Derleme
BibTex RIS Kaynak Göster

Investigation of Microplastic Behavior under Wave and Current Effect

Yıl 2024, , 969 - 988, 24.12.2024
https://doi.org/10.17482/uumfd.1472938

Öz

Microplastics (MPs) in marine environment is a major environmental problem around the world. In addition, their distribution in the ocean is poorly mapped, and most of the plastic waste is estimated to have entered the ocean from land. Investigation of how MP particles are transported or trapped (retention) from coastal and marine sources is crucial to quantify and define the global inventory of marine plastics debris. Thus, critical information may be obtained for mitigation of MPs or policy strategies. Recent studies showed that besides, the influence of hydrodynamic conditions on MP transport behavior the physical properties of MP (specific gravity, shape etc.) are effective parameters. Particle Dean Number (Ωp) and shape factor are used to identify MP migration. The purpose of this review was to present literature review of MPs transportation under wave and current effects, MPs retention mechanism and MPs behaviors in marine environment.

Kaynakça

  • Abolfathi, S., Cook, S., Yeganeh-Bakhtiary, A., Borzooei, S., Pearson, J. (2020). Microplastics transport and mixing mechanisms in the nearshore region, CoastalEngineering Proceedings, 63–63, doi:10.9753/icce.v36v.papers.63.
  • Adegoke, K. A., Adu, F. A., Oyebamiji, A. K., Bamisaye, A., Adigun, R. A., Olasoji, S. O., ve Ogunjinmi, O. E. (2023). Microplastics toxicity, detection, and removal from water/wastewater. Marine Pollution Bulletin, 187, doi:10.1016/j.marpolbul.2022.114546.
  • Allen S., Allen D., Moss K., Le Roux G., Phoenix V.R., Sonke J.E. (2020). Examination of the ocean as a source for atmospheric microplastics. PLoS ONE, 15(5), doi: 10.1371/journal.pone.0232746.
  • Almeida, M.P.d. Gaylarde, C. Pompermayer, F.C. Lima, L.d.S. Delgado, J.d.F. Scott, D. Neves, C.V. Vieira, K.S. Baptista Neto, J.A. Fonseca, E.M. (2023) The complex dynamics of microplastic migration through different aquatic environments: subsidies for a better understanding of its environmental dispersion, Microplastics, 62-77, https://doi.org/10.3390/microplastics2010005.
  • Alsina JM, Jongedijk CE, van Sebille E. (2020) Laboratory Measurements of the Wave-Induced Motion of Plastic Particles: Influence of Wave Period, Plastic Size and Plastic Density, J Geophys Res Oceans, 125(12): doi:10.1029/2020JC016294.
  • Andrady, A.L. (2011) Microplastics in the marine environment, Marine Pollution Bulletin, 62, 1596-1605, https://doi.org/10.1016/j.marpolbul.2011.05.030.
  • Atwood, E.C., Falcieri, F.M., Piehl, S., Bochow, M., Matthies, M., Franke, J., Carniel, S., Sclavo, M., Laforsch, C., Siegert, F.(2019) Coastal accumulation of microplastic particles emitted from the Po River, Northern Italy: comparing remote sensing and hydrodynamic modelling with in situ sample collections. Mar. Pollut. Bull. 138, 561–574, https://doi.org/10.1016/j.marpolbul.2018.11.045.
  • Auta, H.S. Emenike, C.U. Fauziah, S.H. (2017) Distribution and importance of microplastics in the marine environment: A review of the sources, fate, effects, and potential solutions, Environ. Int., 102, 165–176, doi: 10.1016/j.envint.2017.02.013.
  • Breivik, Ø. Allen, A.A. Maisondieu, C. Roth, J.C. (2011) Wind-induced drift of objects at sea: the leeway field method, Appl. Ocean. Res., 33, 100e109, https://doi.org/10.48550/arXiv.1111.0750.
  • Calvert, R., McAllister, M.L., Whittaker, C., Raby, A., Borthwick, A.G., Van Den Bremer, T.S. (2021) A mechanism for the increased wave-induced drift of floating marine litter. J. Fluid Mech. 915, A73, doi: 10.1017/jfm.2021.72.
  • Chubarenko, I. Bagaev, A. Zobkov, M., Esiukova, E. (2016) On some physical and dynamical properties of microplastic particles in marine environment, Marine Pollution Bulletin, 108(1-2), 105-112 https://doi.org/10.1016/j.marpolbul.2016.04.048.
  • Citterich, F., Lo Giudice, A., ve Azzaro, M. (2023) A plastic world: A review of microplastic pollution in the freshwaters of the Earth’s poles. Science of The Total Environment, 869, doi: 10.1016/j.scitotenv.2023.161847.
  • Corey, A.T. (1949) Influence of shape on the fall velocity of sand grains. Master’s thesis. Colorado Agricultural and Mechanical College.
  • Coffin S., Brander S., (2020) Microplastics in the environment: from research to regulation, Public Interest Environmental Law Conference, doi: 10.13140/RG.2.2.29504.56320.
  • Çağlayan H. S. ve Kopuz Ü.A. (2020) Mikroplastiklerin deniz çevresinde neden olduğu etkiler, Doğanın Sesi Dergisi, (6), 44-56.
  • Dean, R. G. ve Dalrymple, R. A. (1984) Water Wave Mechanics for Engineers and Scientists, Prentice-Hall, ISBN: 0139460381.
  • Derraik, J. (2002) The pollution of the marine environment by plastic debris: a review. Marine Pollution Bulletin, 44(9), pp.842-852, doi: 10.1016/S0025-326X(02)00220-5.
  • de los Santos C.B., Krång A.S., Infantes, E. (2021) Microplastic retention by marine vegetated canopies: simulations with seagrass meadows in a hydraulic fume. Environ Pollut., 269, 116050, doi: 10.1016/j.envpol.2020.116050.
  • de Smit, J. C. Anton, A. Martin, C. Rossbach, S. Bouma, T. J. Duarte, C. M. (2021) Habitat-forming species trap microplastics into coastal sediment sinks, Science of the Total Environment, 772, 145520.
  • di Benedetto, M.H., Clark, L.K., Pujara, N. (2022) Enhanced settling and dispersion of inertial particles in surface waves, J. Fluid Mech., vol. 936, A38, doi:10.1017/jfm.2023.671.
  • Enders, K., Lenz, R., Stedmon, C.A., Nielsen, T.G. (2015) Abundance, size and polymer composition of marine microplastics 10mm in the Atlantic Ocean and their modelled vertical distribution, Mar. Pollut. Bull., 100, 70e81 doi:10.1016/j.marpolbul.2015.09.027.
  • Fatahi, M., Akdogan, G., Dorfling, C., Van Wyk, P. (2021) Numerical Study of Microplastic Dispersal in Simulated Coastal Waters Using CFD Approach, Water 13, 3432, https://doi.org/10.3390/w13233432.
