Araştırma Makalesi
BibTex RIS Kaynak Göster

Jeofizik Yöntemler İle Kütle Hareketi Modellemesi: Karapürçek, Sakarya Örneği

Yıl 2024, , 567 - 582, 30.08.2024
https://doi.org/10.17482/uumfd.1490775

Öz

Bu çalışma, sismisitesi yüksek, aynı zamanda jeomorfolojik yapısı ve yüksek yağış rejimi ile heyelan probleminin sıklıkla gündeme geldiği bölgelerden biri olan Sakarya ilinin Karapürçek ilçesinde meydana gelmiş bir kütle hareketinin bütünleşik jeofizik yöntemler ile modellenmesini amaçlamıştır. Bu amaç doğrultusunda heyelan yüzeyinde farklı fiziksel özelliklere duyarlı iki boyutlu (2B) elektik rezistivite tomografisi (ERT), aktif yüzey dalgaları analizi (MASW) ve mikrotremör (HVSR) yöntemleri uygulanmıştır. Jeofizik kesitler ile heyelan içyapısının gerçeğe daha yakın modellenebilmesi için jeolojik zemin sondajlarına da başvurulmuştur. Gerçekleştirilen bütünleşik çalışmalarda, yüksek özdirence ve kayma dalgası hızına (Vs) sahip heterojen yapıda kırıklı-çatlaklı arkozik kumtaşı malzemesinin alışagelmiş kütle hareketi modellerinin aksine düşük özdirence ve Vs hızına sahip kiltaşı üzerinde hareket ettiği belirlenmiştir. Bu karakterizasyon mikrotremörden elde edilen doruk genlik frekans değerlerinin düşük frekanslara doğru hareketi ile de desteklenmiştir. Ayrıca alt kotlara doğru yeni kayma düzlemleri ile gerçekleşen ilerleyişin peneplen vadi sırtında bir rotasyona uğradığı ve farklı yönde bir kayma düzlemine evrildiği tespit edilmiştir. Elde edilen bu sonuçlar çalışma alanındaki kütle hareketini tanımlayan basitleştirilmiş bir şematik diyagram üzerinde de verilmiştir. Son olarak heyelan karakterizasyonu kapsamında gerçekleştirilen bu gibi çalışmaların kütle hareketini önlemedeki rolü ve farklı disiplinlere sağladığı katkı ortaya konmuştur.

Etik Beyan

Yazarlar, bilinen herhangi bir çıkar çatışması veya herhangi bir kurum/kuruluş ya da kişi ile ortak çıkar bulunmadığını onaylamaktadırlar.

