Derleme
BibTex RIS Kaynak Göster

Modüler inşaat projelerinde uygulanan risk yönetimi yaklaşımlarının eğilimleri ve gelecek yöntemleri: Sistematik inceleme ve meta analizi

Yıl 2024, , 311 - 330, 22.04.2024
https://doi.org/10.17482/uumfd.1354025

Öz

Modüler inşaatta, geleneksel inşaata kıyasla farklı taahhütler göz önüne alındığında, ikincisi daha az riskli kabul edilir. Bununla birlikte, mevcut endüstri, tam kapasite performansını devre dışı bırakan boşluklar olan yanlış uygulamalarla karşı karşıyadır. Özellikle risk yönetimi yaklaşımlarını analiz eden çalışmalardan dikkat çekici bir eksiklik vardır. Bu çalışma, modüler projelerin kolaylaştırılmış risk değerlendirmesi için niteliksel ve niceliksel içerik derleyerek önceki projelerde uygulanan tüm risk yönetimi yaklaşımlarını güçlü bir şekilde analiz etmeyi amaçlamaktadır. Sistematik bir literatür taraması ve meta-analiz gerçekleştirilerek 175 dokümana son şekli verilmiş ve manuel olarak analiz edilmiştir. Literatürün sentezi, grafikler, resimler ve tablolaştırılmış içerik oluşturmak için gerçekleştirilmiştir, ardından risk kategorisi ve proje kriterlerine göre belirlenen ilgili risk yönetimi yaklaşımları için eleştirel açıklama yapılmıştır. Modüler yapı için risk yönetimi yaklaşımları, yıllık trendler, coğrafi katılım, en çok karşılaşılan anahtar kelimeler ve üniversiteler ve kurumların katılımı açısından sergilendi. Sınıflandırılmış risk yönetimi yaklaşımları, teknik risk yönetimi yaklaşımlarını hedefleyen bir araştırma alanının yanında tablolaştırılmıştır. Gelecekteki çalışma kapsamları, analiz edilen çalışmalardan başlama yüzdeleri ile önerildi. Bu çalışma, modüler yapının risk yönetimi yaklaşımları hakkındaki bilgileri genişletmek için temel bir adımdır ve hem akademisyenlerin hem de uygulayıcıların, sergilenen proje odaklı sonuçlarla mevcut eğilimler hakkında doğrudan içgörüler elde etmelerine yardımcı olacaktır.

