Araştırma Makalesi
BibTex RIS Kaynak Göster

60 GHz Milimetre Dalga Sistemleri için Artırılmış Işıma Verimliliği ile Yüksek Kazançlı Mikroşerit Yama Anten Tasarımı

Yıl 2024, , 101 - 112, 22.04.2024
https://doi.org/10.17482/uumfd.1366173

Öz

Bu makalede, 60 GHz uygulamaları için geniş bantlı, yüksek kazançlı bir mikroşerit yama anten tasarımı sunulmaktadır. Seçilen alttabaka malzeme 1.6 mm kalınlığında, 2.2 bağıl geçirgenliğine ve 0.0009 kayıp tanjant değerine sahip Rogers RT 5880'dir. İlk olarak, basit bir dikdörtgen yama anten tasarlanmıştır. Düşük kazanç ve düşük ışıma verimliliği zorluğuyla başa çıkmak için iki adet dikdörtgen parazitik eleman tanıtılmıştır. Bu parazitik elemanlar, ana ışıma elemanıyla etkileşime girer ve kazanç ile ışıma verimliliğini artırır. Son adımda ise geri dönüş kaybı, ışıma verimliliği ve kazancı daha da artırmak için genişletilmiş bir toprak düzlemi yapısı benimsenmiştir. Önerilen anten, 13.6 × 10.6 mm²'lık kompakt boyutuyla 13.10 dBi ’lik yüksek kazanç ve %90’lık maksimum ışıma verimliliği elde etmektedir. Bant genişliği hesaplamaları için, 60 GHz frekans bandının zorlu yayılım ortamı göz önünde bulundurularak, ışıma verimliliği kriteri olarak kullanılan -10 dB kriteri yerine -15 dB kriteri tercih edilmektedir. Bu -15 dB kriterine göre, anten 55 ila 65 GHz aralığını kapsayan geniş bantlı bir davranış sergileyerek 10 GHz'lik etkileyici bir empedans bant genişliği sunmaktadır. Bu tasarım, 60 GHz uygulamaları için önemli bir potansiyel sunmaktadır.

Kaynakça

  • 1. Alassawi, S., Ali, W. and Rizk, M. (2021). Compact Circular Ring Antenna for 5G Mobile Communication Applications. Journal of Nano- and Electronic Physics, 13, 3021–3029. https://doi.org/10.21272/jnep.13(3).03029
  • 2. Alsaedi, W. K., Ahmadi, H., Khan, Z.and Grace, D. (2023). Spectrum Options and Allocations for 6G: A Regulatory and Standardization Review. IEEE Open Journal of the Communications Society, 4, 1787–1812. https://doi.org/10.1109/OJCOMS.2023.3301630
  • 3. Attaran, M. (2022). Blockchain technology in healthcare: Challenges and opportunities. International Journal of Healthcare Management, 15(1), 70–83. https://doi.org/10.1080/20479700.2020.1843887
  • 4. Carneiro Souza, L., Lopes, C., Santos, R., Junior, A. and Mendes, L. (2022). A Study on Propagation Models for 60 GHz Signals in Indoor Environments. Frontiers in Communications and Networks, 2. https://doi.org/10.3389/frcmn.2021.757842
  • 5. Colaco, J. and Lohani, R. (2020). Design and Implementation of Microstrip Patch Antenna for 5G applications. In 2020 5th International Conference on Communication and Electronics Systems (ICCES) (pp. 682–685). https://doi.org/10.1109/ICCES48766.2020.9137921
  • 6. Elayan, H., Amin, O., Shihada, B., Shubair, R. M. and Alouini, M.-S. (2020). Terahertz Band: The Last Piece of RF Spectrum Puzzle for Communication Systems. IEEE Open Journal of the Communications Society, 1, 1–32. https://doi.org/10.1109/OJCOMS.2019.2953633
  • 7. Ghassemi, N. and Wu, K. (2012). High-Efficient Patch Antenna Array for E-Band Gigabyte Point-to-Point Wireless Services. IEEE Antennas and Wireless Propagation Letters, 11, 1261–1264. https://doi.org/10.1109/LAWP.2012.2224087
  • 8. Gomez-Barquero, D., Navratil, D., Appleby, S. and Stagg, M. (2018). Point-to-Multipoint Communication Enablers for the Fifth Generation of Wireless Systems. IEEE Communications Standards Magazine, 2(1), 53–59. https://doi.org/10.1109/MCOMSTD.2018.1700069
  • 9. Haleem, A., Javaid, M., Qadri, M. and Suman, R. (2022). Understanding the Role of Digital Technologies in Education: A review. Sustainable Operations and Computers, 3. https://doi.org/10.1016/j.susoc.2022.05.004
  • 10. Hussein, E. D., Qasem, N., Jameel, M. S., Ilyas, M. and Bayat, O. (2020). Performance Optimization of Microstrip Patch Antenna Using Frequency Selective Surfaces for 60 GHz. In 2020 28th Signal Processing and Communications Applications Conference (SIU) (pp. 1–4). https://doi.org/10.1109/SIU49456.2020.9302486
  • 11. Khan, M., Islam, K., Shovon, M., Baz, M. and Masud, M. (2021). Design of a Novel 60 GHz Millimeter Wave Q-Slot Antenna for Body-Centric Communications. International Journal of Antennas and Propagation, 2021, 1–12. https://doi.org/10.1155/2021/9795959
  • 12. Oladimeji, T., Kumar, P. and Oyie, N. (2022). Propagation path loss prediction modelling in enclosed environments for 5G networks: A review. Heliyon, 8, e11581. https://doi.org/10.1016/j.heliyon.2022.e11581
  • 13. Saini, J. and Agarwal, S. (2018). Design a Slotted Microstrip Patch Antenna at 60 GHz for Millimeter Wave Mobile Communication (pp. 491–496). https://doi.org/10.1007/978-981-10-7395-3_55
  • 14. Saini, J. and Agarwal, S. K. (2017). Design a single band microstrip patch antenna at 60 GHz millimeter wave for 5G application. In 2017 International Conference on Computer, Communications and Electronics (Comptelix) (pp. 227–230). https://doi.org/10.1109/COMPTELIX.2017.8003969
  • 15. Vu Khanh, Q., Hoai Nam, V., Dao, L., Le, A. and Jeon, G. (2022). Wireless Communication Technologies for IoT in 5G: Vision, Applications, and Challenges. Wireless Communications and Mobile Computing, 2022, 1–12. https://doi.org/10.1155/2022/3229294