Kaynakça

  • Akkaya, İ. (2020) Availability of seismic vulnerability index (Kg) in the assessment of building damage in Van, Eastern Turkey. Earthquake Engineering and Engineering Vibration, 19(1), 189-204. doi.org/10.1007/s11803-020-0556-z
  • Alemdağ, H., Köroğlu, F., Aydın, Z. Ö., Şeren, A., Babacan, A. E. ve Ersoy, A. F. (2024) Deciphering of karst geomorphology and sinkhole (doline) structures using multiple geophysical and geological methods (Trabzon, NE Türkiye). Bulletin of Engineering Geology and the Environment, 83(7), 286. doi.org/10.1007/s10064-024-03779-7
  • Alonso-Pandavenes, O., Bernal, D., Torrijo, F. J. Ve Garzón-Roca, J. (2023) A comparative analysis for defining the sliding surface and internal structure in an active landslide using the HVSR passive geophysical technique in Pujilí (Cotopaxi), ecuador. Land, 12(5), 961. doi.org/10.3390/land12050961
  • Barka, A., Akyuz, H. S., Altunel, E. R. H. A. N., Sunal, G., Cakir, Z., Dikbas, A. Y. N. U. R., ... ve Page, W. (2002) The surface rupture and slip distribution of the 17 August 1999 Izmit earthquake (M 7.4), North Anatolian fault. Bulletin of the Seismological Society of America, 92(1), 43-60. doi.org/10.1785/0120000841
  • Bichler, A., Bobrowsky, P., Best, M., Douma, M., Hunter, J., Calvert, T. ve Burns, R. (2004) Three-dimensional mapping of a landslide using a multi-geophysical approach: the Quesnel Forks landslide. Landslides, 1, 29-40. doi.org/10.1007/s10346-003-0008-
  • Boyd, J., Chambers, J., Wilkinson, P., Peppa, M., Watlet, A., Kirkham, M., ... ve Binley, A. (2021) A linked geomorphological and geophysical modelling methodology applied to an active landslide. Landslides, 18(8), 2689-2704. doi.org/10.1007/s10346-021-01666-w
  • Bunn, M., Leshchinsky, B. ve Olsen, M.J. (2020) Estimates of three-dimensional rupture surface geometry of deep-seated landslides using landslide inventories and high-resolution topographic data. Geomorphology, 367, 107332. doi.org/10.1016/j.geomorph.2020.107332
  • Calamita, G., Gallipoli, M. R., Gueguen, E., Sinisi, R., Summa, V., Vignola, L., ... ve Perrone, A. (2023) Integrated geophysical and geological surveys reveal new details of the large Montescaglioso (southern Italy) landslide of December 2013. Engineering Geology, 313, 106984. doi.org/10.1016/j.enggeo.2023.106984
  • Cihangir, M. E. (2022) Kayma tipi heyelanların farklı duyarlılık modellerinde kombinasyonu: Sakarya Havzası Yukarı Çığırı örneği. Türk Coğrafya Dergisi, (80), 21-38
  • Dahlin, T. ve Zhou, B. (2004) A numerical comparison of 2D resistivity imaging with 10 electrode arrays. Geophysical prospecting, 52(5), 379-398. doi.org/10.1111/j.1365- 2478.2004.00423.x
  • Emre, Ö., Duman, T. Y., Özalp, S., Şaroğlu, F., Olgun, Ş., Elmacı, H. ve Çan, T. (2018) Active fault database of Turkey. Bulletin of Earthquake Engineering, 16(8), 3229-3275
  • Frattini, P., Crosta, G. B., Rossini, M. ve Allievi, J. (2018) Activity and kinematic behaviour of deep-seated landslides from PS-InSAR displacement rate measurements. Landslides, 15, 1053-1070. doi.org/10.1007/s10346-017-0940-6
  • Gelişli, K. ve Babacan, A. E. (2021). Yeraltı Suyu Aramalarında Jeofizik Özdirenç Uygulamaları. Mühendislik Bilimleri ve Tasarım Dergisi, 9(2), 535-543
  • Imani, P., Abd EL-Raouf, A. ve Tian, G. (2021) Landslide investigation using Seismic Refraction Tomography method: a review. Annals of Geophysics, 64(6), SE657-SE657. doi.org/10.4401/ag-8633
  • Imposa, S., Grassi, S., Fazio, F., Rannisi, G. Ve Cino, P. (2017) Geophysical surveys to study a landslide body (north-eastern Sicily). Natural Hazards, 86, 327-343. doi.org/10.1007/s11069-016-2544-1
  • Kanbur, M. Z., Silahtar, A. ve Aktan, G. (2020) Local site effects evaluation by surface wave and H/V survey methods in Senirkent (Isparta) region, southwestern Turkey. Earthquake Engineering and Engineering Vibration, 19, 321-333. doi.org/10.1007/s11803-020-0564-z
  • Karaaslan, H. ve Karavul, C. (2018) Usefulness of electrical and magnetic methods in finding buried structure of the Alabanda Ancient Cistern in Çine Town, Aydın City, Turkey. Arabian Journal of Geosciences, 11, 1-11. doi.org/10.1007/s12517-018-3524-4
  • Karaaslan, H., Silahtar, A. ve Ramazanoglu, S. (2023) Characterization of an active landslide structure with integrated electrical resistivity tomography and multi‐channel analysis of surface waves methods in Değirmendere district, Sakarya (Türkiye). Earth Surface Processes and Landforms, 48(15), 3170-3180. doi.org/10.1002/esp.5689
  • Karaaslan, H. ve Silahtar, A. (2024) Elektrik Rezistivite Tomografi (ERT) ve yüzey dalgası analiz yöntemleriyle aktif bir heyelan alanının incelenmesi, Sakarya, Hendek Investigation of an active landslide area with the Electrical Resistivity Tomography (ERT) and surfacewave analysis methods in Hendek, Sakarya. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi, (baskıda)
  • Karslı, H., Babacan, A. E. ve Akın, Ö. (2024) Subsurface characterization by active and passive source geophysical methods after the 06 February 2023 earthquakes in Turkey. Natural Hazards, 120(6), 5257-5286. doi.org/10.1007/s11069-024-06422-6
  • Konno, K. ve Ohmachi, T. (1998) Ground-motion characteristics estimated from spectral ratio between horizontal and vertical components of microtremor. Bulletin of the Seismological Society of America, 88(1), 228-241