Kaynakça

  • 1. Abdelmageed, S. and Zayed, T. (2020) ‘A study of literature in modular integrated construction - Critical review and future directions’, Journal of Cleaner Production, 277, 124044. doi: 10.1016/j.jclepro.2020.124044.
  • 2. Abdul Nabi, M. and El-adaway, I. H. (2020) ‘Modular Construction: Determining Decision-Making Factors and Future Research Needs’, Journal of Management in Engineering, 36(6), 04020085. doi: 10.1061/(ASCE)ME.1943-5479.0000859.
  • 3. Abdul Nabi, M. and El-adaway, I. H. (2021) ‘Understanding the Key Risks Affecting Cost and Schedule Performance of Modular Construction Projects’, Journal of Management in Engineering, 37(4), 04021023. doi: 10.1061/(ASCE)ME.1943-5479.0000917.
  • 4. Akinradewo, O. et al. (2021) ‘Modular method of construction in developing countries: the underlying challenges’, International Journal of Construction Management, 1–11. doi: 10.1080/15623599.2021.1970300.
  • 5. Almashaqbeh, M. and El-Rayes, K. (2021) ‘Minimizing transportation cost of prefabricated modules in modular construction projects’, Engineering, Construction and Architectural Management, 29(10), 3847-3867. doi: 10.1108/ECAM-11-2020-0969.
  • 6. Almashaqbeh, Mohammad and El-Rayes, K. (2021) ‘Optimizing the modularization of floor plans in modular construction projects’, Journal of Building Engineering, 39, 102316. doi: 10.1016/j.jobe.2021.102316.
  • 7. Alwisy, A. et al. (2019) ‘A BIM-based automation of design and drafting for manufacturing of wood panels for modular residential buildings’, International Journal of Construction Management, 19(3), 187–205. doi: 10.1080/15623599.2017.1411458.
  • 8. Arashpour, M. et al. (2016) ‘Off-site construction optimization: Sequencing multiple job classes with time constraints’, Automation in Construction, 71(Part 2), 262–270. doi: 10.1016/j.autcon.2016.08.001.
  • 9. Arashpour, Mehrdad et al. (2017) ‘Integrated management of on-site, coordination and off-site uncertainty: Theorizing risk analysis within a hybrid project setting’, International Journal of Project Management, 35(4), 647–655. doi: 10.1016/j.ijproman.2017.02.016.
  • 10. Arashpour, M. et al. (2018) ‘Optimization modeling of multi-skilled resources in prefabrication: Theorizing cost analysis of process integration in off-site construction’, Automation in Construction, 95, 1–9. doi: 10.1016/j.autcon.2018.07.027.
  • 11. Ashcroft, D. et al. (2019) ‘Cost comparison of seismic damage resisting systems for modules in multi-storey buildings’, Journal of Engineering, Design and Technology, 17(2), 330–346. doi: 10.1108/JEDT-04-2018-0076.
  • 12. Assaad, R. et al. (2020) ‘Commercial and Legal Considerations of Offsite Construction Projects and their Hybrid Transactions’, Journal of Construction Engineering and Management, 146(12), 05020019. doi: 10.1061/(ASCE)CO.1943-7862.0001948.
  • 13. Bakhshi, S. et al. (2022) ‘Integrated BIM and DfMA parametric and algorithmic design based collaboration for supporting client engagement within offsite construction’, Automation in Construction, 133, 104015. doi: 10.1016/j.autcon.2021.104015.
  • 14. Bao, Z. et al. (2021) ‘Design for manufacture and assembly (DfMA) enablers for offsite interior design and construction’, Building Research & Information, 1–14. doi: 10.1080/09613218.2021.1966734.
  • 15. Barkokebas, B. et al. (2021) ‘A BIM-lean framework for digitalisation of premanufacturing phases in offsite construction’, Engineering, Construction and Architectural Management, 28(8), 2155– 2175. doi: 10.1108/ECAM-11-2020-0986.
  • 16. Bendi, D. et al. (2021) ‘Assessing off-site readiness in construction organisations: cases from India’, Construction Innovation, 22(2), 320-341. doi: 10.1108/CI-01-2021-0005.
  • 17. Charlson, J. and Dimka, N. (2021) ‘Design, manufacture and construct procurement model for volumetric offsite manufacturing in the UK housing sector’, Construction Innovation, 21(4), 800–817. doi: 10.1108/CI-10-2019-0108.
  • 18. Chen, W. et al. (2020) ‘Collaborative scheduling of on-site and off-site operations in prefabrication’, Sustainability, 12(21), 1–23. doi: 10.3390/su12219266.
  • 19. Chen, Y., Okudan, G. E. and Riley, D. R. (2010) ‘Decision support for construction method selection in concrete buildings: Prefabrication adoption and optimization’, Automation in Construction, 19(6), 665–675. doi: 10.1016/j.autcon.2010.02.011.
  • 20. Chen, Z. et al. (2021) ‘Exploration of the multidirectional stability and response of prefabricated volumetric modular steel structures’, Journal of Constructional Steel Research, 184, 106826. doi: 10.1016/j.jcsr.2021.106826.
  • 21. Cho, K. et al. (2021) ‘Schedule Delay Leading Indicators in Precast Concrete Construction Projects: Qualitative Comparative Analysis of Korean Cases’, Journal of Management in Engineering, 37(4), 04021024. doi: 10.1061/(ASCE)ME.1943-5479.0000915.
  • 22. Choi, J. O., O’Connor, J. T. and Kim, T. W. (2016) ‘Recipes for Cost and Schedule Successes in Industrial Modular Projects: Qualitative Comparative Analysis’, Journal of Construction Engineering and Management, 142(10), 04016055. doi: 10.1061/(asce)co.1943-7862.0001171.
  • 23. Dabirian, S., Han, S. H. and Lee, J. (2020) ‘Stochastic-based noise exposure assessment in modular and off-site construction’, Journal of Cleaner Production, 244, 118758. doi: 10.1016/j.jclepro.2019.118758.
  • 24. Donthu, N. et al. (2021) ‘How to conduct a bibliometric analysis: An overview and guidelines’, Journal of Business Research, 133(March), 285–296. doi: 10.1016/j.jbusres.2021.04.070.
  • 25. Du, J. et al. (2019) ‘Multi-agent simulation for managing design changes in prefabricated construction projects’, Engineering, Construction and Architectural Management, 27(1), 270–295. doi: 10.1108/ECAM-11-2018-0524.
  • 26. Enshassi, M. S. A. et al. (2019) ‘Integrated Risk Management Framework for Tolerance-Based Mitigation Strategy Decision Support in Modular Construction Projects’, Journal of Management in Engineering, 35(4). doi: 10.1061/(ASCE)ME.1943-5479.0000698.
  • 27. Enshassi, M. S. A. et al. (2020) ‘Dynamic and Proactive Risk-Based Methodology for Managing Excessive Geometric Variability Issues in Modular Construction Projects Using Bayesian Theory’, Journal of Construction Engineering and Management, 146(2). doi: 10.1061/(ASCE)CO.1943-7862.0001747.
  • 28. Fifield, L. J. et al. (2018) ‘Hospital wards and modular construction: Summertime overheating and energy efficiency’, Building and Environment, 141, 28–44. doi: 10.1016/j.buildenv.2018.05.041.
  • 29. Gan, X.-L. et al. (2019) ‘Exploring the interactions among factors impeding the diffusion of prefabricated building technologies’, Engineering, Construction and Architectural Management, 26(3), 535–553. doi: 10.1108/ECAM-05-2018-0198.
  • 30. Gan, X., Chang, R. and Wen, T. (2018) ‘Overcoming barriers to off-site construction through engaging stakeholders: A two-mode social network analysis’, Journal of Cleaner Production, 201, 735– 747. doi: 10.1016/j.jclepro.2018.07.299.
  • 31. Gbadamosi, A.-Q. et al. (2020) ‘Big data for Design Options Repository: Towards a DFMA approach for offsite construction’, Automation in Construction, 120, 103388. doi: 10.1016/j.autcon.2020.103388.
  • 32. Ginigaddara, B. et al. (2022) ‘Offsite construction skills evolution: an Australian case study’, Construction Innovation, 22(1), 41–56. doi: 10.1108/CI-10-2019-0109.
  • 33. Gledson, B. (2021) ‘Enhanced model of the innovation-decision process, for modular-technological-process innovations in construction’, Construction Innovation, 22(4), 1085-1103. doi: 10.1108/CI- 02-2021-0021.
  • 34. Golabchi, A. et al. (2015) ‘An Automated Biomechanical Simulation Approach to Ergonomic Job Analysis for Workplace Design’, Journal of Construction Engineering and Management, 141(8), 04015020. doi: 10.1061/(ASCE)CO.1943-7862.0000998.
  • 35. Gong, C. et al. (2021) ‘Factors impacting BIM application in prefabricated buildings in China with DEMATEL-ISM’, Construction Innovation, 23(1), 19-37. doi: 10.1108/CI-06-2021-0115.
  • 36. Goodier, C. et al. (2019) ‘Modularisation and offsite in engineering construction: An early decision-support tool’, Proceedings of the Institution of Civil Engineers: Civil Engineering, 172(6), 3–14. doi: 10.1680/jcien.19.00015.
  • 37. Goswami, M. and Tiwari, M. K. (2014) ‘A predictive risk evaluation framework for modular product concept selection in new product design environment’, Journal of Engineering Design, 25(1–3), 150–171. doi: 10.1080/09544828.2014.921806.
  • 38. Gumusburun Ayalp, G. and Ay, I. (2021) ‘Model validation of factors limiting the use of prefabricated construction systems in Turkey’, Engineering, Construction and Architectural Management, 28(9), 2610–2636. doi: 10.1108/ECAM-04-2020-0248.
  • 39. Hammad, A. W. et al. (2020) ‘A novel mathematical optimisation model for the scheduling of activities in modular construction factories’, Construction Management and Economics, 38(6), 534– 551. doi: 10.1080/01446193.2019.1682174.
  • 40. Hsu, P.-Y., Angeloudis, P. and Aurisicchio, M. (2018) ‘Optimal logistics planning for modular construction using two-stage stochastic programming’, Automation in Construction, 94, 47–61. doi: 10.1016/j.autcon.2018.05.029.
  • 41. Hsu, P.-Y., Aurisicchio, M. and Angeloudis, P. (2019) ‘Risk-averse supply chain for modular construction projects’, Automation in Construction, 106, 102898. doi: 10.1016/j.autcon.2019.102898.
  • 42. Hung, H.-F., Kao, H.-P. and Ku, K.-C. (2007) ‘Evaluation of design alternatives in collaborative development and production of modular products’, The International Journal of Advanced Manufacturing Technology, 33(11–12), 1065–1076. doi: 10.1007/s00170-006-0548-9.
  • 43. Hussein, M. et al. (2021) ‘Modelling in off-site construction supply chain management: A review and future directions for sustainable modular integrated construction’, Journal of Cleaner Production, 310, 127503. doi: 10.1016/j.jclepro.2021.127503.
  • 44. Hussein, M. and Zayed, T. (2021) ‘Crane operations and planning in modular integrated construction: Mixed review of literature’, Automation in Construction, 122, 103466. doi: 10.1016/j.autcon.2020.103466.
  • 45. Hwang, B.-G., Shan, M. and Looi, K.-Y. (2018) ‘Key constraints and mitigation strategies for prefabricated prefinished volumetric construction’, Journal of Cleaner Production, 183, 183–193. doi: 10.1016/j.jclepro.2018.02.136.
  • 46. Ikuma, L. H., Nahmens, I. and James, J. (2011) ‘Use of Safety and Lean Integrated Kaizen to Improve Performance in Modular Homebuilding’, Journal of Construction Engineering and Management, 137(7), 551–560. doi: 10.1061/(asce)co.1943-7862.0000330.
  • 47. James, J. et al. (2014) ‘The impact of Kaizen on safety in modular home manufacturing’, The International Journal of Advanced Manufacturing Technology, 70(1–4), 725–734. doi: 10.1007/s00170- 013-5315-0.
  • 48. Jang, J. et al. (2021) ‘Toward productivity in future construction: Mapping knowledge and finding insights for achieving successful offsite construction projects’, Journal of Computational Design and Engineering, 8(1), 1–14. doi: 10.1093/jcde/qwaa071.
  • 49. Jeong, G. et al. (2021) ‘Analysis of safety risk factors of modular construction to identify accident trends’, Journal of Asian Architecture and Building Engineering, 21(3), 1040-1052. doi: 10.1080/13467581.2021.1877141.
  • 50. Jiang, Y. et al. (2021) ‘Blockchain-enabled cyber-physical smart modular integrated construction’, Computers in Industry, 133, 103553. doi: 10.1016/j.compind.2021.103553.
  • 51. Jin, R. et al. (2018) ‘A holistic review of off-site construction literature published between 2008 and 2018’, Journal of Cleaner Production, 202, 1202–1219. doi: 10.1016/j.jclepro.2018.08.195.
  • 52. Jin, R., Hong, J. and Zuo, J. (2020) ‘Environmental performance of off-site constructed facilities: A critical review’, Energy and Buildings, 207, 109567. doi: 10.1016/j.enbuild.2019.109567.
  • 53. Lee, D. and Lee, S. (2021) ‘Digital Twin for Supply Chain Coordination in Modular Construction’, Applied Sciences, 11(13), 5909. doi: 10.3390/app11135909.
  • 54. Lee, J.-S. and Kim, Y.-S. (2017) ‘Analysis of cost-increasing risk factors in modular construction in Korea using FMEA’, KSCE Journal of Civil Engineering, 21(6), 1999–2010. doi: 10.1007/s12205-016- 0194-1.
  • 55. Lerche, J. et al. (2020) ‘Application of Last Planner System to Modular Offshore Wind Construction’, Journal of Construction Engineering and Management, 146(11), 05020015. doi: 10.1061/(ASCE)CO.1943-7862.0001922.
  • 56. Li, C. Z. et al. (2016) ‘Schedule risks in prefabrication housing production in Hong Kong: a social network analysis’, Journal of Cleaner Production, 134(Part B), 482–494. doi: 10.1016/j.jclepro.2016.02.123.
  • 57. Li, C. Z. et al. (2017) ‘Integrating RFID and BIM technologies for mitigating risks and improving schedule performance of prefabricated house construction’, Journal of Cleaner Production, 165, 1048– 1062. doi: 10.1016/j.jclepro.2017.07.156.
  • 58. Li, C. Z. et al. (2018) ‘A model for simulating schedule risks in prefabrication housing production: A case study of six-day cycle assembly activities in Hong Kong’, Journal of Cleaner Production, 185, 366–381. doi: 10.1016/j.jclepro.2018.02.308.
  • 59. Li, Dezhi et al. (2019) ‘ISM-based relationship among critical factors that affect the choice of prefabricated concrete buildings in China’, International Journal of Construction Management, 1–16. doi: 10.1080/15623599.2019.1675306.