  • Fendall, L.S. Sewell, M.A. (2009) Contributing to marine pollution by washing your face. Microplastics in facial cleansers, Marine Pollution Bulletin, 58 (8), 1225–1228, doi: 10.1016/j.marpolbul.2009.04.025.
  • Frias, J.P.G.L. Nash, R. (2019) Microplastics: Finding a consensus on the definition, Marine Pollution Bulletin, 138, 145-147, doi:10.1016/j.marpolbul.2018.11.022.
  • Forsberg, P.L., Sous, D., Stocchino, A., Chemin, R., (2020) Behaviour of plastic litter in nearshore waters: first insights from wind and wave laboratory experiments, Mar. Pollut. Bull., 153, 111023.
  • Guerrini, F., Mari, L., Casagrandi, R., 2021. The dynamics of microplastics and associated contaminants: data-driven Lagrangian and Eulerian modelling approaches in the Dean, R. G. ve Dalrymple, R. A. (1984) Water Wave Mechanics for Engineers and Scientists, Prentice-Hall, doi: 10.1016/j.scitotenv.2021.145944.
  • Guler, H.G. Larsen, B.E. Quintana, O.bGoral, K.D. Carstensen, S. Christensen, E.D. Kerpen, N.B. Schlurmann, T. Fuhrman, D.R. (2022) Experimental study of non-buoyant microplastic transport beneath breaking irregular waves on a live sediment bed, Marine Pollution Bulletin, 181, 113902.
  • Gregory, M.R. (1996) Plastic ‘scrubbers’ in hand cleansers: a further (and minor) source for marine pollution identified, Marine Pollution Bulletin, 32, 867–871, https://doi.org/10.1016/S0025-326X(96)00047-1.
  • Gregory, M.R. (2009) Environmental implications of plastic debris in marine settings: entanglement, ingestion, smothering, hangers-on, hitch-hiking and alien invasions. Philosophical Transactions of the Royal Society B: Biological Sciences, 364, 2013–2025, doi: 10.1098/rstb.2008.0265.
  • Gregory, M.R. Andrady, A.L. (2003) Plastics in the marine environment. In: Andrady, Anthony.L. (Ed.), Plastics and the Environment, John Wiley and Sons, ISBN 0- 471-09520-6, https://doi.org/10.1002/0471721557.ch10.
  • Hendriks, I.E. Sintes, T. Bouma T.J. Duarte, C.M. (2008) Experimental assessment and modeling evaluation of the effects of the seagrass Posidonia oceanica on flow and particle trapping. Marine Ecology Progress Series, 356,163–173, doi: 10.3354/meps07316.
  • Horikawa, K. (1988) Nearshore dynamics and coastal processes: theory, measurement, and predictive models, Japan: University of Tokyo Press, doi: 10.12691/marine-2-1-4.
  • Horton, A.A., and Barnes, D.K. (2020). Microplastic pollution in a rapidly changing world: Implications for remote and vulnerable marine ecosystems. Sci. Total Environ. 738, 140349, doi: 10.1016/j.scitotenv.2020.140349.
  • Howell, E.A. Bograd, S.J. Morishige, C. Seki, M.P. Polovina, J.J. (2012) On North Pacific circulation and associated marine debris concentration, Marine Pollution Bulletin, 65, 16e22 doi: 10.1016/j.marpolbul.2011.04.034.
  • Isobe, A. Kako, S. Chang, P.H. Matsuno, T. (2009) Two-way particle tracking model for specifying sources of drifting objects: application to the East China Sea shelf. J. Atmos. Ocean. Technol,. 26, 1059e1064, https://doi.org/10.3390/jmse10040481.
  • Jambeck, J.R. Geyer, R. Wilcox, C. Siegler, T.R. Perryman, M. Andrady, A., ve diğ. (2015). Plastic waste inputs from land into the ocean. Science, 347(6223): 768–771, doi: 10.1126/science.1260352.
  • Kerpen, N. B. Schlurmann, T. Schendel, A. Gundlach, J. Marquard, D. & Hüpgen, M. (2020) Wave-induced distribution of microplastic in the surf zone, Frontiers in Marine Science, 7, 590565, doi: 10.3389/fmars.2020.590565.
  • Kaandorp, M.L.A., Dijkstra, H.A., Van Sebille, E. (2020) Closing the Mediterranean marine floating plastic mass budget: inverse modeling of sources and sinks Environ. Sci. Technol,. 54, 11980–11989.
  • Kerpen N.B., Larsen B.E., Schlurmann T., Paul M., Guler H.G., Goral K.D., Carstensen S., Christensen E.D., Fuhrman D.R. (2024) Microplastic retention in marine vegetation canopies under breaking irregular waves, Sci Total Environ., 912, 169280.
  • Khatmullina, L. Isachenko, I. (2017) Settling velocity of microplastic particles of regular shapes, Marine Pollution Bulletin, 114, 871e880.
  • Klein, S. Worch, E. Knepper, T.P. (2015) Occurrence and spatial distribution of microplastics in river shore sediments of the rhine-main area in Germany. Environ. Sci. Technol., 49, 6070–6076, doi: 10.1021/acs.est.5b00492.
  • Kowalski, N. Reichardt, A.M. Waniek, J.J. (2016) Sinking rates of microplastics and potential implications of their alteration by physical, biological, and chemical factors, Marine Pollution Bulletin, 109, 310e319, doi: 10.1016/j.marpolbul.2016.05.064.
  • Kukulka, T. Proskurowski, G. Moret-Ferguson, S. Meyer, D.W. Law, K.L. (2012) The effect of wind mixing on the vertical distribution of buoyant plastic debris, Geophys. Res. Lett., 39, L07601, https://doi.org/10.1029/2012GL051116.
  • Kukulka, T., Law, K.L., Proskurowski, G., (2016) Evidence for the influence of surface heat fluxes on turbulent mixing of microplastic marine debris, J. Phys. Oceanogr., 46, 809e815, doi: 10.1175/JPO-D-15-0242.1.
  • Larsen, B. E. Al-Obaidi, M. A. A. Guler, H. G. Carstensen, S. Goral, K. D. Christensen, E. D. & Fuhrman, D. R. (2023) Experimental investigation on the nearshore transport of buoyant microplastic particles, Marine Pollution Bulletin, 187, 114610, doi: 10.1016/j.marpolbul.2023.114610.
  • Lamb, J.B. Willis, B.L. Fiorenza, E.A. Couch, C.S. Howard, R. Rader, D.N. True, J.D. Kelly, L.A. Ahmad, A. Jompa, J. Harvell, C.D. (2018) Plastic waste associated with disease on coral reefs. Science, 359, 460-462, https://doi.org/10.1126/science.aar3320.
  • Law, K.L. Thompson, R.C. (2014) Microplastics in the seas. Science, 345, 144-145, doi: 10.1126/science.1254065.
  • Lebreton, L.M. Greer, S.D. Borrero, J.C. (2012) Numerical modelling of floating debris in the world's oceans. Mar.. Pollut. Bull. 64, 653e661.