MICROSTRIP PATCH ANTENNA DESIGN WITH ENHANCED RADIATION EFFICIENCY FOR 5G 60 GHZ MILLIMETER-WAVE SYSTEMS

Yıl 2024, , 101 - 112, 22.04.2024
https://doi.org/10.17482/uumfd.1366173

Öz

In this paper, a wideband, high-gain microstrip patch antenna design for 60 GHz applications is presented. The chosen substrate material is Rogers RT 5880, with a thickness of 1.6 mm, a relative permittivity of 2.2, and a loss tangent of 0.0009. Initially, a simple rectangular patch antenna is designed. To address the challenges of low gain and low radiation efficiency, two rectangular parasitic elements are introduced. These parasitic elements interact with the main radiator, resulting in improved gain and radiation efficiency. In the final step, an extended ground plane structure is adopted to further enhance return loss, radiation efficiency, and gain. The proposed antenna achieves a high gain of 13.10 dBi and a maximum radiation efficiency of 90% with a compact size of 13.6 × 10.6 mm2. For bandwidth calculations, given that the 60 GHz frequency band is known for its challenging propagation environment, the -15 dB criteria is chosen instead of the commonly used -10 dB criterion. According to this -15 dB criterion, the antenna exhibits wideband behavior spanning from 55 to 65 GHz, offering animpressive impedance bandwidth of 10 GHz. This design demonstrates significant potential for 60 GHz applications.