  • 60. Li, H. X. et al. (2013) ‘Risk identification and assessment of modular construction utilizing fuzzy analytic hierarchy process (AHP) and simulation’, Canadian Journal of Civil Engineering, 40(12), 1184– 1195. doi: 10.1139/cjce-2013-0013.
  • 61. Li, M. et al. (2017) ‘Research on investment risk management of Chinese prefabricated construction projects based on a system dynamics model’, Buildings, 7(3). doi: 10.3390/buildings7030083.
  • 62. Li, X.-J. (2020) ‘Research on ınvestment rısk ınfluence factors of prefabrıcated buıldıng projects’, Journal of Civil Engineering and Management, 26(7), 599–613. doi: 10.3846/jcem.2020.12917.
  • 63. Li, X. et al. (2018) ‘RBL-PHP: Simulation of Lean Construction and Information Technologies for Prefabrication Housing Production’, Journal of Management in Engineering, 34(2), 04017053. doi: 10.1061/(asce)me.1943-5479.0000577.
  • 64. Li, Xinming et al. (2019) ‘Automated post-3D visualization ergonomic analysis system for rapid workplace design in modular construction’, Automation in Construction, 98, 160–174. doi: 10.1016/j.autcon.2018.11.012.
  • 65. Li, X. et al. (2019a) ‘Integrating Building Information Modeling and Prefabrication Housing Production’, Automation in Construction, 100, 46–60. doi: 10.1016/j.autcon.2018.12.024.
  • 66. Li, Xiao et al. (2019b) ‘SWP-enabled constraints modeling for on-site assembly process of prefabrication housing production’, Journal of Cleaner Production, 239, 117991. doi: 10.1016/j.jclepro.2019.117991.
  • 67. Li, X. et al. (2022) ‘Blockchain-Enabled IoT-BIM Platform for Supply Chain Management in Modular Construction’, Journal of Construction Engineering and Management, 148(2). doi: 10.1061/(ASCE)CO.1943-7862.0002229.
  • 68. Lin, T. et al. (2021) ‘Offsite construction in the Australian low-rise residential buildings application levels and procurement options’, Engineering, Construction and Architectural Management, ahead-of-p(ahead-of-print). doi: 10.1108/ECAM-07-2020-0583.
  • 69. Liu, C. et al. (2022) ‘Applications of object detection in modular construction based on a comparative evaluation of deep learning algorithms’, Construction Innovation, 22(1), 141–159. doi: 10.1108/CI-02-2020-0017.
  • 70. Liu, H. et al. (2020) ‘Risk management system and intelligent decision-making for prefabricated building project under deep learning modified teaching-learning-based optimization’, PLOS ONE. Edited by Z. Lv, 15(7), e0235980. doi: 10.1371/journal.pone.0235980.
  • 71. Liu, J. et al. (2018) ‘Cloud Model-Based Safety Performance Evaluation of Prefabricated Building Project in China’, Wireless Personal Communications, 102(4), 3021–3039. doi: 10.1007/s11277-018- 5323-3.
  • 72. Liu, Q., Ye, G. and Feng, Y. (2019) ‘Workers’ safety behaviors in the off-site manufacturing plant’, Engineering, Construction and Architectural Management, 27(3), 765–784. doi: 10.1108/ECAM-03- 2019-0136.
  • 73. Liu, Z. et al. (2021) ‘Digital Twin-Based Safety Risk Coupling of Prefabricated Building Hoisting’, Sensors, 21(11), 3583. doi: 10.3390/s21113583.
  • 74. Lou, N. and Guo, J. (2020) ‘Study on Key Cost Drivers of Prefabricated Buildings Based on System Dynamics’, Advances in Civil Engineering. Edited by O. Pesämaa, 2020, 1–12. doi: 10.1155/2020/8896435.
  • 75. Lu, W. et al. (2018) ‘Searching for an optimal level of prefabrication in construction: An analytical framework’, Journal of Cleaner Production, 201, 236–245. doi: 10.1016/j.jclepro.2018.07.319.
  • 76. Lu, W. and Yuan, H. (2013) ‘Investigating waste reduction potential in the upstream processes of offshore prefabrication construction’, Renewable and Sustainable Energy Reviews, 28, 804–811. doi: 10.1016/j.rser.2013.08.048.
  • 77. Murtaza, M. B., Fisher, D. J. and Skibniewski, M. J. (1993) ‘Knowledge‐Based Approach to Modular Construction Decision Support’, Journal of Construction Engineering and Management, 119(1), 115– 130. doi: 10.1061/(ASCE)0733-9364(1993)119:1(115).
  • 78. Nahmens, I. and Ikuma, L. H. (2012) ‘Effects of lean construction on sustainability of modular homebuilding’, Journal of Architectural Engineering, 18(2), 155–163. doi: 10.1061/(ASCE)AE.1943- 5568.0000054.
  • 79. Nolan, G. (2018) ‘Managing risk while translating research outcomes into design and construction innovation’, Architectural Science Review, 61(4), 255–265. doi: 10.1080/00038628.2018.1473241.
  • 80. Olawumi, T. O. et al. (2022) ‘Automating the modular construction process: A review of digital technologies and future directions with blockchain technology’, Journal of Building Engineering, 46(April 2021), 103720. doi: 10.1016/j.jobe.2021.103720.
  • 81. Rashid, K. M. and Louis, J. (2020) ‘Activity identification in modular construction using audio signals and machine learning’, Automation in Construction, 119, 103361. doi: 10.1016/j.autcon.2020.103361.
  • 82. Rausch, C. et al. (2019) ‘Monte Carlo simulation for tolerance analysis in prefabrication and offsite construction’, Automation in Construction, 103, 300–314. doi: 10.1016/j.autcon.2019.03.026.
  • 83. Saad, S. et al. (2021) ‘A qualitative conceptual framework to tackle skill shortages in offsite construction industry: a scientometric approach’, Engineering, Construction and Architectural Management, 29(10), 3917-3947. doi: 10.1108/ECAM-04-2021-0287.
  • 84. Shahtaheri, Y. et al. (2017) ‘Managing risk in modular construction using dimensional and geometric tolerance strategies’, Automation in Construction, 83, 303–315. doi: 10.1016/j.autcon.2017.03.011.
  • 85. Shen, K. et al. (2021) ‘Research on the rework risk core tasks in prefabricated construction in China’, Engineering, Construction and Architectural Management, 28(10), 3299–3321. doi: 10.1108/ECAM- 07-2020-0521.
  • 86. Shoval, S. and Efatmaneshnik, M. (2019) ‘Managing complexity of assembly with modularity: a cost and benefit analysis’, The International Journal of Advanced Manufacturing Technology, 105(9), 3815–3828. doi: 10.1007/s00170-019-03802-2.
  • 87. Si, T. et al. (2021) ‘A Dynamic Just-in-Time Component Delivery Framework for Off-Site Construction’, Advances in Civil Engineering, 2021, 1-19. doi: 10.1155/2021/9953732.
  • 88. Sing, M. et al. (2021) ‘Developing an analytic hierarchy process-based decision model for modular construction in urban areas’, Journal of Engineering, Design and Technology, 21(4), 1212-1229. doi: 10.1108/JEDT-05-2021-0242.
  • 89. Steinhardt, Dale. A. and Manley, K. (2016) ‘Adoption of prefabricated housing–the role of country context’, Sustainable Cities and Society, 22, 126–135. doi: 10.1016/j.scs.2016.02.008.
  • 90. Sun, Y. et al. (2020) ‘Constraints hindering the development of high-rise modular buildings’, Applied Sciences, 10(20), 1–20. doi: 10.3390/app10207159.
  • 91. Sutrisna, M. and Goulding, J. (2019) ‘Managing information flow and design processes to reduce design risks in offsite construction projects’, Engineering, Construction and Architectural Management, 26(2), 267–284. doi: 10.1108/ECAM-11-2017-0250.
  • 92. Teng, Y. and Pan, W. (2020) ‘Estimating and minimizing embodied carbon of prefabricated high-rise residential buildings considering parameter, scenario and model uncertainties’, Building and Environment, 180, 106951. doi: 10.1016/j.buildenv.2020.106951.
  • 93. Valinejadshoubi, M., Bagchi, A. and Moselhi, O. (2019) ‘Development of a BIM-Based Data Management System for Structural Health Monitoring with Application to Modular Buildings: Case Study’, Journal of Computing in Civil Engineering, 33(3). doi: 10.1061/(ASCE)CP.1943-5487.0000826.
  • 94. Van der Ham, M. and Opdenakker, R. (2021) ‘Overcoming process-related barriers in modular high-rise building projects’, International Journal of Construction Management, 1–11. doi: 10.1080/15623599.2021.2007593.
  • 95. Vithanage, S. C. et al. (2022) ‘Assessing the Off-Site Manufacturing Workers’ Influence on Safety Performance: A Bayesian Network Approach’, Journal of Construction Engineering and Management, 148(1). doi: 10.1061/(ASCE)CO.1943-7862.0002224.
  • 96. Wang, M. et al. (2020) ‘A systematic review of digital technology adoption in off-site construction: Current status and future direction towards industry 4.0’, Buildings, 10(11), 1–29. doi: 10.3390/buildings10110204.
  • 97. Wasim, M., Vaz Serra, P. and Ngo, T. D. (2020) ‘Design for manufacturing and assembly for sustainable, quick and cost-effective prefabricated construction – a review’, International Journal of Construction Management, 1–9. doi: 10.1080/15623599.2020.1837720.
  • 98. Wei, Y., Choi, H. and Lei, Z. (2021) ‘A generative design approach for modular construction in congested urban areas’, Smart and Sustainable Built Environment, 11(4), 1163-1181. doi: 10.1108/SASBE-04- 2021-0068.
  • 99. Wong, P. S. P., Whelan, B. and Holdsworth, S. (2021) ‘Are contractors ready for greater use of prefabrication in projects? An empirical analysis on the role of unlearning and counter-knowledge’, International Journal of Construction Management, 21(4), 353–368. doi: 10.1080/15623599.2018.1539160.
  • 100. Wu, L. et al. (2022) ‘Linking permissioned blockchain to Internet of Things (IoT)-BIM platform for off-site production management in modular construction’, Computers in Industry, 135. doi: 10.1016/j.compind.2021.103573.
  • 101. Wu, P. et al. (2019) ‘Perceptions towards risks involved in off-site construction in the integrated design & construction project delivery’, Journal of Cleaner Production, 213, 899–914. doi: 10.1016/j.jclepro.2018.12.226.
  • 102. Wuni, Ibrahim Yahaya and Shen, G. Q. (2019) ‘Towards a decision support for modular integrated construction: an integrative review of the primary decision-making actors’, International Journal of Construction Management, 1–20. doi: 10.1080/15623599.2019.1668633.
  • 103. Wuni, I. Y. and Shen, G. Q. (2020) ‘Barriers to the adoption of modular integrated construction: Systematic review and meta-analysis, integrated conceptual framework, and strategies’, Journal of Cleaner Production, 249, 119347. doi: 10.1016/j.jclepro.2019.119347.
  • 104. Wuni, I.Y. and Shen, G. Q. (2021) ‘Exploring the critical production risk factors for modular integrated construction projects’, Journal of Facilities Management, 21(1), 50-68. doi: 10.1108/JFM-03-2021- 0029.
  • 105. Wuni, I. Y. and Shen, G. Q. (2022) ‘Developing critical success factors for integrating circular economy into modular construction projects in Hong Kong’, Sustainable Production and Consumption, 29, 574–587. doi: 10.1016/j.spc.2021.11.010.
  • 106. Xu, J. et al. (2021) ‘A four-quadrant conceptual framework for analyzing extended producer responsibility in offshore prefabrication construction’, Journal of Cleaner Production, 282, 124540. doi: 10.1016/j.jclepro.2020.124540.
  • 107. Xu, Z., Zayed, T. and Niu, Y. (2020) ‘Comparative analysis of modular construction practices in mainland China, Hong Kong and Singapore’, Journal of Cleaner Production, 245, 118861. doi: 10.1016/j.jclepro.2019.118861.
  • 108. Yin, X. et al. (2019) ‘Building information modelling for off-site construction: Review and future directions’, Automation in Construction, 101, 72–91. doi: 10.1016/j.autcon.2019.01.010.
  • 109. Yu, T. et al. (2019) ‘Evaluating different stakeholder impacts on the occurrence of quality defects in offsite construction projects: A Bayesian-network-based model’, Journal of Cleaner Production, 241, 118390. doi: 10.1016/j.jclepro.2019.118390.
  • 110. Zaalouk, A. and Han, S. (2021) ‘Parameterized Design Optimization Framework for Worker-Friendly Workplaces in Modular Construction’, Journal of Construction Engineering and Management, 147(5), 04021030. doi: 10.1061/(ASCE)CO.1943-7862.0002029.
  • 111. Zhang, W. et al. (2018) ‘The hindrance to using prefabrication in Hong Kong’s building industry’, Journal of Cleaner Production, 204, 70–81. doi: 10.1016/j.jclepro.2018.08.190.
  • 112. Zhang, Y. et al. (2020) ‘Process-Oriented Framework to Improve Modular and Offsite Construction Manufacturing Performance’, Journal of Construction Engineering and Management, 146(9), 04020116. doi: 10.1061/(asce)co.1943-7862.0001909.
  • 113. Zhao, J. and Ke, G. Y. (2019) ‘Optimizing Emergency Logistics for the Offsite Hazardous Waste Management’, Journal of Systems Science and Systems Engineering, 28(6), 747–765. doi: 10.1007/s11518-019-5429-5.
  • 114. Zhao, L., Liu, Z. and Mbachu, J. (2019) ‘Optimization of the Supplier Selection Process in Prefabrication Using BIM’, Buildings, 9(10), 222. doi: 10.3390/buildings9100222.
  • 115. Zhong, R. Y. et al. (2017) ‘Prefabricated construction enabled by the Internet-of-Things’, Automation in Construction, 76, 59–70. doi: 10.1016/j.autcon.2017.01.006.
  • 116. Zhou, J. et al. (2019) ‘A selection model based on SWOT analysis for determining a suitable strategy of prefabrication implementation in rural areas’, Sustainable Cities and Society, 50, 101715. doi: 10.1016/j.scs.2019.101715.
  • 117. Zhou, J. X. et al. (2021) ‘Customization of on-site assembly services by integrating the internet of things and BIM technologies in modular integrated construction’, Automation in Construction,126(March), 103663. doi: 10.1016/j.autcon.2021.103663.
  • 118. Zhu, H. et al. (2018) ‘The exploration of the life-cycle energy saving potential for using prefabrication in residential buildings in China’, Energy and Buildings, 166, 561–570. doi: 10.1016/j.enbuild.2017.12.045.
  • 119. Zhu, M. et al. (2021) ‘Two-period based carbon-economy equilibrium strategy for modular construction supply planning’, Journal of Cleaner Production, 290. doi: 10.1016/j.jclepro.2020.125674.