  • KRDAE, Kandilli Rasathanesi ve Deprem Araştırma Enstitüsü. Erişim Adresi: http://www.koeri.boun.edu.tr/sismo/zeqdb/ (Erişim Tarihi: 20.05.2024)
  • Loke, M. H. ve Barker, R. D. (1996) Rapid least‐squares inversion of apparent resistivity pseudosections by a quasi‐Newton method1. Geophysical prospecting, 44(1), 131-152. doi.org/10.1111/j.1365-2478.1996.tb00142.x
  • Loke, M. H. (2004). Tutorial: 2-D and 3-D electrical imaging surveys
  • Marciniak, A., Kowalczyk, S., Gontar, T., Owoc, B., Nawrot, A., Luks, B., ... ve Majdański, M. (2021) Integrated geophysical imaging of a mountain landslide–a case study from the Outer Carpathians, Poland. Journal of Applied Geophysics, 191, 104364. doi.org/10.1016/j.jappgeo.2021.104364
  • Meade, B. J., Hager, B. H., McClusky, S. C., Reilinger, R. E., Ergintav, S., Lenk, O., ... ve Ozener, H. (2002) Estimates of seismic potential in the Marmara Sea region from block models of secular deformation constrained by Global Positioning System measurements. Bulletin of the Seismological Society of America, 92(1), 208-215. doi.org/10.1785/0120000837
  • Mele, M., Bersezio, R., Bini, A., Bruno, M., Giudici, M. ve Tantardini, D. (2021) Subsurface profiling of buried valleys in central alps (northern Italy) using HVSR singlestation passive seismic. Journal of Applied Geophysics, 193, 104407. doi.org/10.1016/j.jappgeo.2021.104407
  • Meteoroloji Genel Müdürlüğü. (2024). 2023 Yılı İklim Değerlendirmesi. T.C. Çevre, Şehircilik ve İklim Değişikliği Bakanlığı, Meteoroloji Genel Müdürlüğü
  • Molnar, S., Cassidy, J. F., Castellaro, S., Cornou, C., Crow, H., Hunter, J. A., Matsushima, S., Sánchez-Sesma F. J., Yong, A. (2018) Application of microtremor horizontal-to-vertical spectral ratio (MHVSR) analysis for site characterization: State of the art. Surveys in Geophysics, 39, 613-631. doi.org/10.1007/s10712-018-9464-4
  • Mreyen, A. S., Cauchie, L., Micu, M., Onaca, A. ve Havenith, H. B. (2021) Multiple geophysical investigations to characterize massive slope failure deposits: application to the Balta rockslide, Carpathians. Geophysical Journal International, 225(2), 1032-1047. doi.org/10.1093/gji/ggab028
  • Nakamura, Y. (1989) A method for dynamic characteristics estimation of subsurface using microtremor on the ground surface. Railway Technical Research Institute, Quarterly Reports, 30(1)
  • Olafsdottir, E. A., Erlingsson, S. ve Bessason, B. (2018) Tool for analysis of multichannel analysis of surface waves (MASW) field data and evaluation of shear wave velocity profiles of soils. Canadian Geotechnical Journal, 55(2), 217-233. doi.org/10.1139/cgj-2016-0302
  • Park, C. B., Miller, R. D. ve Xia, J. (1999) Multichannel analysis of surface waves. Geophysics, 64(3), 800-808. doi.org/10.1190/1.1444590
  • Park, C. B., Miller, R. D. ve Miura, H. (2002) Optimum field parameters of an MASW survey. Japanese Society of Exploration Geophysics Extended Abstracts, 36
  • Rezaei, S., Shooshpasha, I. Ve Rezaei, H. (2020) Evaluation of ground dynamic characteristics using ambient noise measurements in a landslide area. Bulletin of Engineering Geology and the Environment, 79(4), 1749-1763. doi.org/10.1007/s10064-019- 01637-5
  • Sarıaslan, M. M., Yurdakul, M. E., Osmançelebioğlu, R., Basa, F., Erkal, T., Keçer, M., ... ve Aktimur, H. T. (1998) Ankara ilinin çevre jeolojisi ve doğal kaynakları. MTA Rapor, (10069)
  • Senkaya, M., Babacan, A. E., Karslı, H. ve San, B. T. (2022) Origins of diverse present displacements in a paleo-landslide area (Isiklar, Trabzon, northeast Turkey). Environmental Earth Sciences, 81(8), 245. doi.org/10.1007/s12665-022-10372-
  • Silahtar, A. (2023) Evaluation of local soil conditions with 1D nonlinear site response analysis of Arifiye (Sakarya District), Turkey. Natural Hazards, 116(1), 727-751. doi.org/10.1007/s11069-022-05695-z
  • Skempton, A. W. ve Hutchinson, J. (1969) Stability of natural slopes and embankmentfoundations. In Soil Mech & Fdn Eng Conf Proc/Mexico
  • Song, C., Yu, C., Li, Z., Pazzi, V., Del Soldato, M., Cruz, A. ve Utili, S. (2021) Landslide geometry and activity in Villa de la Independencia (Bolivia) revealed by InSAR and seismic noise measurements. Landslides, 18(8), 2721-2737. doi.org/10.1007/s10346-021-01659-9
  • Uyanık, O., Çatlıoğlu B. (2014) Elektrik özdirenç ve sismik kırılma yöntemlerinden heyelan geometrisinin belirlenmesi. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 18(3), 22-29
  • WP/WLI, (UNESCO Working Party on World Landslide Inventory) (1993) A suggested method for describing the activity of a landslide. Bulletin of the International Association of Engineering Geology, 47: 53-57
  • Wróbel, M., Stan-Kłeczek, I., Marciniak, A., Majdański, M., Kowalczyk, S., Nawrot, A. ve Cader, J. (2022) Integrated geophysical imaging and remote sensing for enhancing geological interpretation of landslides with uncertainty estimation—A case study from Cisiec, Poland. Remote Sensing, 15(1), 238. doi.org/10.3390/rs15010238
  • Zhang, G., Tu, F., Tang, Y., Chen, X., Xie, K. ve Dai, S. (2023) Application of geophysical prospecting methods ERT and MASW in the landslide of Daofu County, China. Frontiers in Earth Science, 10, 1054394. doi.org/10.3389/feart.2022.1054394
  • Zhang, Y., Meng, X. M., Dijkstra, T. A., Jordan, C. J., Chen, G., Zeng, R. Q. ve Novellino, A. (2020) Forecasting the magnitude of potential landslides based on InSAR techniques. Remote Sensing of Environment, 241, 111738. doi.org/10.1016/j.rse.2020.111738