  • Lehtiniemi, M. Hartikainen, S. Näkki, P. Engström-Öst, J. Koistinen, A. & Setälä, O. (2018) Size matters more than shape: Ingestion of primary and secondary microplastics by small predator, Food Webs, 17, e00097.
  • Li W, Duo J, Wufuer R, Wang S, Pan X. (2022) Characteristics and distribution of microplastics in shoreline sediments of the Yangtze River, main tributaries and lakes in China-From upper reaches to the estuary, Environ Sci Pollut Res Int., 29(32):48453-48464, doi: 10.1007/s11356-021-18284-7.
  • Lim, H.S. Fraser, A. Knights, A.M. (2020) Spatial arrangement of biogenic reefs alters boundary layer characteristics to increase risk of microplastic bioaccumulation., Environmental Research Letters, 15, doi: 10.1088/1748-9326/ab83ae.
  • Liubartseva, S. Coppini, G. Lecci, R. Creti, S. (2016) Regional approach to modeling the transport of floating plastic debris in the Adriatic Sea, Marine Pollution Bulletin, 103, 115e127, doi: 10.1016/j.marpolbul.2015.12.031.
  • Mansui, J. Molcard, A. Ourmieres, Y. (2015) Modelling the transport and accumulation of floating marine debris in the Mediterranean basin, Marine Pollution Bulletin, 91, 249e257,doi: 10.1016/j.marpolbul.2014.11.037.
  • Martinez, E. Maamaatuaiahutapu, K. Taillandier, V. (2009) Floating marine debris surface drift: convergence and accumulation toward the South Pacific subtropical gyre, Marine Pollution Bulletin, 58, 1347e1355, doi: 10.1016/j.marpolbul.2009.04.022.
  • Maximenko, N. Hafner, J. Niiler, P. (2012) Pathways of marine debris derived from trajectories of Lagrangian drifters, Marine Pollution Bulletin, 65, 51e62, doi: 10.1016/j.marpolbul.2011.04.016.
  • Mountford, A.S., Morales Maqueda, M.A. (2019) Eulerian modeling of the threedimensional distribution of seven popular microplastic types in the global ocean, J. Geophys. Res. Oceans, 124, 8558–8573, doi: 10.1029/2019JC015050.
  • Mountford, A.S., Morales Maqueda, M.A. (2021) Modeling the accumulation and transport of microplastics by sea ice, J. Geophys. Res. Oceans, 126 doi: 10.1029/2020JC016826.
  • Nadaoka, K. Kondoh, T. (1982) Laboratory measurements of velocity field structure in the surf zone by LDV, Coast. Eng. Jpn. 25, 125–145, https://doi.org/10.1016/0378-3839(90)90001-D.
  • Neumann, D. Callies, U. Matthies, M. (2014) Marine litter ensemble transport simulations in the southern North Sea, Marine Pollution Bulletin, 86, 219e228, doi: 10.1016/j.marpolbul.2014.07.016.
  • Nor, N.H.M. Obbard, J.P. (2014) Microplastics in Singapore's coastal mangrove ecosystems, Marine Pollution Bulletin, 79, 278e283, doi: 10.1016/j.marpolbul.2013.11.025.
  • Núnez, P., Romano, A., García-Alba, J., Besio, G., Medina, R. (2023) Wave-induced crossshore distribution of different densities, shapes, and sizes of plastic debris in coastal environments: a laboratory experiment, Marine Pollution Bulletin, 187, 114561, doi: 10.1016/j.marpolbul.2022.114561.
  • O’Brien, S., Rauert, C., Ribeiro, F., Okoffo, E. D., Burrows, S. D., O’Brien, J. W., Wang, X., Wright, S. L., ve Thomas, K. V. (2023). There’s something in the air: A review of sources, prevalence and behaviour of microplastics in the atmosphere. Science of The Total Environment, 874, 162193, doi: 10.1016/j.scitotenv.2023.162193.
  • Peeken, I. Primpke, S. Beyer, B., Gütermann, J., Katlein, C. Krumpen, T. Bergmann, M., Hehemann, L. & Gerdts, G. (2018) Arctic sea ice is an important temporal sink and means of transport for microplastic. Nature Comm. 9, article no. 1505.
  • Potemra, J.T. (2012) Numerical modeling with application to tracking marine debris, Marine Pollution Bulletin, 65, 42e50, https://doi.org/10.1016/j.marpolbul.2011.06.026.
  • Rauscher, H. Sokull-Kluttgen, B. Stamm, H. (2013) The European Commission’s recommendation on the definition of nanomaterial makes an impact, Nanotoxicology, 7, 1195–1197, doi: 10.3109/17435390.2012.724724.
  • Schmidt, C. Krauth, T. and Wagner, S. (2017) Export of plastic debris by rivers into the sea. Environ. Sci. Technol., 51: 12246–12253, doi: 10.1021/acs.est.7b02368.
  • Stokes, G. G. (1847) On the theory of oscillatory waves, Trans. Camb. Philos. Soc. 8, 441–455.
  • Yang H, Chen G, Wang J. (2021) Microplastics in the marine environment: sources, fates, ımpacts and microbial degradation,Toxics, 9 (2):41, https://doi.org/10.3390/toxics9020041.
  • Özkor, B., (2022) Kızılırmak Nehri sularında mikroplastik kirliliğinin araştırılması, Nevşehir Haci Bektaş Veli Üniversitesi Fen Bilimleri Enstitüsü, Yüksek Lisans Tezi.
  • Thompson, R.C. Olsen, Y. Mitchell, R.P., Davis, A. Rowland, S.J. John, A.W.G. McGonigle, D. Russell, A.E. (2004) Lost at sea: where is all the plastic? Science, 304, 838.
  • Thompson, R. Moore, C. Andrady, A. Gregory, M. Takada, H. Weisberg, S. (2005) New directions in plastic debris. Science, 310, 1117, doi: 10.1126/science.310.5751.1117b
  • Thiel, M. Gutow, L. (2005) The ecology of rafting in the marine environment. I. The floating substrata, Oceanogr. Mar. Biol. 42, 181e264, doi:10.1201/9780203507810.ch6.
  • Van Sebille, E., Wilcox, C., Lebreton, L., Maximenko, N., Hardesty, B.D., Van Franeker, J. A., Eriksen, M., Siegel, D., Galgani, F., Law, K.L. (2015) A global inventory of small floating plastic debris,Environ. Res. Lett., 10 doi:10.1088/1748-9326/10/12/124006.
  • Yang H. Chen G. Wang J. (2021) Microplastics in the Marine Environment: Sources, Fates, Impacts and Microbial Degradation, Toxics, 9(2):41, https://doi.org/10.3390/toxics9020041.
  • Weinstein, J.E. Crocker, B.K. Gray, A.D. (2016) From macroplastic to microplastic: degradation of high-density polyethylene, polypropylene, and polystyrene in a salt marsh habitat, Environ. Toxicol. Chem. 35, doi: 10.1002/etc.3432
  • Wieczorek, A.M. Morrison, L., Croot, P.L. Allcock, A.L. MacLoughlin, E. Savard, O. Brownlow, H. & Doyle, T.K. (2018) Frequency of microplastics in mesopelagic fishes from the Northwest Atlantic. Front. Marine Science 5, art. no. 39, https://doi.org/10.3389/fmars.2018.00039.