TRENDS AND FUTURE DIRECTIONS OF RISK MANAGEMENT APPROACHES APPLIED IN MODULAR CONSTRUCTION PROJECTS: SYSTEMATIC REVIEW AND META-ANALYSIS

Yıl 2024, , 311 - 330, 22.04.2024
https://doi.org/10.17482/uumfd.1354025

Öz

In modular construction, given the different undertakings compared to conventional construction, the latter deems less risky. However, the current industry is faced with malpractices which are loopholes disabling full capacity performance. There is a noticeable lack of studies specifically analyzing the risk management approaches. This study aims to vigorously analyze all risk management approaches applied in previous projects by compiling qualitative and quantitative content for the eased risk assessment of modular projects. By performing a systematic literature review and meta-analysis, 175 documents were finalized and manually analyzed. Synthesis of the literature was carried out to generate graphs, illustrations, and tabularized content, followed by critical explanation for relevant risk management approaches identified according to risk category and project criteria. Risk management approaches for modular construction were showcased in terms of yearly trends, geographic involvement, keywords mostly encountered, and universities and institutions involvement. Classified risk management approaches were tabularized alongside a research domain targeting technical risk management approaches. Future work scopes were suggested with percentage initiations from analyzed studies. This study is a fundamental steppingstone in broadening knowledge on risk management approaches of modular construction and will aid both academicians and practitioners to get direct insights on current trends with project-oriented results showcased.

