Araştırma Makalesi
BibTex RIS Kaynak Göster

THE EXPLOITATION OF TITANIUM DIOXIDE NANOPARTICLES FOR IMPROVING THE PERFORMANCE AND EMISSIONS OF BIOFUEL-DIESEL BLEND-FUELLED STATIONARY DIESEL ENGINE

Yıl 2023, , 685 - 704, 27.12.2023
https://doi.org/10.17482/uumfd.1294787

Öz

In this research, the potential effects of titanium dioxide (TiO2) nanoparticles on improving a stationary diesel engine characteristic fuelled with a biofuel mixture-diesel blend (B25: 25% vol. biofuel mixture containing biodiesel, waste cooking oil and ethanol + 75% vol. diesel) are experimentally investigated. TiO2 nanoparticles are dispersed in B25 fuel at 50, 100, and 150 ppm concentrations. Subsequently, they are tested in a stationary research diesel engine at a rotational speed of 1500 rpm and specific loads. Nanoparticles enhance combustion, offering increased cylinder gas pressure, net heat release rate, and reduced ignition delay period and combustion duration. The engine performance is enhanced more with increasing nanoparticle concentration. TiO2 nanoparticles with a 150 ppm rate reduce brake-specific fuel consumption by 3.21% and increase the brake effective efficiency by 3.67%, on average, compared to B25 fuel without nanoparticles. CO emission and smoke opacity are reduced by up to 31.89% and 24.56% with TiO2 nanoparticles. However, under the same operating conditions, NO emission increases to 30.58% compared to sole B25. Nevertheless, the NO emission of nanofuels is still less than that of diesel fuel. This study's results indicate that using TiO2 nanoparticles as a nano fuel additive can enhance the stationary engine's operation fueled with the biofuel mixture-diesel blend.

