALTERNATIVE LIGHTWEIGHT COMPOSITE FACING MEMBERS FOR REINFORCED SOILS”, UUJFE, c. 28, sy. 3, ss. 775–790, 2023, doi: 10.17482/uumfd.1286985.
ISNAD
Evirgen, Burak vd. “ALTERNATIVE LIGHTWEIGHT COMPOSITE FACING MEMBERS FOR REINFORCED SOILS”. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi 28/3 (Aralık 2023), 775-790. https://doi.org/10.17482/uumfd.1286985.
JAMA
Evirgen B, Tunaboyu O, Büyük B, Çil GT. ALTERNATIVE LIGHTWEIGHT COMPOSITE FACING MEMBERS FOR REINFORCED SOILS. UUJFE. 2023;28:775–790.
MLA
Evirgen, Burak vd. “ALTERNATIVE LIGHTWEIGHT COMPOSITE FACING MEMBERS FOR REINFORCED SOILS”. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi, c. 28, sy. 3, 2023, ss. 775-90, doi:10.17482/uumfd.1286985.
Vancouver
Evirgen B, Tunaboyu O, Büyük B, Çil GT. ALTERNATIVE LIGHTWEIGHT COMPOSITE FACING MEMBERS FOR REINFORCED SOILS. UUJFE. 2023;28(3):775-90.
30.03.2021- Nisan 2021 (26/1) sayımızdan itibaren TR-Dizin yeni kuralları gereği, dergimizde basılacak makalelerde, ilk gönderim aşamasında Telif Hakkı Formu yanısıra, Çıkar Çatışması Bildirim Formu ve Yazar Katkısı Bildirim Formu da tüm yazarlarca imzalanarak gönderilmelidir. Yayınlanacak makalelerde de makale metni içinde "Çıkar Çatışması" ve "Yazar Katkısı" bölümleri yer alacaktır. İlk gönderim aşamasında doldurulması gereken yeni formlara "Yazım Kuralları" ve "Makale Gönderim Süreci" sayfalarımızdan ulaşılabilir. (Değerlendirme süreci bu tarihten önce tamamlanıp basımı bekleyen makalelerin yanısıra değerlendirme süreci devam eden makaleler için, yazarlar tarafından ilgili formlar doldurularak sisteme yüklenmelidir). Makale şablonları da, bu değişiklik doğrultusunda güncellenmiştir. Tüm yazarlarımıza önemle duyurulur.
Bursa Uludağ Üniversitesi, Mühendislik Fakültesi Dekanlığı, Görükle Kampüsü, Nilüfer, 16059 Bursa. Tel: (224) 294 1907, Faks: (224) 294 1903, e-posta: mmfd@uludag.edu.tr