Kaynakça

  • 1. Abdelmageed, S. and Zayed, T. (2020) ‘A study of literature in modular integrated construction - Critical review and future directions’, Journal of Cleaner Production, 277, 124044. doi: 10.1016/j.jclepro.2020.124044.
  • 2. Abdul Nabi, M. and El-adaway, I. H. (2020) ‘Modular Construction: Determining Decision-Making Factors and Future Research Needs’, Journal of Management in Engineering, 36(6), 04020085. doi: 10.1061/(ASCE)ME.1943-5479.0000859.
  • 3. Abdul Nabi, M. and El-adaway, I. H. (2021) ‘Understanding the Key Risks Affecting Cost and Schedule Performance of Modular Construction Projects’, Journal of Management in Engineering, 37(4), 04021023. doi: 10.1061/(ASCE)ME.1943-5479.0000917.
  • 4. Akinradewo, O. et al. (2021) ‘Modular method of construction in developing countries: the underlying challenges’, International Journal of Construction Management, 1–11. doi: 10.1080/15623599.2021.1970300.
  • 5. Almashaqbeh, M. and El-Rayes, K. (2021) ‘Minimizing transportation cost of prefabricated modules in modular construction projects’, Engineering, Construction and Architectural Management, 29(10), 3847-3867. doi: 10.1108/ECAM-11-2020-0969.
  • 6. Almashaqbeh, Mohammad and El-Rayes, K. (2021) ‘Optimizing the modularization of floor plans in modular construction projects’, Journal of Building Engineering, 39, 102316. doi: 10.1016/j.jobe.2021.102316.
  • 7. Alwisy, A. et al. (2019) ‘A BIM-based automation of design and drafting for manufacturing of wood panels for modular residential buildings’, International Journal of Construction Management, 19(3), 187–205. doi: 10.1080/15623599.2017.1411458.
  • 8. Arashpour, M. et al. (2016) ‘Off-site construction optimization: Sequencing multiple job classes with time constraints’, Automation in Construction, 71(Part 2), 262–270. doi: 10.1016/j.autcon.2016.08.001.
  • 9. Arashpour, Mehrdad et al. (2017) ‘Integrated management of on-site, coordination and off-site uncertainty: Theorizing risk analysis within a hybrid project setting’, International Journal of Project Management, 35(4), 647–655. doi: 10.1016/j.ijproman.2017.02.016.
  • 10. Arashpour, M. et al. (2018) ‘Optimization modeling of multi-skilled resources in prefabrication: Theorizing cost analysis of process integration in off-site construction’, Automation in Construction, 95, 1–9. doi: 10.1016/j.autcon.2018.07.027.
  • 11. Ashcroft, D. et al. (2019) ‘Cost comparison of seismic damage resisting systems for modules in multi-storey buildings’, Journal of Engineering, Design and Technology, 17(2), 330–346. doi: 10.1108/JEDT-04-2018-0076.
  • 12. Assaad, R. et al. (2020) ‘Commercial and Legal Considerations of Offsite Construction Projects and their Hybrid Transactions’, Journal of Construction Engineering and Management, 146(12), 05020019. doi: 10.1061/(ASCE)CO.1943-7862.0001948.
  • 13. Bakhshi, S. et al. (2022) ‘Integrated BIM and DfMA parametric and algorithmic design based collaboration for supporting client engagement within offsite construction’, Automation in Construction, 133, 104015. doi: 10.1016/j.autcon.2021.104015.
  • 14. Bao, Z. et al. (2021) ‘Design for manufacture and assembly (DfMA) enablers for offsite interior design and construction’, Building Research & Information, 1–14. doi: 10.1080/09613218.2021.1966734.
  • 15. Barkokebas, B. et al. (2021) ‘A BIM-lean framework for digitalisation of premanufacturing phases in offsite construction’, Engineering, Construction and Architectural Management, 28(8), 2155– 2175. doi: 10.1108/ECAM-11-2020-0986.
  • 16. Bendi, D. et al. (2021) ‘Assessing off-site readiness in construction organisations: cases from India’, Construction Innovation, 22(2), 320-341. doi: 10.1108/CI-01-2021-0005.
  • 17. Charlson, J. and Dimka, N. (2021) ‘Design, manufacture and construct procurement model for volumetric offsite manufacturing in the UK housing sector’, Construction Innovation, 21(4), 800–817. doi: 10.1108/CI-10-2019-0108.
  • 18. Chen, W. et al. (2020) ‘Collaborative scheduling of on-site and off-site operations in prefabrication’, Sustainability, 12(21), 1–23. doi: 10.3390/su12219266.
  • 19. Chen, Y., Okudan, G. E. and Riley, D. R. (2010) ‘Decision support for construction method selection in concrete buildings: Prefabrication adoption and optimization’, Automation in Construction, 19(6), 665–675. doi: 10.1016/j.autcon.2010.02.011.
  • 20. Chen, Z. et al. (2021) ‘Exploration of the multidirectional stability and response of prefabricated volumetric modular steel structures’, Journal of Constructional Steel Research, 184, 106826. doi: 10.1016/j.jcsr.2021.106826.
  • 21. Cho, K. et al. (2021) ‘Schedule Delay Leading Indicators in Precast Concrete Construction Projects: Qualitative Comparative Analysis of Korean Cases’, Journal of Management in Engineering, 37(4), 04021024. doi: 10.1061/(ASCE)ME.1943-5479.0000915.
  • 22. Choi, J. O., O’Connor, J. T. and Kim, T. W. (2016) ‘Recipes for Cost and Schedule Successes in Industrial Modular Projects: Qualitative Comparative Analysis’, Journal of Construction Engineering and Management, 142(10), 04016055. doi: 10.1061/(asce)co.1943-7862.0001171.
  • 23. Dabirian, S., Han, S. H. and Lee, J. (2020) ‘Stochastic-based noise exposure assessment in modular and off-site construction’, Journal of Cleaner Production, 244, 118758. doi: 10.1016/j.jclepro.2019.118758.
  • 24. Donthu, N. et al. (2021) ‘How to conduct a bibliometric analysis: An overview and guidelines’, Journal of Business Research, 133(March), 285–296. doi: 10.1016/j.jbusres.2021.04.070.
  • 25. Du, J. et al. (2019) ‘Multi-agent simulation for managing design changes in prefabricated construction projects’, Engineering, Construction and Architectural Management, 27(1), 270–295. doi: 10.1108/ECAM-11-2018-0524.
  • 26. Enshassi, M. S. A. et al. (2019) ‘Integrated Risk Management Framework for Tolerance-Based Mitigation Strategy Decision Support in Modular Construction Projects’, Journal of Management in Engineering, 35(4). doi: 10.1061/(ASCE)ME.1943-5479.0000698.
  • 27. Enshassi, M. S. A. et al. (2020) ‘Dynamic and Proactive Risk-Based Methodology for Managing Excessive Geometric Variability Issues in Modular Construction Projects Using Bayesian Theory’, Journal of Construction Engineering and Management, 146(2). doi: 10.1061/(ASCE)CO.1943-7862.0001747.
  • 28. Fifield, L. J. et al. (2018) ‘Hospital wards and modular construction: Summertime overheating and energy efficiency’, Building and Environment, 141, 28–44. doi: 10.1016/j.buildenv.2018.05.041.
  • 29. Gan, X.-L. et al. (2019) ‘Exploring the interactions among factors impeding the diffusion of prefabricated building technologies’, Engineering, Construction and Architectural Management, 26(3), 535–553. doi: 10.1108/ECAM-05-2018-0198.
  • 30. Gan, X., Chang, R. and Wen, T. (2018) ‘Overcoming barriers to off-site construction through engaging stakeholders: A two-mode social network analysis’, Journal of Cleaner Production, 201, 735– 747. doi: 10.1016/j.jclepro.2018.07.299.
  • 31. Gbadamosi, A.-Q. et al. (2020) ‘Big data for Design Options Repository: Towards a DFMA approach for offsite construction’, Automation in Construction, 120, 103388. doi: 10.1016/j.autcon.2020.103388.
  • 32. Ginigaddara, B. et al. (2022) ‘Offsite construction skills evolution: an Australian case study’, Construction Innovation, 22(1), 41–56. doi: 10.1108/CI-10-2019-0109.
  • 33. Gledson, B. (2021) ‘Enhanced model of the innovation-decision process, for modular-technological-process innovations in construction’, Construction Innovation, 22(4), 1085-1103. doi: 10.1108/CI- 02-2021-0021.
  • 34. Golabchi, A. et al. (2015) ‘An Automated Biomechanical Simulation Approach to Ergonomic Job Analysis for Workplace Design’, Journal of Construction Engineering and Management, 141(8), 04015020. doi: 10.1061/(ASCE)CO.1943-7862.0000998.
  • 35. Gong, C. et al. (2021) ‘Factors impacting BIM application in prefabricated buildings in China with DEMATEL-ISM’, Construction Innovation, 23(1), 19-37. doi: 10.1108/CI-06-2021-0115.
  • 36. Goodier, C. et al. (2019) ‘Modularisation and offsite in engineering construction: An early decision-support tool’, Proceedings of the Institution of Civil Engineers: Civil Engineering, 172(6), 3–14. doi: 10.1680/jcien.19.00015.
  • 37. Goswami, M. and Tiwari, M. K. (2014) ‘A predictive risk evaluation framework for modular product concept selection in new product design environment’, Journal of Engineering Design, 25(1–3), 150–171. doi: 10.1080/09544828.2014.921806.
  • 38. Gumusburun Ayalp, G. and Ay, I. (2021) ‘Model validation of factors limiting the use of prefabricated construction systems in Turkey’, Engineering, Construction and Architectural Management, 28(9), 2610–2636. doi: 10.1108/ECAM-04-2020-0248.
  • 39. Hammad, A. W. et al. (2020) ‘A novel mathematical optimisation model for the scheduling of activities in modular construction factories’, Construction Management and Economics, 38(6), 534– 551. doi: 10.1080/01446193.2019.1682174.