Kaynakça

  • 1. Agarwal, A. K. (2007) Biofuels (alcohols and biodiesel) applications as fuels for internal combustion engines, Progress in Energy and Combustion Science, 33(3), 233–271. https://doi.org/https://doi.org/10.1016/j.pecs.2006.08.003
  • 2. Ahmed, A., Shah, A. N., Azam, A., Uddin, G. M., Ali, M. S., Hassan, S., Ahmed, H., and Aslam, T. (2020) Environment-friendly novel fuel additives: Investigation of the effects of graphite nanoparticles on performance and regulated gaseous emissions of CI engine, Energy Conversion and Management, 211, 112748. https://doi.org/10.1016/j.enconman.2020.112748
  • 3. Ashok, B., Nanthagopal, K., Subbarao, R., Johny, A., Mohan, A., and Tamilarasu, A. (2017) Experimental studies on the effect of metal oxide and antioxidant additives with Calophyllum Inophyllum Methyl ester in compression ignition engine, Journal of Cleaner Production, 166, 474–484. https://doi.org/https://doi.org/10.1016/j.jclepro.2017.08.050
  • 4. Çakmak, A., Yeşilyurt, M. K., Erol, D., and Doğan, B. (2022) The experimental investigation on the impact of n-octanol in the compression-ignition engine operating with biodiesel/diesel fuel blends: exergy, exergoeconomic, environmental analyses, Journal of Thermal Analysis and Calorimetry. https://doi.org/10.1007/s10973-022-11357-w
  • 5. Çakmak, A. (2022) Experimental Investigation On Exploiting The Biofuels Blend And Improving Its Usability By Adding TiO2 Nanoparticles. The Proceedings of 16th International Combustion Symposium (INCOS2022), September 08-11, 2022, Aydın, Türkiye, 355–362. https://doi.org/ISBN 978-625-00-9337-5
  • 6. Çakmak, A. ve Özcan, H. (2022) Bor oksit nanoparçacıklarının dizel yakıt katkısı olarak kullanılabilirliğinin araştırılması, Journal of Boron, 7(1), 433-442. https://doi.org/10.30728/boron.1021667
  • 7. Erdoğan, S., Balki, M. K., and Sayin, C. (2019) The effect on the knock intensity of high viscosity biodiesel use in a DI diesel engine, Fuel, 253, 1162–1167. https://doi.org/10.1016/j.fuel.2019.05.114
  • 8. European Commission. (2014). Communication from the Commission to the European Parliament, the Council, the European Economic and Social Committee and the Committee of the Regions. A policy framework for climate and energy in the period from 2020 to 2030. Accessed March 2023. https://eur-lex.europa.eu/legalcontent/EN/ALL/?uri=CELEX:52014DC0015
  • 9. Fujimori, T., Hamano, Y., and Sato, J. (2000) Radiative heat loss and NOx emission of turbulent jet flames in preheated air up to 1230 K, Proceedings of the Combustion Institute, 28(1), 455–461. https://doi.org/https://doi.org/10.1016/S0082-0784(00)80243-X
  • 10. Ge, S., Brindhadevi, K., Xia, C., Salah Khalifa, A., Elfasakhany, A., Unpaprom, Y., and Whangchai, K. (2022) Performance, combustion and emission characteristics of the CI engine fueled with Botryococcus braunii microalgae with addition of TiO2 nanoparticle, Fuel, 317, 121898. https://doi.org/https://doi.org/10.1016/j.fuel.2021.121898
  • 11. Gülüm, M. (2023) Performance, combustion and emission characteristics of a diesel engine fuelled with diesel fuel + corn oil + alcohol ternary blends, Environmental Science and Pollution Research. https://doi.org/10.1007/s11356-023-26053-x
  • 12. Hadhoum, L., Zohra Aklouche, F., Loubar, K., and Tazerout, M. (2021) Experimental investigation of performance, emission and combustion characteristics of olive mill wastewater biofuel blends fuelled CI engine, Fuel, 291, 120199. https://doi.org/https://doi.org/10.1016/j.fuel.2021.120199
  • 13. Hameed, A. Z., and Muralidharan, K. (2023) Performance, Emission, and Catalytic Activity Analysis of AI2O3 and CeO2 Nano-Additives on Diesel Engines Using Mahua Biofuel for a Sustainable Environment, ACS Omega, 8(6), 5692–5701. https://doi.org/10.1021/acsomega.2c07193
  • 14. Heywood, J. B. (1988) Internal combustion engine fundamentals. McGraw-Hill.
  • 15. Hoang, A. T. (2021) Combustion behavior, performance and emission characteristics of diesel engine fuelled with biodiesel containing cerium oxide nanoparticles: A review, Fuel Processing Technology, 218, 106840. https://doi.org/https://doi.org/10.1016/j.fuproc.2021.106840
  • 16. Jin, C., and Wei, J. (2023) The combined effect of water and nanoparticles on diesel engine powered by biodiesel and its blends with diesel: A review, Fuel, 343, 127940. https://doi.org/https://doi.org/10.1016/j.fuel.2023.127940
  • 17. Khan, M. M., Sharma, R. P., Kadian, A. K., and Hasnain, S. M. M. (2022) An assessment of alcohol inclusion in various combinations of biodiesel-diesel on the performance and exhaust emission of modern-day compression ignition engines – A review, Materials Science for Energy Technologies, 5, 81–98. https://doi.org/https://doi.org/10.1016/j.mset.2021.12.004
  • 18. Kumar, M. (2020) Social, economic, and environmental impacts of renewable energy resources, In Wind solar hybrid renewable energy system (Vol. 1). IntechOpen London, UK. https://doi.org/10.5772/intechopen.89494
  • 19. Kumar, S., Dinesha, P., and Bran, I. (2019) Experimental investigation of the effects of nanoparticles as an additive in diesel and biodiesel fuelled engines: a review, Biofuels, 10(5), 615–622. https://doi.org/10.1080/17597269.2017.1332294
  • 20. Kumbhar, V., Pandey, A., Sonawane, C. R., Panchal, H., and Ağbulut, Ü. (2023) Numerical and experimental investigation of the influence of various metal-oxide-based nanoparticles on performance, combustion, and emissions of CI engine fuelled with tamarind seed oil methyl ester, Energy, 265, 126258. https://doi.org/https://doi.org/10.1016/j.energy.2022.126258
  • 21. Kurre, S. K., Yadav, J., Khan, M. K., Yadav, P., Munaf Dhebar, M., and Rawat, B. S. (2023) Experimental evaluation of performance and emission of diesel engine fueled with nano-material titanium dioxide (TiO2) nanoparticles supplemented diesel-biodiesel-ethanol blends. Materials Today: Proceedings. https://doi.org/https://doi.org/10.1016/j.matpr.2023.01.306