MİKROPLASTİKLERİN DALGA VE AKINTI ETKİSİNDE DAVRANIŞININ İNCELENMESİ

Yıl 2024, , 969 - 988, 24.12.2024
https://doi.org/10.17482/uumfd.1472938

Öz

Deniz ortamında bulunan plastik kalıntıları Dünya çapında büyük bir çevre sorunudur. Ayrıca, okyanuslardaki MP’lerin dağılımı haritalandırıldığında bu plastik atıkların çoğunun deniz ortamına karadan girdiği tahmin edilmektedir. MP’lerin nasıl taşındığının ve deniz ortamında nasıl tutulduğunun incelenmesi, kaynaklarının belirlenmesi ve deniz plastiklerinin küresel envanterinin saptanması çok önemlidir. Böylece plastik kirleticilerin azaltımı ve buna yönelik stratejilerin belirlenmesi için önemli bilgiler elde edilebilir. Son yıllarda yapılan çalışmalar deniz ortamında meydana gelen hidrodinamik etkilerin yanı sıra MP’lerin farklı fiziksel özelliklerinin de (özgül kütle ve şekil vb.) taşınım üzerinde oldukça etkili olduğu tespit etmiştir. Bu durumu tarif etmek üzere partikülün şekil faktörü ya da partikül Dean sayısını (Ωp) gibi boyutsuz parametreler kullanılmıştır. Bu derlemede, MP’lerin deniz ortamında davranışları ile tutulmasında etkili mekanizmalar ve MP taşınımında etkili olan dalga akıntı etkisi üzerine yapılan çalışmaların irdelenmesi amaçlanmıştır