  • 40. Hsu, P.-Y., Angeloudis, P. and Aurisicchio, M. (2018) ‘Optimal logistics planning for modular construction using two-stage stochastic programming’, Automation in Construction, 94, 47–61. doi: 10.1016/j.autcon.2018.05.029.
  • 41. Hsu, P.-Y., Aurisicchio, M. and Angeloudis, P. (2019) ‘Risk-averse supply chain for modular construction projects’, Automation in Construction, 106, 102898. doi: 10.1016/j.autcon.2019.102898.
  • 42. Hung, H.-F., Kao, H.-P. and Ku, K.-C. (2007) ‘Evaluation of design alternatives in collaborative development and production of modular products’, The International Journal of Advanced Manufacturing Technology, 33(11–12), 1065–1076. doi: 10.1007/s00170-006-0548-9.
  • 43. Hussein, M. et al. (2021) ‘Modelling in off-site construction supply chain management: A review and future directions for sustainable modular integrated construction’, Journal of Cleaner Production, 310, 127503. doi: 10.1016/j.jclepro.2021.127503.
  • 44. Hussein, M. and Zayed, T. (2021) ‘Crane operations and planning in modular integrated construction: Mixed review of literature’, Automation in Construction, 122, 103466. doi: 10.1016/j.autcon.2020.103466.
  • 45. Hwang, B.-G., Shan, M. and Looi, K.-Y. (2018) ‘Key constraints and mitigation strategies for prefabricated prefinished volumetric construction’, Journal of Cleaner Production, 183, 183–193. doi: 10.1016/j.jclepro.2018.02.136.
  • 46. Ikuma, L. H., Nahmens, I. and James, J. (2011) ‘Use of Safety and Lean Integrated Kaizen to Improve Performance in Modular Homebuilding’, Journal of Construction Engineering and Management, 137(7), 551–560. doi: 10.1061/(asce)co.1943-7862.0000330.
  • 47. James, J. et al. (2014) ‘The impact of Kaizen on safety in modular home manufacturing’, The International Journal of Advanced Manufacturing Technology, 70(1–4), 725–734. doi: 10.1007/s00170- 013-5315-0.
  • 48. Jang, J. et al. (2021) ‘Toward productivity in future construction: Mapping knowledge and finding insights for achieving successful offsite construction projects’, Journal of Computational Design and Engineering, 8(1), 1–14. doi: 10.1093/jcde/qwaa071.
  • 49. Jeong, G. et al. (2021) ‘Analysis of safety risk factors of modular construction to identify accident trends’, Journal of Asian Architecture and Building Engineering, 21(3), 1040-1052. doi: 10.1080/13467581.2021.1877141.
  • 50. Jiang, Y. et al. (2021) ‘Blockchain-enabled cyber-physical smart modular integrated construction’, Computers in Industry, 133, 103553. doi: 10.1016/j.compind.2021.103553.
  • 51. Jin, R. et al. (2018) ‘A holistic review of off-site construction literature published between 2008 and 2018’, Journal of Cleaner Production, 202, 1202–1219. doi: 10.1016/j.jclepro.2018.08.195.
  • 52. Jin, R., Hong, J. and Zuo, J. (2020) ‘Environmental performance of off-site constructed facilities: A critical review’, Energy and Buildings, 207, 109567. doi: 10.1016/j.enbuild.2019.109567.
  • 53. Lee, D. and Lee, S. (2021) ‘Digital Twin for Supply Chain Coordination in Modular Construction’, Applied Sciences, 11(13), 5909. doi: 10.3390/app11135909.
  • 54. Lee, J.-S. and Kim, Y.-S. (2017) ‘Analysis of cost-increasing risk factors in modular construction in Korea using FMEA’, KSCE Journal of Civil Engineering, 21(6), 1999–2010. doi: 10.1007/s12205-016- 0194-1.
  • 55. Lerche, J. et al. (2020) ‘Application of Last Planner System to Modular Offshore Wind Construction’, Journal of Construction Engineering and Management, 146(11), 05020015. doi: 10.1061/(ASCE)CO.1943-7862.0001922.
  • 56. Li, C. Z. et al. (2016) ‘Schedule risks in prefabrication housing production in Hong Kong: a social network analysis’, Journal of Cleaner Production, 134(Part B), 482–494. doi: 10.1016/j.jclepro.2016.02.123.
  • 57. Li, C. Z. et al. (2017) ‘Integrating RFID and BIM technologies for mitigating risks and improving schedule performance of prefabricated house construction’, Journal of Cleaner Production, 165, 1048– 1062. doi: 10.1016/j.jclepro.2017.07.156.
  • 58. Li, C. Z. et al. (2018) ‘A model for simulating schedule risks in prefabrication housing production: A case study of six-day cycle assembly activities in Hong Kong’, Journal of Cleaner Production, 185, 366–381. doi: 10.1016/j.jclepro.2018.02.308.
  • 59. Li, Dezhi et al. (2019) ‘ISM-based relationship among critical factors that affect the choice of prefabricated concrete buildings in China’, International Journal of Construction Management, 1–16. doi: 10.1080/15623599.2019.1675306.
  • 60. Li, H. X. et al. (2013) ‘Risk identification and assessment of modular construction utilizing fuzzy analytic hierarchy process (AHP) and simulation’, Canadian Journal of Civil Engineering, 40(12), 1184– 1195. doi: 10.1139/cjce-2013-0013.
  • 61. Li, M. et al. (2017) ‘Research on investment risk management of Chinese prefabricated construction projects based on a system dynamics model’, Buildings, 7(3). doi: 10.3390/buildings7030083.
  • 62. Li, X.-J. (2020) ‘Research on ınvestment rısk ınfluence factors of prefabrıcated buıldıng projects’, Journal of Civil Engineering and Management, 26(7), 599–613. doi: 10.3846/jcem.2020.12917.
  • 63. Li, X. et al. (2018) ‘RBL-PHP: Simulation of Lean Construction and Information Technologies for Prefabrication Housing Production’, Journal of Management in Engineering, 34(2), 04017053. doi: 10.1061/(asce)me.1943-5479.0000577.
  • 64. Li, Xinming et al. (2019) ‘Automated post-3D visualization ergonomic analysis system for rapid workplace design in modular construction’, Automation in Construction, 98, 160–174. doi: 10.1016/j.autcon.2018.11.012.
  • 65. Li, X. et al. (2019a) ‘Integrating Building Information Modeling and Prefabrication Housing Production’, Automation in Construction, 100, 46–60. doi: 10.1016/j.autcon.2018.12.024.
  • 66. Li, Xiao et al. (2019b) ‘SWP-enabled constraints modeling for on-site assembly process of prefabrication housing production’, Journal of Cleaner Production, 239, 117991. doi: 10.1016/j.jclepro.2019.117991.
  • 67. Li, X. et al. (2022) ‘Blockchain-Enabled IoT-BIM Platform for Supply Chain Management in Modular Construction’, Journal of Construction Engineering and Management, 148(2). doi: 10.1061/(ASCE)CO.1943-7862.0002229.
  • 68. Lin, T. et al. (2021) ‘Offsite construction in the Australian low-rise residential buildings application levels and procurement options’, Engineering, Construction and Architectural Management, ahead-of-p(ahead-of-print). doi: 10.1108/ECAM-07-2020-0583.
  • 69. Liu, C. et al. (2022) ‘Applications of object detection in modular construction based on a comparative evaluation of deep learning algorithms’, Construction Innovation, 22(1), 141–159. doi: 10.1108/CI-02-2020-0017.
  • 70. Liu, H. et al. (2020) ‘Risk management system and intelligent decision-making for prefabricated building project under deep learning modified teaching-learning-based optimization’, PLOS ONE. Edited by Z. Lv, 15(7), e0235980. doi: 10.1371/journal.pone.0235980.
  • 71. Liu, J. et al. (2018) ‘Cloud Model-Based Safety Performance Evaluation of Prefabricated Building Project in China’, Wireless Personal Communications, 102(4), 3021–3039. doi: 10.1007/s11277-018- 5323-3.
  • 72. Liu, Q., Ye, G. and Feng, Y. (2019) ‘Workers’ safety behaviors in the off-site manufacturing plant’, Engineering, Construction and Architectural Management, 27(3), 765–784. doi: 10.1108/ECAM-03- 2019-0136.
  • 73. Liu, Z. et al. (2021) ‘Digital Twin-Based Safety Risk Coupling of Prefabricated Building Hoisting’, Sensors, 21(11), 3583. doi: 10.3390/s21113583.
  • 74. Lou, N. and Guo, J. (2020) ‘Study on Key Cost Drivers of Prefabricated Buildings Based on System Dynamics’, Advances in Civil Engineering. Edited by O. Pesämaa, 2020, 1–12. doi: 10.1155/2020/8896435.
  • 75. Lu, W. et al. (2018) ‘Searching for an optimal level of prefabrication in construction: An analytical framework’, Journal of Cleaner Production, 201, 236–245. doi: 10.1016/j.jclepro.2018.07.319.
  • 76. Lu, W. and Yuan, H. (2013) ‘Investigating waste reduction potential in the upstream processes of offshore prefabrication construction’, Renewable and Sustainable Energy Reviews, 28, 804–811. doi: 10.1016/j.rser.2013.08.048.
  • 77. Murtaza, M. B., Fisher, D. J. and Skibniewski, M. J. (1993) ‘Knowledge‐Based Approach to Modular Construction Decision Support’, Journal of Construction Engineering and Management, 119(1), 115– 130. doi: 10.1061/(ASCE)0733-9364(1993)119:1(115).
  • 78. Nahmens, I. and Ikuma, L. H. (2012) ‘Effects of lean construction on sustainability of modular homebuilding’, Journal of Architectural Engineering, 18(2), 155–163. doi: 10.1061/(ASCE)AE.1943- 5568.0000054.
  • 79. Nolan, G. (2018) ‘Managing risk while translating research outcomes into design and construction innovation’, Architectural Science Review, 61(4), 255–265. doi: 10.1080/00038628.2018.1473241.
  • 80. Olawumi, T. O. et al. (2022) ‘Automating the modular construction process: A review of digital technologies and future directions with blockchain technology’, Journal of Building Engineering, 46(April 2021), 103720. doi: 10.1016/j.jobe.2021.103720.