  • 22. Ma, Q., Zhang, Q., Liang, J., Yang, C., and Materials, A. (2021) The performance and emissions characteristics of diesel/biodiesel/alcohol blends in a diesel engine, Energy Reports, 7, 1016–1024. https://doi.org/https://doi.org/10.1016/j.egyr.2021.02.027
  • 23. Mei, D., Zuo, L., Adu-Mensah, D., Li, X., and Yuan, Y. (2019) Combustion characteristics and emissions of a common rail diesel engine using nanoparticle-diesel blends with carbon nanotube and molybdenum trioxide, Applied Thermal Engineering, 162, 114238. https://doi.org/10.1016/j.applthermaleng.2019.114238
  • 24. Santhosh, N., Afzal, A., Ağbulut, Ü., Alahmadi, A. A., Gowda, A. C., Alwetaishi, M., ... and Hoang, A. T. . (2023) Poultry fat biodiesel as a fuel substitute in diesel-ethanol blends for DI-CI engine: Experimental, modeling and optimization, Energy, 126826. https://doi.org/https://doi.org/10.1016/j.energy.2023.126826
  • 25. Niculescu, R., Clenci, A., and Iorga-Siman, V. (2019) Review on the Use of Diesel– Biodiesel–Alcohol Blends in Compression Ignition Engines, In Energies (Vol. 12, Issue 7). https://doi.org/10.3390/en12071194
  • 26. Örs, I., Sarıkoç, S., Atabani, A. E. E., Ünalan, S., and Akansu, S. O. O. (2018) The effects on performance, combustion and emission characteristics of DICI engine fuelled with TiO2 nanoparticles addition in diesel/biodiesel/n-butanol blends, Fuel, 234, 177–188. https://doi.org/10.1016/J.FUEL.2018.07.024
  • 27. Praveen, A., Krupakaran, R. L., Lakshmi Narayana Rao, G., and Balakrishna, B. (2022) An assessment of the TiO2 nanoparticle concentration in the C. inophyllum biodiesel blend on the engine characteristics of a DI diesel engine, International Journal of Ambient Energy, 43(1), 5464–5477. https://doi.org/10.1080/01430750.2021.1953584
  • 28. Pulkrabek, W. W. (2004) Engineering Fundamentals of the Internal Combustion Engine (Second). Published by Pearson.
  • 29. Sateesh, K. A., Yaliwal, V. S., Banapurmath, N. R., Soudagar, M. E. M., Yunus Khan, T. M., Harari, P. A., El-Shafay, A. S., Mujtaba, M. A., Elfaskhany, A., and Kalam, M. A. (2023) Effect of MWCNTs nano-additive on a dual-fuel engine characteristics utilizing dairy scum oil methyl ester and producer gas, Case Studies in Thermal Engineering, 42, 102661. https://doi.org/https://doi.org/10.1016/j.csite.2022.102661
  • 30. Sivakumar, M., Shanmuga Sundaram, N., Ramesh kumar, R., and Syed Thasthagir, M. H. (2018) Effect of aluminium oxide nanoparticles blended pongamia methyl ester on performance, combustion and emission characteristics of diesel engine, Renewable Energy, 116, 518–526. https://doi.org/10.1016/J.RENENE.2017.10.002
  • 31. Soukht Saraee, H., Jafarmadar, S., Taghavifar, H., and Ashrafi, S. J. (2015) Reduction of emissions and fuel consumption in a compression ignition engine using nanoparticles, International Journal of Environmental Science and Technology, 12(7), 2245–2252. https://doi.org/10.1007/s13762-015-0759-4
  • 32. Suhaimi, H., Adam, A., Mrwan, A. G., Abdullah, Z., Othman, M. F., Kamaruzzaman, M. K., and Hagos, F. Y. (2018) Analysis of combustion characteristics, engine performances and emissions of long-chain alcohol-diesel fuel blends, Fuel, 220, 682–691. https://doi.org/https://doi.org/10.1016/j.fuel.2018.02.019
  • 33. Sundar, S. P., Palanimuthu, V., Sathyamurthy, R., Hemalatha, D., Kumar, R. S., Bharathwaaj, R., Vasanthaseelan, S., and Chamkha, A. (2022) Feasibility study of neat plastic oil with TiO2 nanoadditive as an alternative fuel in internal combustion engine, Journal of Thermal Analysis and Calorimetry, 147(3), 2567–2578. https://doi.org/10.1007/s10973-021-10657-x
  • 34. Uslu, S., Simsek, S., and Simsek, H. (2023) RSM modeling of different amounts of nanoTiO2 supplementation to a diesel engine running with hemp seed oil biodiesel/diesel fuel blends. Energy, 266, 126439. https://doi.org/https://doi.org/10.1016/j.energy.2022.126439
  • 35. Venu, H., Raju, V. D., Lingesan, S., and Elahi M Soudagar, M. (2021) Influence of Al2O3nano additives in ternary fuel (diesel-biodiesel-ethanol) blends operated in a single cylinder diesel engine: Performance, combustion and emission characteristics, Energy, 215, 119091. https://doi.org/10.1016/j.energy.2020.119091
  • 36. Vigneswaran, R., Balasubramanian, D., and Sastha, B. D. S. (2021) Performance, emission and combustion characteristics of unmodified diesel engine with titanium dioxide (TiO2) nano particle along with water-in-diesel emulsion fuel, Fuel, 285, 119115. https://doi.org/https://doi.org/10.1016/j.fuel.2020.119115
  • 37. Yilbasi, Z., Yesilyurt, M. K., Arslan, M., and Yaman, H. (2023) Understanding the performance, emissions, and combustion behaviors of a DI diesel engine using alcohol/hemp seed oil biodiesel/diesel fuel ternary blends: Influence of long-chain alcohol type and concentration, Science and Technology for Energy Transition, 78, 5. https://doi.org/10.2516/stet/2023003
  • 38. Yusuf, A. A., Dankwa Ampah, J., Soudagar, M. E. M., Veza, I., Kingsley, U., Afrane, S., Jin, C., Liu, H., Elfasakhany, A., and Buyondo, K. A. (2022) Effects of hybrid nanoparticle additives in n-butanol/waste plastic oil/diesel blends on combustion, particulate and gaseous emissions from diesel engine evaluated with entropy-weighted PROMETHEE II and TOPSIS: Environmental and health risks of plastic waste, Energy Conversion and Management, 264, 115758. https://doi.org/https://doi.org/10.1016/j.enconman.2022.115758
  • 39. Zhang, Y., Gao, S., Zhang, Z., Li, W., Yuan, T., Tan, D., Duan, L., and Yang, G. (2023) A comprehensive review on combustion, performance and emission aspects of higher alcohols and its additive effect on the diesel engine, Fuel, 335, 127011. https://doi.org/https://doi.org/10.1016/j.fuel.2022.127011