Kaynakça

  • 1. Alassawi, S., Ali, W. and Rizk, M. (2021). Compact Circular Ring Antenna for 5G Mobile Communication Applications. Journal of Nano- and Electronic Physics, 13, 3021–3029. https://doi.org/10.21272/jnep.13(3).03029
  • 2. Alsaedi, W. K., Ahmadi, H., Khan, Z.and Grace, D. (2023). Spectrum Options and Allocations for 6G: A Regulatory and Standardization Review. IEEE Open Journal of the Communications Society, 4, 1787–1812. https://doi.org/10.1109/OJCOMS.2023.3301630
  • 3. Attaran, M. (2022). Blockchain technology in healthcare: Challenges and opportunities. International Journal of Healthcare Management, 15(1), 70–83. https://doi.org/10.1080/20479700.2020.1843887
  • 4. Carneiro Souza, L., Lopes, C., Santos, R., Junior, A. and Mendes, L. (2022). A Study on Propagation Models for 60 GHz Signals in Indoor Environments. Frontiers in Communications and Networks, 2. https://doi.org/10.3389/frcmn.2021.757842
  • 5. Colaco, J. and Lohani, R. (2020). Design and Implementation of Microstrip Patch Antenna for 5G applications. In 2020 5th International Conference on Communication and Electronics Systems (ICCES) (pp. 682–685). https://doi.org/10.1109/ICCES48766.2020.9137921
  • 6. Elayan, H., Amin, O., Shihada, B., Shubair, R. M. and Alouini, M.-S. (2020). Terahertz Band: The Last Piece of RF Spectrum Puzzle for Communication Systems. IEEE Open Journal of the Communications Society, 1, 1–32. https://doi.org/10.1109/OJCOMS.2019.2953633
  • 7. Ghassemi, N. and Wu, K. (2012). High-Efficient Patch Antenna Array for E-Band Gigabyte Point-to-Point Wireless Services. IEEE Antennas and Wireless Propagation Letters, 11, 1261–1264. https://doi.org/10.1109/LAWP.2012.2224087
  • 8. Gomez-Barquero, D., Navratil, D., Appleby, S. and Stagg, M. (2018). Point-to-Multipoint Communication Enablers for the Fifth Generation of Wireless Systems. IEEE Communications Standards Magazine, 2(1), 53–59. https://doi.org/10.1109/MCOMSTD.2018.1700069
  • 9. Haleem, A., Javaid, M., Qadri, M. and Suman, R. (2022). Understanding the Role of Digital Technologies in Education: A review. Sustainable Operations and Computers, 3. https://doi.org/10.1016/j.susoc.2022.05.004
  • 10. Hussein, E. D., Qasem, N., Jameel, M. S., Ilyas, M. and Bayat, O. (2020). Performance Optimization of Microstrip Patch Antenna Using Frequency Selective Surfaces for 60 GHz. In 2020 28th Signal Processing and Communications Applications Conference (SIU) (pp. 1–4). https://doi.org/10.1109/SIU49456.2020.9302486
  • 11. Khan, M., Islam, K., Shovon, M., Baz, M. and Masud, M. (2021). Design of a Novel 60 GHz Millimeter Wave Q-Slot Antenna for Body-Centric Communications. International Journal of Antennas and Propagation, 2021, 1–12. https://doi.org/10.1155/2021/9795959
  • 12. Oladimeji, T., Kumar, P. and Oyie, N. (2022). Propagation path loss prediction modelling in enclosed environments for 5G networks: A review. Heliyon, 8, e11581. https://doi.org/10.1016/j.heliyon.2022.e11581
  • 13. Saini, J. and Agarwal, S. (2018). Design a Slotted Microstrip Patch Antenna at 60 GHz for Millimeter Wave Mobile Communication (pp. 491–496). https://doi.org/10.1007/978-981-10-7395-3_55
  • 14. Saini, J. and Agarwal, S. K. (2017). Design a single band microstrip patch antenna at 60 GHz millimeter wave for 5G application. In 2017 International Conference on Computer, Communications and Electronics (Comptelix) (pp. 227–230). https://doi.org/10.1109/COMPTELIX.2017.8003969
  • 15. Vu Khanh, Q., Hoai Nam, V., Dao, L., Le, A. and Jeon, G. (2022). Wireless Communication Technologies for IoT in 5G: Vision, Applications, and Challenges. Wireless Communications and Mobile Computing, 2022, 1–12. https://doi.org/10.1155/2022/3229294
Toplam 15 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular İletişim Mühendisliği (Diğer)
Bölüm Araştırma Makaleleri
Yazarlar

Sanaa Irıqat 0000-0002-8360-1500

Sibel Yenikaya 0000-0002-9423-1752

Erken Görünüm Tarihi 28 Mart 2024
Yayımlanma Tarihi 22 Nisan 2024
Gönderilme Tarihi 26 Eylül 2023
Kabul Tarihi 22 Şubat 2024
Yayımlandığı Sayı Yıl 2024