  • 81. Rashid, K. M. and Louis, J. (2020) ‘Activity identification in modular construction using audio signals and machine learning’, Automation in Construction, 119, 103361. doi: 10.1016/j.autcon.2020.103361.
  • 82. Rausch, C. et al. (2019) ‘Monte Carlo simulation for tolerance analysis in prefabrication and offsite construction’, Automation in Construction, 103, 300–314. doi: 10.1016/j.autcon.2019.03.026.
  • 83. Saad, S. et al. (2021) ‘A qualitative conceptual framework to tackle skill shortages in offsite construction industry: a scientometric approach’, Engineering, Construction and Architectural Management, 29(10), 3917-3947. doi: 10.1108/ECAM-04-2021-0287.
  • 84. Shahtaheri, Y. et al. (2017) ‘Managing risk in modular construction using dimensional and geometric tolerance strategies’, Automation in Construction, 83, 303–315. doi: 10.1016/j.autcon.2017.03.011.
  • 85. Shen, K. et al. (2021) ‘Research on the rework risk core tasks in prefabricated construction in China’, Engineering, Construction and Architectural Management, 28(10), 3299–3321. doi: 10.1108/ECAM- 07-2020-0521.
  • 86. Shoval, S. and Efatmaneshnik, M. (2019) ‘Managing complexity of assembly with modularity: a cost and benefit analysis’, The International Journal of Advanced Manufacturing Technology, 105(9), 3815–3828. doi: 10.1007/s00170-019-03802-2.
  • 87. Si, T. et al. (2021) ‘A Dynamic Just-in-Time Component Delivery Framework for Off-Site Construction’, Advances in Civil Engineering, 2021, 1-19. doi: 10.1155/2021/9953732.
  • 88. Sing, M. et al. (2021) ‘Developing an analytic hierarchy process-based decision model for modular construction in urban areas’, Journal of Engineering, Design and Technology, 21(4), 1212-1229. doi: 10.1108/JEDT-05-2021-0242.
  • 89. Steinhardt, Dale. A. and Manley, K. (2016) ‘Adoption of prefabricated housing–the role of country context’, Sustainable Cities and Society, 22, 126–135. doi: 10.1016/j.scs.2016.02.008.
  • 90. Sun, Y. et al. (2020) ‘Constraints hindering the development of high-rise modular buildings’, Applied Sciences, 10(20), 1–20. doi: 10.3390/app10207159.
  • 91. Sutrisna, M. and Goulding, J. (2019) ‘Managing information flow and design processes to reduce design risks in offsite construction projects’, Engineering, Construction and Architectural Management, 26(2), 267–284. doi: 10.1108/ECAM-11-2017-0250.
  • 92. Teng, Y. and Pan, W. (2020) ‘Estimating and minimizing embodied carbon of prefabricated high-rise residential buildings considering parameter, scenario and model uncertainties’, Building and Environment, 180, 106951. doi: 10.1016/j.buildenv.2020.106951.
  • 93. Valinejadshoubi, M., Bagchi, A. and Moselhi, O. (2019) ‘Development of a BIM-Based Data Management System for Structural Health Monitoring with Application to Modular Buildings: Case Study’, Journal of Computing in Civil Engineering, 33(3). doi: 10.1061/(ASCE)CP.1943-5487.0000826.
  • 94. Van der Ham, M. and Opdenakker, R. (2021) ‘Overcoming process-related barriers in modular high-rise building projects’, International Journal of Construction Management, 1–11. doi: 10.1080/15623599.2021.2007593.
  • 95. Vithanage, S. C. et al. (2022) ‘Assessing the Off-Site Manufacturing Workers’ Influence on Safety Performance: A Bayesian Network Approach’, Journal of Construction Engineering and Management, 148(1). doi: 10.1061/(ASCE)CO.1943-7862.0002224.
  • 96. Wang, M. et al. (2020) ‘A systematic review of digital technology adoption in off-site construction: Current status and future direction towards industry 4.0’, Buildings, 10(11), 1–29. doi: 10.3390/buildings10110204.
  • 97. Wasim, M., Vaz Serra, P. and Ngo, T. D. (2020) ‘Design for manufacturing and assembly for sustainable, quick and cost-effective prefabricated construction – a review’, International Journal of Construction Management, 1–9. doi: 10.1080/15623599.2020.1837720.
  • 98. Wei, Y., Choi, H. and Lei, Z. (2021) ‘A generative design approach for modular construction in congested urban areas’, Smart and Sustainable Built Environment, 11(4), 1163-1181. doi: 10.1108/SASBE-04- 2021-0068.
  • 99. Wong, P. S. P., Whelan, B. and Holdsworth, S. (2021) ‘Are contractors ready for greater use of prefabrication in projects? An empirical analysis on the role of unlearning and counter-knowledge’, International Journal of Construction Management, 21(4), 353–368. doi: 10.1080/15623599.2018.1539160.
  • 100. Wu, L. et al. (2022) ‘Linking permissioned blockchain to Internet of Things (IoT)-BIM platform for off-site production management in modular construction’, Computers in Industry, 135. doi: 10.1016/j.compind.2021.103573.
  • 101. Wu, P. et al. (2019) ‘Perceptions towards risks involved in off-site construction in the integrated design & construction project delivery’, Journal of Cleaner Production, 213, 899–914. doi: 10.1016/j.jclepro.2018.12.226.
  • 102. Wuni, Ibrahim Yahaya and Shen, G. Q. (2019) ‘Towards a decision support for modular integrated construction: an integrative review of the primary decision-making actors’, International Journal of Construction Management, 1–20. doi: 10.1080/15623599.2019.1668633.
  • 103. Wuni, I. Y. and Shen, G. Q. (2020) ‘Barriers to the adoption of modular integrated construction: Systematic review and meta-analysis, integrated conceptual framework, and strategies’, Journal of Cleaner Production, 249, 119347. doi: 10.1016/j.jclepro.2019.119347.
  • 104. Wuni, I.Y. and Shen, G. Q. (2021) ‘Exploring the critical production risk factors for modular integrated construction projects’, Journal of Facilities Management, 21(1), 50-68. doi: 10.1108/JFM-03-2021- 0029.
  • 105. Wuni, I. Y. and Shen, G. Q. (2022) ‘Developing critical success factors for integrating circular economy into modular construction projects in Hong Kong’, Sustainable Production and Consumption, 29, 574–587. doi: 10.1016/j.spc.2021.11.010.
  • 106. Xu, J. et al. (2021) ‘A four-quadrant conceptual framework for analyzing extended producer responsibility in offshore prefabrication construction’, Journal of Cleaner Production, 282, 124540. doi: 10.1016/j.jclepro.2020.124540.
  • 107. Xu, Z., Zayed, T. and Niu, Y. (2020) ‘Comparative analysis of modular construction practices in mainland China, Hong Kong and Singapore’, Journal of Cleaner Production, 245, 118861. doi: 10.1016/j.jclepro.2019.118861.
  • 108. Yin, X. et al. (2019) ‘Building information modelling for off-site construction: Review and future directions’, Automation in Construction, 101, 72–91. doi: 10.1016/j.autcon.2019.01.010.
  • 109. Yu, T. et al. (2019) ‘Evaluating different stakeholder impacts on the occurrence of quality defects in offsite construction projects: A Bayesian-network-based model’, Journal of Cleaner Production, 241, 118390. doi: 10.1016/j.jclepro.2019.118390.
  • 110. Zaalouk, A. and Han, S. (2021) ‘Parameterized Design Optimization Framework for Worker-Friendly Workplaces in Modular Construction’, Journal of Construction Engineering and Management, 147(5), 04021030. doi: 10.1061/(ASCE)CO.1943-7862.0002029.
  • 111. Zhang, W. et al. (2018) ‘The hindrance to using prefabrication in Hong Kong’s building industry’, Journal of Cleaner Production, 204, 70–81. doi: 10.1016/j.jclepro.2018.08.190.
  • 112. Zhang, Y. et al. (2020) ‘Process-Oriented Framework to Improve Modular and Offsite Construction Manufacturing Performance’, Journal of Construction Engineering and Management, 146(9), 04020116. doi: 10.1061/(asce)co.1943-7862.0001909.
  • 113. Zhao, J. and Ke, G. Y. (2019) ‘Optimizing Emergency Logistics for the Offsite Hazardous Waste Management’, Journal of Systems Science and Systems Engineering, 28(6), 747–765. doi: 10.1007/s11518-019-5429-5.
  • 114. Zhao, L., Liu, Z. and Mbachu, J. (2019) ‘Optimization of the Supplier Selection Process in Prefabrication Using BIM’, Buildings, 9(10), 222. doi: 10.3390/buildings9100222.
  • 115. Zhong, R. Y. et al. (2017) ‘Prefabricated construction enabled by the Internet-of-Things’, Automation in Construction, 76, 59–70. doi: 10.1016/j.autcon.2017.01.006.
  • 116. Zhou, J. et al. (2019) ‘A selection model based on SWOT analysis for determining a suitable strategy of prefabrication implementation in rural areas’, Sustainable Cities and Society, 50, 101715. doi: 10.1016/j.scs.2019.101715.
  • 117. Zhou, J. X. et al. (2021) ‘Customization of on-site assembly services by integrating the internet of things and BIM technologies in modular integrated construction’, Automation in Construction,126(March), 103663. doi: 10.1016/j.autcon.2021.103663.
  • 118. Zhu, H. et al. (2018) ‘The exploration of the life-cycle energy saving potential for using prefabrication in residential buildings in China’, Energy and Buildings, 166, 561–570. doi: 10.1016/j.enbuild.2017.12.045.
  • 119. Zhu, M. et al. (2021) ‘Two-period based carbon-economy equilibrium strategy for modular construction supply planning’, Journal of Cleaner Production, 290. doi: 10.1016/j.jclepro.2020.125674.
Toplam 119 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular İnşaat Mühendisliği (Diğer)
Bölüm Derleme Makaleler
Yazarlar