Biyoyakıt-dizel karışımı ile çalışan stasyoner dizel motorunun performans ve emisyonlarını iyileştirmek için titanyum dioksit nanopartiküllerinin kullanılması

Yıl 2023, , 685 - 704, 27.12.2023
https://doi.org/10.17482/uumfd.1294787

Öz

Bu araştırmada titanyum dioksit (TiO2) nanopartiküllerinin, biyoyakıt-dizel karışımı (B25: biyodizel, atık kızartma yağı ve etanol içeren %25 hacimli biyoyakıt karışımı + %75 dizel) ile çalışan stasyoner dizel motorunun performans ve emisyonlarını iyileştirme potansiyeli deneysel olarak incelenmiştir. TiO2 nanopartikülleri B25 yakıtına 50, 100 ve 150 ppm konsantrasyonlarında eklenmiştir. Elde edilen nanoyakıtlar, stasyoner bir dizel motorda 1500 d/dk dönüş hızında ve farklı yüklerde test edilmiştir. Nanopartiküller yanmayı iyileştirerek, silindir basıncını ve net ısı yayılım oranını artırmış, tutuşma gecikmesi süresi ile yanma süresini kısaltmıştır. Nanopartikül konsantrasyonu arttıkça motor performansı daha da iyileşmiştir. 150 ppm oranındaki TiO2 nanopartikülleri, nanopartikül içermeyen B25 yakıtına kıyasla özgül yakıt tüketimini %3,21 oranında azaltmış ve efektif verimi ortalama %3,67 oranında artırmıştır. TiO2 nanopartikülleri kullanımı ile CO emisyonu ve duman koyuluğu %31,89 ve %24,56'ya kadar azalmıştır. Bununla birlikte, aynı çalışma koşullarında NO emisyonu, nanopartikül içermeyen B25 yakıtına kıyasla %30,58'e kadar artmıştır. Ancak nanoyakıtlar dizel yakıtına göre daha az NO emisyonu oluşturmuştur. Bu çalışmanın sonuçları, TiO2 nanopartiküllerinin nano yakıt katkısı olarak kullanılmasının biyoyakıt-dizel karışımıyla çalışan stasyoner dizel motorun performans ve emisyonlarını iyileştirebileceğini göstermektedir.