Kaynakça

  • Abolfathi, S., Cook, S., Yeganeh-Bakhtiary, A., Borzooei, S., Pearson, J. (2020). Microplastics transport and mixing mechanisms in the nearshore region, CoastalEngineering Proceedings, 63–63, doi:10.9753/icce.v36v.papers.63.
  • Adegoke, K. A., Adu, F. A., Oyebamiji, A. K., Bamisaye, A., Adigun, R. A., Olasoji, S. O., ve Ogunjinmi, O. E. (2023). Microplastics toxicity, detection, and removal from water/wastewater. Marine Pollution Bulletin, 187, doi:10.1016/j.marpolbul.2022.114546.
  • Allen S., Allen D., Moss K., Le Roux G., Phoenix V.R., Sonke J.E. (2020). Examination of the ocean as a source for atmospheric microplastics. PLoS ONE, 15(5), doi: 10.1371/journal.pone.0232746.
  • Almeida, M.P.d. Gaylarde, C. Pompermayer, F.C. Lima, L.d.S. Delgado, J.d.F. Scott, D. Neves, C.V. Vieira, K.S. Baptista Neto, J.A. Fonseca, E.M. (2023) The complex dynamics of microplastic migration through different aquatic environments: subsidies for a better understanding of its environmental dispersion, Microplastics, 62-77, https://doi.org/10.3390/microplastics2010005.
  • Alsina JM, Jongedijk CE, van Sebille E. (2020) Laboratory Measurements of the Wave-Induced Motion of Plastic Particles: Influence of Wave Period, Plastic Size and Plastic Density, J Geophys Res Oceans, 125(12): doi:10.1029/2020JC016294.
  • Andrady, A.L. (2011) Microplastics in the marine environment, Marine Pollution Bulletin, 62, 1596-1605, https://doi.org/10.1016/j.marpolbul.2011.05.030.
  • Atwood, E.C., Falcieri, F.M., Piehl, S., Bochow, M., Matthies, M., Franke, J., Carniel, S., Sclavo, M., Laforsch, C., Siegert, F.(2019) Coastal accumulation of microplastic particles emitted from the Po River, Northern Italy: comparing remote sensing and hydrodynamic modelling with in situ sample collections. Mar. Pollut. Bull. 138, 561–574, https://doi.org/10.1016/j.marpolbul.2018.11.045.
  • Auta, H.S. Emenike, C.U. Fauziah, S.H. (2017) Distribution and importance of microplastics in the marine environment: A review of the sources, fate, effects, and potential solutions, Environ. Int., 102, 165–176, doi: 10.1016/j.envint.2017.02.013.
  • Breivik, Ø. Allen, A.A. Maisondieu, C. Roth, J.C. (2011) Wind-induced drift of objects at sea: the leeway field method, Appl. Ocean. Res., 33, 100e109, https://doi.org/10.48550/arXiv.1111.0750.
  • Calvert, R., McAllister, M.L., Whittaker, C., Raby, A., Borthwick, A.G., Van Den Bremer, T.S. (2021) A mechanism for the increased wave-induced drift of floating marine litter. J. Fluid Mech. 915, A73, doi: 10.1017/jfm.2021.72.
  • Chubarenko, I. Bagaev, A. Zobkov, M., Esiukova, E. (2016) On some physical and dynamical properties of microplastic particles in marine environment, Marine Pollution Bulletin, 108(1-2), 105-112 https://doi.org/10.1016/j.marpolbul.2016.04.048.
  • Citterich, F., Lo Giudice, A., ve Azzaro, M. (2023) A plastic world: A review of microplastic pollution in the freshwaters of the Earth’s poles. Science of The Total Environment, 869, doi: 10.1016/j.scitotenv.2023.161847.
  • Corey, A.T. (1949) Influence of shape on the fall velocity of sand grains. Master’s thesis. Colorado Agricultural and Mechanical College.
  • Coffin S., Brander S., (2020) Microplastics in the environment: from research to regulation, Public Interest Environmental Law Conference, doi: 10.13140/RG.2.2.29504.56320.
  • Çağlayan H. S. ve Kopuz Ü.A. (2020) Mikroplastiklerin deniz çevresinde neden olduğu etkiler, Doğanın Sesi Dergisi, (6), 44-56.
  • Dean, R. G. ve Dalrymple, R. A. (1984) Water Wave Mechanics for Engineers and Scientists, Prentice-Hall, ISBN: 0139460381.
  • Derraik, J. (2002) The pollution of the marine environment by plastic debris: a review. Marine Pollution Bulletin, 44(9), pp.842-852, doi: 10.1016/S0025-326X(02)00220-5.
  • de los Santos C.B., Krång A.S., Infantes, E. (2021) Microplastic retention by marine vegetated canopies: simulations with seagrass meadows in a hydraulic fume. Environ Pollut., 269, 116050, doi: 10.1016/j.envpol.2020.116050.
  • de Smit, J. C. Anton, A. Martin, C. Rossbach, S. Bouma, T. J. Duarte, C. M. (2021) Habitat-forming species trap microplastics into coastal sediment sinks, Science of the Total Environment, 772, 145520.
  • di Benedetto, M.H., Clark, L.K., Pujara, N. (2022) Enhanced settling and dispersion of inertial particles in surface waves, J. Fluid Mech., vol. 936, A38, doi:10.1017/jfm.2023.671.
  • Enders, K., Lenz, R., Stedmon, C.A., Nielsen, T.G. (2015) Abundance, size and polymer composition of marine microplastics 10mm in the Atlantic Ocean and their modelled vertical distribution, Mar. Pollut. Bull., 100, 70e81 doi:10.1016/j.marpolbul.2015.09.027.
  • Fatahi, M., Akdogan, G., Dorfling, C., Van Wyk, P. (2021) Numerical Study of Microplastic Dispersal in Simulated Coastal Waters Using CFD Approach, Water 13, 3432, https://doi.org/10.3390/w13233432.
  • Fendall, L.S. Sewell, M.A. (2009) Contributing to marine pollution by washing your face. Microplastics in facial cleansers, Marine Pollution Bulletin, 58 (8), 1225–1228, doi: 10.1016/j.marpolbul.2009.04.025.
  • Frias, J.P.G.L. Nash, R. (2019) Microplastics: Finding a consensus on the definition, Marine Pollution Bulletin, 138, 145-147, doi:10.1016/j.marpolbul.2018.11.022.
  • Forsberg, P.L., Sous, D., Stocchino, A., Chemin, R., (2020) Behaviour of plastic litter in nearshore waters: first insights from wind and wave laboratory experiments, Mar. Pollut. Bull., 153, 111023.