Sabah Khodabocus 0000-0001-5484-7627

Senem Seyis 0000-0002-9133-9899

Erken Görünüm Tarihi 28 Mart 2024
Yayımlanma Tarihi 22 Nisan 2024
Gönderilme Tarihi 1 Eylül 2023
Kabul Tarihi 13 Şubat 2024
Yayımlandığı Sayı Yıl 2024

Kaynak Göster

APA Khodabocus, S., & Seyis, S. (2024). TRENDS AND FUTURE DIRECTIONS OF RISK MANAGEMENT APPROACHES APPLIED IN MODULAR CONSTRUCTION PROJECTS: SYSTEMATIC REVIEW AND META-ANALYSIS. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi, 29(1), 311-330. https://doi.org/10.17482/uumfd.1354025
AMA Khodabocus S, Seyis S. TRENDS AND FUTURE DIRECTIONS OF RISK MANAGEMENT APPROACHES APPLIED IN MODULAR CONSTRUCTION PROJECTS: SYSTEMATIC REVIEW AND META-ANALYSIS. UUJFE. Nisan 2024;29(1):311-330. doi:10.17482/uumfd.1354025
Chicago Khodabocus, Sabah, ve Senem Seyis. “TRENDS AND FUTURE DIRECTIONS OF RISK MANAGEMENT APPROACHES APPLIED IN MODULAR CONSTRUCTION PROJECTS: SYSTEMATIC REVIEW AND META-ANALYSIS”. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi 29, sy. 1 (Nisan 2024): 311-30. https://doi.org/10.17482/uumfd.1354025.
EndNote Khodabocus S, Seyis S (01 Nisan 2024) TRENDS AND FUTURE DIRECTIONS OF RISK MANAGEMENT APPROACHES APPLIED IN MODULAR CONSTRUCTION PROJECTS: SYSTEMATIC REVIEW AND META-ANALYSIS. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi 29 1 311–330.
IEEE S. Khodabocus ve S. Seyis, “TRENDS AND FUTURE DIRECTIONS OF RISK MANAGEMENT APPROACHES APPLIED IN MODULAR CONSTRUCTION PROJECTS: SYSTEMATIC REVIEW AND META-ANALYSIS”, UUJFE, c. 29, sy. 1, ss. 311–330, 2024, doi: 10.17482/uumfd.1354025.
ISNAD Khodabocus, Sabah - Seyis, Senem. “TRENDS AND FUTURE DIRECTIONS OF RISK MANAGEMENT APPROACHES APPLIED IN MODULAR CONSTRUCTION PROJECTS: SYSTEMATIC REVIEW AND META-ANALYSIS”. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi 29/1 (Nisan 2024), 311-330. https://doi.org/10.17482/uumfd.1354025.
JAMA Khodabocus S, Seyis S. TRENDS AND FUTURE DIRECTIONS OF RISK MANAGEMENT APPROACHES APPLIED IN MODULAR CONSTRUCTION PROJECTS: SYSTEMATIC REVIEW AND META-ANALYSIS. UUJFE. 2024;29:311–330.
MLA Khodabocus, Sabah ve Senem Seyis. “TRENDS AND FUTURE DIRECTIONS OF RISK MANAGEMENT APPROACHES APPLIED IN MODULAR CONSTRUCTION PROJECTS: SYSTEMATIC REVIEW AND META-ANALYSIS”. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi, c. 29, sy. 1, 2024, ss. 311-30, doi:10.17482/uumfd.1354025.
Vancouver Khodabocus S, Seyis S. TRENDS AND FUTURE DIRECTIONS OF RISK MANAGEMENT APPROACHES APPLIED IN MODULAR CONSTRUCTION PROJECTS: SYSTEMATIC REVIEW AND META-ANALYSIS. UUJFE. 2024;29(1):311-30.

DUYURU:

30.03.2021- Nisan 2021 (26/1) sayımızdan itibaren TR-Dizin yeni kuralları gereği, dergimizde basılacak makalelerde, ilk gönderim aşamasında Telif Hakkı Formu yanısıra, Çıkar Çatışması Bildirim Formu ve Yazar Katkısı Bildirim Formu da tüm yazarlarca imzalanarak gönderilmelidir. Yayınlanacak makalelerde de makale metni içinde "Çıkar Çatışması" ve "Yazar Katkısı" bölümleri yer alacaktır. İlk gönderim aşamasında doldurulması gereken yeni formlara "Yazım Kuralları" ve "Makale Gönderim Süreci" sayfalarımızdan ulaşılabilir. (Değerlendirme süreci bu tarihten önce tamamlanıp basımı bekleyen makalelerin yanısıra değerlendirme süreci devam eden makaleler için, yazarlar tarafından ilgili formlar doldurularak sisteme yüklenmelidir).  Makale şablonları da, bu değişiklik doğrultusunda güncellenmiştir. Tüm yazarlarımıza önemle duyurulur.

Bursa Uludağ Üniversitesi, Mühendislik Fakültesi Dekanlığı, Görükle Kampüsü, Nilüfer, 16059 Bursa. Tel: (224) 294 1907, Faks: (224) 294 1903, e-posta: mmfd@uludag.edu.tr