Kaynakça

  • 1. Agarwal, A. K. (2007) Biofuels (alcohols and biodiesel) applications as fuels for internal combustion engines, Progress in Energy and Combustion Science, 33(3), 233–271. https://doi.org/https://doi.org/10.1016/j.pecs.2006.08.003
  • 2. Ahmed, A., Shah, A. N., Azam, A., Uddin, G. M., Ali, M. S., Hassan, S., Ahmed, H., and Aslam, T. (2020) Environment-friendly novel fuel additives: Investigation of the effects of graphite nanoparticles on performance and regulated gaseous emissions of CI engine, Energy Conversion and Management, 211, 112748. https://doi.org/10.1016/j.enconman.2020.112748
  • 3. Ashok, B., Nanthagopal, K., Subbarao, R., Johny, A., Mohan, A., and Tamilarasu, A. (2017) Experimental studies on the effect of metal oxide and antioxidant additives with Calophyllum Inophyllum Methyl ester in compression ignition engine, Journal of Cleaner Production, 166, 474–484. https://doi.org/https://doi.org/10.1016/j.jclepro.2017.08.050
  • 4. Çakmak, A., Yeşilyurt, M. K., Erol, D., and Doğan, B. (2022) The experimental investigation on the impact of n-octanol in the compression-ignition engine operating with biodiesel/diesel fuel blends: exergy, exergoeconomic, environmental analyses, Journal of Thermal Analysis and Calorimetry. https://doi.org/10.1007/s10973-022-11357-w
  • 5. Çakmak, A. (2022) Experimental Investigation On Exploiting The Biofuels Blend And Improving Its Usability By Adding TiO2 Nanoparticles. The Proceedings of 16th International Combustion Symposium (INCOS2022), September 08-11, 2022, Aydın, Türkiye, 355–362. https://doi.org/ISBN 978-625-00-9337-5
  • 6. Çakmak, A. ve Özcan, H. (2022) Bor oksit nanoparçacıklarının dizel yakıt katkısı olarak kullanılabilirliğinin araştırılması, Journal of Boron, 7(1), 433-442. https://doi.org/10.30728/boron.1021667
  • 7. Erdoğan, S., Balki, M. K., and Sayin, C. (2019) The effect on the knock intensity of high viscosity biodiesel use in a DI diesel engine, Fuel, 253, 1162–1167. https://doi.org/10.1016/j.fuel.2019.05.114
  • 8. European Commission. (2014). Communication from the Commission to the European Parliament, the Council, the European Economic and Social Committee and the Committee of the Regions. A policy framework for climate and energy in the period from 2020 to 2030. Accessed March 2023. https://eur-lex.europa.eu/legalcontent/EN/ALL/?uri=CELEX:52014DC0015
  • 9. Fujimori, T., Hamano, Y., and Sato, J. (2000) Radiative heat loss and NOx emission of turbulent jet flames in preheated air up to 1230 K, Proceedings of the Combustion Institute, 28(1), 455–461. https://doi.org/https://doi.org/10.1016/S0082-0784(00)80243-X
  • 10. Ge, S., Brindhadevi, K., Xia, C., Salah Khalifa, A., Elfasakhany, A., Unpaprom, Y., and Whangchai, K. (2022) Performance, combustion and emission characteristics of the CI engine fueled with Botryococcus braunii microalgae with addition of TiO2 nanoparticle, Fuel, 317, 121898. https://doi.org/https://doi.org/10.1016/j.fuel.2021.121898
  • 11. Gülüm, M. (2023) Performance, combustion and emission characteristics of a diesel engine fuelled with diesel fuel + corn oil + alcohol ternary blends, Environmental Science and Pollution Research. https://doi.org/10.1007/s11356-023-26053-x
  • 12. Hadhoum, L., Zohra Aklouche, F., Loubar, K., and Tazerout, M. (2021) Experimental investigation of performance, emission and combustion characteristics of olive mill wastewater biofuel blends fuelled CI engine, Fuel, 291, 120199. https://doi.org/https://doi.org/10.1016/j.fuel.2021.120199
  • 13. Hameed, A. Z., and Muralidharan, K. (2023) Performance, Emission, and Catalytic Activity Analysis of AI2O3 and CeO2 Nano-Additives on Diesel Engines Using Mahua Biofuel for a Sustainable Environment, ACS Omega, 8(6), 5692–5701. https://doi.org/10.1021/acsomega.2c07193
  • 14. Heywood, J. B. (1988) Internal combustion engine fundamentals. McGraw-Hill.