  • Guerrini, F., Mari, L., Casagrandi, R., 2021. The dynamics of microplastics and associated contaminants: data-driven Lagrangian and Eulerian modelling approaches in the Dean, R. G. ve Dalrymple, R. A. (1984) Water Wave Mechanics for Engineers and Scientists, Prentice-Hall, doi: 10.1016/j.scitotenv.2021.145944.
  • Guler, H.G. Larsen, B.E. Quintana, O.bGoral, K.D. Carstensen, S. Christensen, E.D. Kerpen, N.B. Schlurmann, T. Fuhrman, D.R. (2022) Experimental study of non-buoyant microplastic transport beneath breaking irregular waves on a live sediment bed, Marine Pollution Bulletin, 181, 113902.
  • Gregory, M.R. (1996) Plastic ‘scrubbers’ in hand cleansers: a further (and minor) source for marine pollution identified, Marine Pollution Bulletin, 32, 867–871, https://doi.org/10.1016/S0025-326X(96)00047-1.
  • Gregory, M.R. (2009) Environmental implications of plastic debris in marine settings: entanglement, ingestion, smothering, hangers-on, hitch-hiking and alien invasions. Philosophical Transactions of the Royal Society B: Biological Sciences, 364, 2013–2025, doi: 10.1098/rstb.2008.0265.
  • Gregory, M.R. Andrady, A.L. (2003) Plastics in the marine environment. In: Andrady, Anthony.L. (Ed.), Plastics and the Environment, John Wiley and Sons, ISBN 0- 471-09520-6, https://doi.org/10.1002/0471721557.ch10.
  • Hendriks, I.E. Sintes, T. Bouma T.J. Duarte, C.M. (2008) Experimental assessment and modeling evaluation of the effects of the seagrass Posidonia oceanica on flow and particle trapping. Marine Ecology Progress Series, 356,163–173, doi: 10.3354/meps07316.
  • Horikawa, K. (1988) Nearshore dynamics and coastal processes: theory, measurement, and predictive models, Japan: University of Tokyo Press, doi: 10.12691/marine-2-1-4.
  • Horton, A.A., and Barnes, D.K. (2020). Microplastic pollution in a rapidly changing world: Implications for remote and vulnerable marine ecosystems. Sci. Total Environ. 738, 140349, doi: 10.1016/j.scitotenv.2020.140349.
  • Howell, E.A. Bograd, S.J. Morishige, C. Seki, M.P. Polovina, J.J. (2012) On North Pacific circulation and associated marine debris concentration, Marine Pollution Bulletin, 65, 16e22 doi: 10.1016/j.marpolbul.2011.04.034.
  • Isobe, A. Kako, S. Chang, P.H. Matsuno, T. (2009) Two-way particle tracking model for specifying sources of drifting objects: application to the East China Sea shelf. J. Atmos. Ocean. Technol,. 26, 1059e1064, https://doi.org/10.3390/jmse10040481.
  • Jambeck, J.R. Geyer, R. Wilcox, C. Siegler, T.R. Perryman, M. Andrady, A., ve diğ. (2015). Plastic waste inputs from land into the ocean. Science, 347(6223): 768–771, doi: 10.1126/science.1260352.
  • Kerpen, N. B. Schlurmann, T. Schendel, A. Gundlach, J. Marquard, D. & Hüpgen, M. (2020) Wave-induced distribution of microplastic in the surf zone, Frontiers in Marine Science, 7, 590565, doi: 10.3389/fmars.2020.590565.
  • Kaandorp, M.L.A., Dijkstra, H.A., Van Sebille, E. (2020) Closing the Mediterranean marine floating plastic mass budget: inverse modeling of sources and sinks Environ. Sci. Technol,. 54, 11980–11989.
  • Kerpen N.B., Larsen B.E., Schlurmann T., Paul M., Guler H.G., Goral K.D., Carstensen S., Christensen E.D., Fuhrman D.R. (2024) Microplastic retention in marine vegetation canopies under breaking irregular waves, Sci Total Environ., 912, 169280.
  • Khatmullina, L. Isachenko, I. (2017) Settling velocity of microplastic particles of regular shapes, Marine Pollution Bulletin, 114, 871e880.
  • Klein, S. Worch, E. Knepper, T.P. (2015) Occurrence and spatial distribution of microplastics in river shore sediments of the rhine-main area in Germany. Environ. Sci. Technol., 49, 6070–6076, doi: 10.1021/acs.est.5b00492.
  • Kowalski, N. Reichardt, A.M. Waniek, J.J. (2016) Sinking rates of microplastics and potential implications of their alteration by physical, biological, and chemical factors, Marine Pollution Bulletin, 109, 310e319, doi: 10.1016/j.marpolbul.2016.05.064.
  • Kukulka, T. Proskurowski, G. Moret-Ferguson, S. Meyer, D.W. Law, K.L. (2012) The effect of wind mixing on the vertical distribution of buoyant plastic debris, Geophys. Res. Lett., 39, L07601, https://doi.org/10.1029/2012GL051116.
  • Kukulka, T., Law, K.L., Proskurowski, G., (2016) Evidence for the influence of surface heat fluxes on turbulent mixing of microplastic marine debris, J. Phys. Oceanogr., 46, 809e815, doi: 10.1175/JPO-D-15-0242.1.
  • Larsen, B. E. Al-Obaidi, M. A. A. Guler, H. G. Carstensen, S. Goral, K. D. Christensen, E. D. & Fuhrman, D. R. (2023) Experimental investigation on the nearshore transport of buoyant microplastic particles, Marine Pollution Bulletin, 187, 114610, doi: 10.1016/j.marpolbul.2023.114610.
  • Lamb, J.B. Willis, B.L. Fiorenza, E.A. Couch, C.S. Howard, R. Rader, D.N. True, J.D. Kelly, L.A. Ahmad, A. Jompa, J. Harvell, C.D. (2018) Plastic waste associated with disease on coral reefs. Science, 359, 460-462, https://doi.org/10.1126/science.aar3320.
  • Law, K.L. Thompson, R.C. (2014) Microplastics in the seas. Science, 345, 144-145, doi: 10.1126/science.1254065.
  • Lebreton, L.M. Greer, S.D. Borrero, J.C. (2012) Numerical modelling of floating debris in the world's oceans. Mar.. Pollut. Bull. 64, 653e661.
  • Lehtiniemi, M. Hartikainen, S. Näkki, P. Engström-Öst, J. Koistinen, A. & Setälä, O. (2018) Size matters more than shape: Ingestion of primary and secondary microplastics by small predator, Food Webs, 17, e00097.
  • Li W, Duo J, Wufuer R, Wang S, Pan X. (2022) Characteristics and distribution of microplastics in shoreline sediments of the Yangtze River, main tributaries and lakes in China-From upper reaches to the estuary, Environ Sci Pollut Res Int., 29(32):48453-48464, doi: 10.1007/s11356-021-18284-7.