Kaynak Göster

APA Irıqat, S., & Yenikaya, S. (2024). MICROSTRIP PATCH ANTENNA DESIGN WITH ENHANCED RADIATION EFFICIENCY FOR 5G 60 GHZ MILLIMETER-WAVE SYSTEMS. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi, 29(1), 101-112. https://doi.org/10.17482/uumfd.1366173
AMA Irıqat S, Yenikaya S. MICROSTRIP PATCH ANTENNA DESIGN WITH ENHANCED RADIATION EFFICIENCY FOR 5G 60 GHZ MILLIMETER-WAVE SYSTEMS. UUJFE. Nisan 2024;29(1):101-112. doi:10.17482/uumfd.1366173
Chicago Irıqat, Sanaa, ve Sibel Yenikaya. “MICROSTRIP PATCH ANTENNA DESIGN WITH ENHANCED RADIATION EFFICIENCY FOR 5G 60 GHZ MILLIMETER-WAVE SYSTEMS”. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi 29, sy. 1 (Nisan 2024): 101-12. https://doi.org/10.17482/uumfd.1366173.
EndNote Irıqat S, Yenikaya S (01 Nisan 2024) MICROSTRIP PATCH ANTENNA DESIGN WITH ENHANCED RADIATION EFFICIENCY FOR 5G 60 GHZ MILLIMETER-WAVE SYSTEMS. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi 29 1 101–112.
IEEE S. Irıqat ve S. Yenikaya, “MICROSTRIP PATCH ANTENNA DESIGN WITH ENHANCED RADIATION EFFICIENCY FOR 5G 60 GHZ MILLIMETER-WAVE SYSTEMS”, UUJFE, c. 29, sy. 1, ss. 101–112, 2024, doi: 10.17482/uumfd.1366173.
ISNAD Irıqat, Sanaa - Yenikaya, Sibel. “MICROSTRIP PATCH ANTENNA DESIGN WITH ENHANCED RADIATION EFFICIENCY FOR 5G 60 GHZ MILLIMETER-WAVE SYSTEMS”. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi 29/1 (Nisan 2024), 101-112. https://doi.org/10.17482/uumfd.1366173.
JAMA Irıqat S, Yenikaya S. MICROSTRIP PATCH ANTENNA DESIGN WITH ENHANCED RADIATION EFFICIENCY FOR 5G 60 GHZ MILLIMETER-WAVE SYSTEMS. UUJFE. 2024;29:101–112.
MLA Irıqat, Sanaa ve Sibel Yenikaya. “MICROSTRIP PATCH ANTENNA DESIGN WITH ENHANCED RADIATION EFFICIENCY FOR 5G 60 GHZ MILLIMETER-WAVE SYSTEMS”. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi, c. 29, sy. 1, 2024, ss. 101-12, doi:10.17482/uumfd.1366173.
Vancouver Irıqat S, Yenikaya S. MICROSTRIP PATCH ANTENNA DESIGN WITH ENHANCED RADIATION EFFICIENCY FOR 5G 60 GHZ MILLIMETER-WAVE SYSTEMS. UUJFE. 2024;29(1):101-12.

DUYURU:

30.03.2021- Nisan 2021 (26/1) sayımızdan itibaren TR-Dizin yeni kuralları gereği, dergimizde basılacak makalelerde, ilk gönderim aşamasında Telif Hakkı Formu yanısıra, Çıkar Çatışması Bildirim Formu ve Yazar Katkısı Bildirim Formu da tüm yazarlarca imzalanarak gönderilmelidir. Yayınlanacak makalelerde de makale metni içinde "Çıkar Çatışması" ve "Yazar Katkısı" bölümleri yer alacaktır. İlk gönderim aşamasında doldurulması gereken yeni formlara "Yazım Kuralları" ve "Makale Gönderim Süreci" sayfalarımızdan ulaşılabilir. (Değerlendirme süreci bu tarihten önce tamamlanıp basımı bekleyen makalelerin yanısıra değerlendirme süreci devam eden makaleler için, yazarlar tarafından ilgili formlar doldurularak sisteme yüklenmelidir).  Makale şablonları da, bu değişiklik doğrultusunda güncellenmiştir. Tüm yazarlarımıza önemle duyurulur.

Bursa Uludağ Üniversitesi, Mühendislik Fakültesi Dekanlığı, Görükle Kampüsü, Nilüfer, 16059 Bursa. Tel: (224) 294 1907, Faks: (224) 294 1903, e-posta: mmfd@uludag.edu.tr