  • 15. Hoang, A. T. (2021) Combustion behavior, performance and emission characteristics of diesel engine fuelled with biodiesel containing cerium oxide nanoparticles: A review, Fuel Processing Technology, 218, 106840. https://doi.org/https://doi.org/10.1016/j.fuproc.2021.106840
  • 16. Jin, C., and Wei, J. (2023) The combined effect of water and nanoparticles on diesel engine powered by biodiesel and its blends with diesel: A review, Fuel, 343, 127940. https://doi.org/https://doi.org/10.1016/j.fuel.2023.127940
  • 17. Khan, M. M., Sharma, R. P., Kadian, A. K., and Hasnain, S. M. M. (2022) An assessment of alcohol inclusion in various combinations of biodiesel-diesel on the performance and exhaust emission of modern-day compression ignition engines – A review, Materials Science for Energy Technologies, 5, 81–98. https://doi.org/https://doi.org/10.1016/j.mset.2021.12.004
  • 18. Kumar, M. (2020) Social, economic, and environmental impacts of renewable energy resources, In Wind solar hybrid renewable energy system (Vol. 1). IntechOpen London, UK. https://doi.org/10.5772/intechopen.89494
  • 19. Kumar, S., Dinesha, P., and Bran, I. (2019) Experimental investigation of the effects of nanoparticles as an additive in diesel and biodiesel fuelled engines: a review, Biofuels, 10(5), 615–622. https://doi.org/10.1080/17597269.2017.1332294
  • 20. Kumbhar, V., Pandey, A., Sonawane, C. R., Panchal, H., and Ağbulut, Ü. (2023) Numerical and experimental investigation of the influence of various metal-oxide-based nanoparticles on performance, combustion, and emissions of CI engine fuelled with tamarind seed oil methyl ester, Energy, 265, 126258. https://doi.org/https://doi.org/10.1016/j.energy.2022.126258
  • 21. Kurre, S. K., Yadav, J., Khan, M. K., Yadav, P., Munaf Dhebar, M., and Rawat, B. S. (2023) Experimental evaluation of performance and emission of diesel engine fueled with nano-material titanium dioxide (TiO2) nanoparticles supplemented diesel-biodiesel-ethanol blends. Materials Today: Proceedings. https://doi.org/https://doi.org/10.1016/j.matpr.2023.01.306
  • 22. Ma, Q., Zhang, Q., Liang, J., Yang, C., and Materials, A. (2021) The performance and emissions characteristics of diesel/biodiesel/alcohol blends in a diesel engine, Energy Reports, 7, 1016–1024. https://doi.org/https://doi.org/10.1016/j.egyr.2021.02.027
  • 23. Mei, D., Zuo, L., Adu-Mensah, D., Li, X., and Yuan, Y. (2019) Combustion characteristics and emissions of a common rail diesel engine using nanoparticle-diesel blends with carbon nanotube and molybdenum trioxide, Applied Thermal Engineering, 162, 114238. https://doi.org/10.1016/j.applthermaleng.2019.114238
  • 24. Santhosh, N., Afzal, A., Ağbulut, Ü., Alahmadi, A. A., Gowda, A. C., Alwetaishi, M., ... and Hoang, A. T. . (2023) Poultry fat biodiesel as a fuel substitute in diesel-ethanol blends for DI-CI engine: Experimental, modeling and optimization, Energy, 126826. https://doi.org/https://doi.org/10.1016/j.energy.2023.126826
  • 25. Niculescu, R., Clenci, A., and Iorga-Siman, V. (2019) Review on the Use of Diesel– Biodiesel–Alcohol Blends in Compression Ignition Engines, In Energies (Vol. 12, Issue 7). https://doi.org/10.3390/en12071194
  • 26. Örs, I., Sarıkoç, S., Atabani, A. E. E., Ünalan, S., and Akansu, S. O. O. (2018) The effects on performance, combustion and emission characteristics of DICI engine fuelled with TiO2 nanoparticles addition in diesel/biodiesel/n-butanol blends, Fuel, 234, 177–188. https://doi.org/10.1016/J.FUEL.2018.07.024
  • 27. Praveen, A., Krupakaran, R. L., Lakshmi Narayana Rao, G., and Balakrishna, B. (2022) An assessment of the TiO2 nanoparticle concentration in the C. inophyllum biodiesel blend on the engine characteristics of a DI diesel engine, International Journal of Ambient Energy, 43(1), 5464–5477. https://doi.org/10.1080/01430750.2021.1953584
  • 28. Pulkrabek, W. W. (2004) Engineering Fundamentals of the Internal Combustion Engine (Second). Published by Pearson.