  • Lim, H.S. Fraser, A. Knights, A.M. (2020) Spatial arrangement of biogenic reefs alters boundary layer characteristics to increase risk of microplastic bioaccumulation., Environmental Research Letters, 15, doi: 10.1088/1748-9326/ab83ae.
  • Liubartseva, S. Coppini, G. Lecci, R. Creti, S. (2016) Regional approach to modeling the transport of floating plastic debris in the Adriatic Sea, Marine Pollution Bulletin, 103, 115e127, doi: 10.1016/j.marpolbul.2015.12.031.
  • Mansui, J. Molcard, A. Ourmieres, Y. (2015) Modelling the transport and accumulation of floating marine debris in the Mediterranean basin, Marine Pollution Bulletin, 91, 249e257,doi: 10.1016/j.marpolbul.2014.11.037.
  • Martinez, E. Maamaatuaiahutapu, K. Taillandier, V. (2009) Floating marine debris surface drift: convergence and accumulation toward the South Pacific subtropical gyre, Marine Pollution Bulletin, 58, 1347e1355, doi: 10.1016/j.marpolbul.2009.04.022.
  • Maximenko, N. Hafner, J. Niiler, P. (2012) Pathways of marine debris derived from trajectories of Lagrangian drifters, Marine Pollution Bulletin, 65, 51e62, doi: 10.1016/j.marpolbul.2011.04.016.
  • Mountford, A.S., Morales Maqueda, M.A. (2019) Eulerian modeling of the threedimensional distribution of seven popular microplastic types in the global ocean, J. Geophys. Res. Oceans, 124, 8558–8573, doi: 10.1029/2019JC015050.
  • Mountford, A.S., Morales Maqueda, M.A. (2021) Modeling the accumulation and transport of microplastics by sea ice, J. Geophys. Res. Oceans, 126 doi: 10.1029/2020JC016826.
  • Nadaoka, K. Kondoh, T. (1982) Laboratory measurements of velocity field structure in the surf zone by LDV, Coast. Eng. Jpn. 25, 125–145, https://doi.org/10.1016/0378-3839(90)90001-D.
  • Neumann, D. Callies, U. Matthies, M. (2014) Marine litter ensemble transport simulations in the southern North Sea, Marine Pollution Bulletin, 86, 219e228, doi: 10.1016/j.marpolbul.2014.07.016.
  • Nor, N.H.M. Obbard, J.P. (2014) Microplastics in Singapore's coastal mangrove ecosystems, Marine Pollution Bulletin, 79, 278e283, doi: 10.1016/j.marpolbul.2013.11.025.
  • Núnez, P., Romano, A., García-Alba, J., Besio, G., Medina, R. (2023) Wave-induced crossshore distribution of different densities, shapes, and sizes of plastic debris in coastal environments: a laboratory experiment, Marine Pollution Bulletin, 187, 114561, doi: 10.1016/j.marpolbul.2022.114561.
  • O’Brien, S., Rauert, C., Ribeiro, F., Okoffo, E. D., Burrows, S. D., O’Brien, J. W., Wang, X., Wright, S. L., ve Thomas, K. V. (2023). There’s something in the air: A review of sources, prevalence and behaviour of microplastics in the atmosphere. Science of The Total Environment, 874, 162193, doi: 10.1016/j.scitotenv.2023.162193.
  • Peeken, I. Primpke, S. Beyer, B., Gütermann, J., Katlein, C. Krumpen, T. Bergmann, M., Hehemann, L. & Gerdts, G. (2018) Arctic sea ice is an important temporal sink and means of transport for microplastic. Nature Comm. 9, article no. 1505.
  • Potemra, J.T. (2012) Numerical modeling with application to tracking marine debris, Marine Pollution Bulletin, 65, 42e50, https://doi.org/10.1016/j.marpolbul.2011.06.026.
  • Rauscher, H. Sokull-Kluttgen, B. Stamm, H. (2013) The European Commission’s recommendation on the definition of nanomaterial makes an impact, Nanotoxicology, 7, 1195–1197, doi: 10.3109/17435390.2012.724724.
  • Schmidt, C. Krauth, T. and Wagner, S. (2017) Export of plastic debris by rivers into the sea. Environ. Sci. Technol., 51: 12246–12253, doi: 10.1021/acs.est.7b02368.
  • Stokes, G. G. (1847) On the theory of oscillatory waves, Trans. Camb. Philos. Soc. 8, 441–455.
  • Yang H, Chen G, Wang J. (2021) Microplastics in the marine environment: sources, fates, ımpacts and microbial degradation,Toxics, 9 (2):41, https://doi.org/10.3390/toxics9020041.
  • Özkor, B., (2022) Kızılırmak Nehri sularında mikroplastik kirliliğinin araştırılması, Nevşehir Haci Bektaş Veli Üniversitesi Fen Bilimleri Enstitüsü, Yüksek Lisans Tezi.
  • Thompson, R.C. Olsen, Y. Mitchell, R.P., Davis, A. Rowland, S.J. John, A.W.G. McGonigle, D. Russell, A.E. (2004) Lost at sea: where is all the plastic? Science, 304, 838.
  • Thompson, R. Moore, C. Andrady, A. Gregory, M. Takada, H. Weisberg, S. (2005) New directions in plastic debris. Science, 310, 1117, doi: 10.1126/science.310.5751.1117b
  • Thiel, M. Gutow, L. (2005) The ecology of rafting in the marine environment. I. The floating substrata, Oceanogr. Mar. Biol. 42, 181e264, doi:10.1201/9780203507810.ch6.
  • Van Sebille, E., Wilcox, C., Lebreton, L., Maximenko, N., Hardesty, B.D., Van Franeker, J. A., Eriksen, M., Siegel, D., Galgani, F., Law, K.L. (2015) A global inventory of small floating plastic debris,Environ. Res. Lett., 10 doi:10.1088/1748-9326/10/12/124006.
  • Yang H. Chen G. Wang J. (2021) Microplastics in the Marine Environment: Sources, Fates, Impacts and Microbial Degradation, Toxics, 9(2):41, https://doi.org/10.3390/toxics9020041.
  • Weinstein, J.E. Crocker, B.K. Gray, A.D. (2016) From macroplastic to microplastic: degradation of high-density polyethylene, polypropylene, and polystyrene in a salt marsh habitat, Environ. Toxicol. Chem. 35, doi: 10.1002/etc.3432
  • Wieczorek, A.M. Morrison, L., Croot, P.L. Allcock, A.L. MacLoughlin, E. Savard, O. Brownlow, H. & Doyle, T.K. (2018) Frequency of microplastics in mesopelagic fishes from the Northwest Atlantic. Front. Marine Science 5, art. no. 39, https://doi.org/10.3389/fmars.2018.00039.
Toplam 76 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Çevre Mühendisliği (Diğer), İnşaat Mühendisliği (Diğer)
Bölüm Derleme Makaleler
Yazarlar