  • 29. Sateesh, K. A., Yaliwal, V. S., Banapurmath, N. R., Soudagar, M. E. M., Yunus Khan, T. M., Harari, P. A., El-Shafay, A. S., Mujtaba, M. A., Elfaskhany, A., and Kalam, M. A. (2023) Effect of MWCNTs nano-additive on a dual-fuel engine characteristics utilizing dairy scum oil methyl ester and producer gas, Case Studies in Thermal Engineering, 42, 102661. https://doi.org/https://doi.org/10.1016/j.csite.2022.102661
  • 30. Sivakumar, M., Shanmuga Sundaram, N., Ramesh kumar, R., and Syed Thasthagir, M. H. (2018) Effect of aluminium oxide nanoparticles blended pongamia methyl ester on performance, combustion and emission characteristics of diesel engine, Renewable Energy, 116, 518–526. https://doi.org/10.1016/J.RENENE.2017.10.002
  • 31. Soukht Saraee, H., Jafarmadar, S., Taghavifar, H., and Ashrafi, S. J. (2015) Reduction of emissions and fuel consumption in a compression ignition engine using nanoparticles, International Journal of Environmental Science and Technology, 12(7), 2245–2252. https://doi.org/10.1007/s13762-015-0759-4
  • 32. Suhaimi, H., Adam, A., Mrwan, A. G., Abdullah, Z., Othman, M. F., Kamaruzzaman, M. K., and Hagos, F. Y. (2018) Analysis of combustion characteristics, engine performances and emissions of long-chain alcohol-diesel fuel blends, Fuel, 220, 682–691. https://doi.org/https://doi.org/10.1016/j.fuel.2018.02.019
  • 33. Sundar, S. P., Palanimuthu, V., Sathyamurthy, R., Hemalatha, D., Kumar, R. S., Bharathwaaj, R., Vasanthaseelan, S., and Chamkha, A. (2022) Feasibility study of neat plastic oil with TiO2 nanoadditive as an alternative fuel in internal combustion engine, Journal of Thermal Analysis and Calorimetry, 147(3), 2567–2578. https://doi.org/10.1007/s10973-021-10657-x
  • 34. Uslu, S., Simsek, S., and Simsek, H. (2023) RSM modeling of different amounts of nanoTiO2 supplementation to a diesel engine running with hemp seed oil biodiesel/diesel fuel blends. Energy, 266, 126439. https://doi.org/https://doi.org/10.1016/j.energy.2022.126439
  • 35. Venu, H., Raju, V. D., Lingesan, S., and Elahi M Soudagar, M. (2021) Influence of Al2O3nano additives in ternary fuel (diesel-biodiesel-ethanol) blends operated in a single cylinder diesel engine: Performance, combustion and emission characteristics, Energy, 215, 119091. https://doi.org/10.1016/j.energy.2020.119091
  • 36. Vigneswaran, R., Balasubramanian, D., and Sastha, B. D. S. (2021) Performance, emission and combustion characteristics of unmodified diesel engine with titanium dioxide (TiO2) nano particle along with water-in-diesel emulsion fuel, Fuel, 285, 119115. https://doi.org/https://doi.org/10.1016/j.fuel.2020.119115
  • 37. Yilbasi, Z., Yesilyurt, M. K., Arslan, M., and Yaman, H. (2023) Understanding the performance, emissions, and combustion behaviors of a DI diesel engine using alcohol/hemp seed oil biodiesel/diesel fuel ternary blends: Influence of long-chain alcohol type and concentration, Science and Technology for Energy Transition, 78, 5. https://doi.org/10.2516/stet/2023003
  • 38. Yusuf, A. A., Dankwa Ampah, J., Soudagar, M. E. M., Veza, I., Kingsley, U., Afrane, S., Jin, C., Liu, H., Elfasakhany, A., and Buyondo, K. A. (2022) Effects of hybrid nanoparticle additives in n-butanol/waste plastic oil/diesel blends on combustion, particulate and gaseous emissions from diesel engine evaluated with entropy-weighted PROMETHEE II and TOPSIS: Environmental and health risks of plastic waste, Energy Conversion and Management, 264, 115758. https://doi.org/https://doi.org/10.1016/j.enconman.2022.115758
  • 39. Zhang, Y., Gao, S., Zhang, Z., Li, W., Yuan, T., Tan, D., Duan, L., and Yang, G. (2023) A comprehensive review on combustion, performance and emission aspects of higher alcohols and its additive effect on the diesel engine, Fuel, 335, 127011. https://doi.org/https://doi.org/10.1016/j.fuel.2022.127011
Toplam 39 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Makine Mühendisliği, Nanoteknoloji
Bölüm Araştırma Makaleleri
Yazarlar

Abdülvahap Çakmak 0000-0003-1434-6697

Erken Görünüm Tarihi 2 Aralık 2023
Yayımlanma Tarihi 27 Aralık 2023
Gönderilme Tarihi 9 Mayıs 2023
Kabul Tarihi 23 Eylül 2023
Yayımlandığı Sayı Yıl 2023

Kaynak Göster

APA Çakmak, A. (2023). THE EXPLOITATION OF TITANIUM DIOXIDE NANOPARTICLES FOR IMPROVING THE PERFORMANCE AND EMISSIONS OF BIOFUEL-DIESEL BLEND-FUELLED STATIONARY DIESEL ENGINE. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi, 28(3), 685-704. https://doi.org/10.17482/uumfd.1294787
AMA Çakmak A. THE EXPLOITATION OF TITANIUM DIOXIDE NANOPARTICLES FOR IMPROVING THE PERFORMANCE AND EMISSIONS OF BIOFUEL-DIESEL BLEND-FUELLED STATIONARY DIESEL ENGINE. UUJFE. Aralık 2023;28(3):685-704. doi:10.17482/uumfd.1294787
Chicago Çakmak, Abdülvahap. “THE EXPLOITATION OF TITANIUM DIOXIDE NANOPARTICLES FOR IMPROVING THE PERFORMANCE AND EMISSIONS OF BIOFUEL-DIESEL BLEND-FUELLED STATIONARY DIESEL ENGINE”. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi 28, sy. 3 (Aralık 2023): 685-704. https://doi.org/10.17482/uumfd.1294787.
EndNote Çakmak A (01 Aralık 2023) THE EXPLOITATION OF TITANIUM DIOXIDE NANOPARTICLES FOR IMPROVING THE PERFORMANCE AND EMISSIONS OF BIOFUEL-DIESEL BLEND-FUELLED STATIONARY DIESEL ENGINE. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi 28 3 685–704.
IEEE A. Çakmak, “THE EXPLOITATION OF TITANIUM DIOXIDE NANOPARTICLES FOR IMPROVING THE PERFORMANCE AND EMISSIONS OF BIOFUEL-DIESEL BLEND-FUELLED STATIONARY DIESEL ENGINE”, UUJFE, c. 28, sy. 3, ss. 685–704, 2023, doi: 10.17482/uumfd.1294787.
ISNAD Çakmak, Abdülvahap. “THE EXPLOITATION OF TITANIUM DIOXIDE NANOPARTICLES FOR IMPROVING THE PERFORMANCE AND EMISSIONS OF BIOFUEL-DIESEL BLEND-FUELLED STATIONARY DIESEL ENGINE”. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi 28/3 (Aralık 2023), 685-704. https://doi.org/10.17482/uumfd.1294787.
JAMA Çakmak A. THE EXPLOITATION OF TITANIUM DIOXIDE NANOPARTICLES FOR IMPROVING THE PERFORMANCE AND EMISSIONS OF BIOFUEL-DIESEL BLEND-FUELLED STATIONARY DIESEL ENGINE. UUJFE. 2023;28:685–704.
MLA Çakmak, Abdülvahap. “THE EXPLOITATION OF TITANIUM DIOXIDE NANOPARTICLES FOR IMPROVING THE PERFORMANCE AND EMISSIONS OF BIOFUEL-DIESEL BLEND-FUELLED STATIONARY DIESEL ENGINE”. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi, c. 28, sy. 3, 2023, ss. 685-04, doi:10.17482/uumfd.1294787.
Vancouver Çakmak A. THE EXPLOITATION OF TITANIUM DIOXIDE NANOPARTICLES FOR IMPROVING THE PERFORMANCE AND EMISSIONS OF BIOFUEL-DIESEL BLEND-FUELLED STATIONARY DIESEL ENGINE. UUJFE. 2023;28(3):685-704.

DUYURU:

30.03.2021- Nisan 2021 (26/1) sayımızdan itibaren TR-Dizin yeni kuralları gereği, dergimizde basılacak makalelerde, ilk gönderim aşamasında Telif Hakkı Formu yanısıra, Çıkar Çatışması Bildirim Formu ve Yazar Katkısı Bildirim Formu da tüm yazarlarca imzalanarak gönderilmelidir. Yayınlanacak makalelerde de makale metni içinde "Çıkar Çatışması" ve "Yazar Katkısı" bölümleri yer alacaktır. İlk gönderim aşamasında doldurulması gereken yeni formlara "Yazım Kuralları" ve "Makale Gönderim Süreci" sayfalarımızdan ulaşılabilir. (Değerlendirme süreci bu tarihten önce tamamlanıp basımı bekleyen makalelerin yanısıra değerlendirme süreci devam eden makaleler için, yazarlar tarafından ilgili formlar doldurularak sisteme yüklenmelidir).  Makale şablonları da, bu değişiklik doğrultusunda güncellenmiştir. Tüm yazarlarımıza önemle duyurulur.

Bursa Uludağ Üniversitesi, Mühendislik Fakültesi Dekanlığı, Görükle Kampüsü, Nilüfer, 16059 Bursa. Tel: (224) 294 1907, Faks: (224) 294 1903, e-posta: mmfd@uludag.edu.tr