Remziye İlayda Tan Kesgin 0000-0001-9135-1698

Erken Görünüm Tarihi 20 Aralık 2024
Yayımlanma Tarihi 24 Aralık 2024
Gönderilme Tarihi 24 Nisan 2024
Kabul Tarihi 3 Kasım 2024
Yayımlandığı Sayı Yıl 2024

Kaynak Göster

APA Tan Kesgin, R. İ. (2024). MİKROPLASTİKLERİN DALGA VE AKINTI ETKİSİNDE DAVRANIŞININ İNCELENMESİ. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi, 29(3), 969-988. https://doi.org/10.17482/uumfd.1472938
AMA Tan Kesgin Rİ. MİKROPLASTİKLERİN DALGA VE AKINTI ETKİSİNDE DAVRANIŞININ İNCELENMESİ. UUJFE. Aralık 2024;29(3):969-988. doi:10.17482/uumfd.1472938
Chicago Tan Kesgin, Remziye İlayda. “MİKROPLASTİKLERİN DALGA VE AKINTI ETKİSİNDE DAVRANIŞININ İNCELENMESİ”. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi 29, sy. 3 (Aralık 2024): 969-88. https://doi.org/10.17482/uumfd.1472938.
EndNote Tan Kesgin Rİ (01 Aralık 2024) MİKROPLASTİKLERİN DALGA VE AKINTI ETKİSİNDE DAVRANIŞININ İNCELENMESİ. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi 29 3 969–988.
IEEE R. İ. Tan Kesgin, “MİKROPLASTİKLERİN DALGA VE AKINTI ETKİSİNDE DAVRANIŞININ İNCELENMESİ”, UUJFE, c. 29, sy. 3, ss. 969–988, 2024, doi: 10.17482/uumfd.1472938.
ISNAD Tan Kesgin, Remziye İlayda. “MİKROPLASTİKLERİN DALGA VE AKINTI ETKİSİNDE DAVRANIŞININ İNCELENMESİ”. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi 29/3 (Aralık 2024), 969-988. https://doi.org/10.17482/uumfd.1472938.
JAMA Tan Kesgin Rİ. MİKROPLASTİKLERİN DALGA VE AKINTI ETKİSİNDE DAVRANIŞININ İNCELENMESİ. UUJFE. 2024;29:969–988.
MLA Tan Kesgin, Remziye İlayda. “MİKROPLASTİKLERİN DALGA VE AKINTI ETKİSİNDE DAVRANIŞININ İNCELENMESİ”. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi, c. 29, sy. 3, 2024, ss. 969-88, doi:10.17482/uumfd.1472938.
Vancouver Tan Kesgin Rİ. MİKROPLASTİKLERİN DALGA VE AKINTI ETKİSİNDE DAVRANIŞININ İNCELENMESİ. UUJFE. 2024;29(3):969-88.

DUYURU:

30.03.2021- Nisan 2021 (26/1) sayımızdan itibaren TR-Dizin yeni kuralları gereği, dergimizde basılacak makalelerde, ilk gönderim aşamasında Telif Hakkı Formu yanısıra, Çıkar Çatışması Bildirim Formu ve Yazar Katkısı Bildirim Formu da tüm yazarlarca imzalanarak gönderilmelidir. Yayınlanacak makalelerde de makale metni içinde "Çıkar Çatışması" ve "Yazar Katkısı" bölümleri yer alacaktır. İlk gönderim aşamasında doldurulması gereken yeni formlara "Yazım Kuralları" ve "Makale Gönderim Süreci" sayfalarımızdan ulaşılabilir. (Değerlendirme süreci bu tarihten önce tamamlanıp basımı bekleyen makalelerin yanısıra değerlendirme süreci devam eden makaleler için, yazarlar tarafından ilgili formlar doldurularak sisteme yüklenmelidir).  Makale şablonları da, bu değişiklik doğrultusunda güncellenmiştir. Tüm yazarlarımıza önemle duyurulur.

Bursa Uludağ Üniversitesi, Mühendislik Fakültesi Dekanlığı, Görükle Kampüsü, Nilüfer, 16059 Bursa. Tel: (224) 294 1907, Faks: (224) 294 1903, e-posta: mmfd@uludag.edu.tr