Mass Movement Modeling with Geophysical Methods: Karapürçek, Sakarya Example

Yıl 2024, , 567 - 582, 30.08.2024
https://doi.org/10.17482/uumfd.1490775

Öz

This study aimed to model a mass movement using integrated geophysical methods that occurred in the Karapürçek district of Sakarya province, which is one of the regions with high seismicity and where landslide problems are frequently brought up due to its geomorphological structure and high rainfall regime. For this purpose, 2D electrical resistivity tomography (ERT), active surface waves analysis (MASW), and microtremor (HVSR) methods, which are sensitive to different physical properties, were applied in the landslide area. Geological boreholes have also been employed to better model the landslide's internal structure through geophysical sections. The integrated studies revealed a landslide model, that the heterogeneous fractured-cracked arkosic sandstone material with high resistivity and shear wave velocity (Vs) moved on claystone with low resistivity and Vs velocity, contrary to conventional mass movement models. This characterization was also supported by the shift of the peak amplitude frequency values obtained from the microtremor towards lower frequencies. In addition, it has been determined that the mass movement towards the lower elevations with new slip surfaces has undergone a rotation on the peneplain ridge and evolved into a slip surface in a different direction. These results are also given on a simplified schematic diagram describing the mass movement in the study area. Finally, the role of such studies within the scope of landslide characterization in preventing mass movements and their contribution to different disciplines has been declared.

Kaynakça

  • Akkaya, İ. (2020) Availability of seismic vulnerability index (Kg) in the assessment of building damage in Van, Eastern Turkey. Earthquake Engineering and Engineering Vibration, 19(1), 189-204. doi.org/10.1007/s11803-020-0556-z
  • Alemdağ, H., Köroğlu, F., Aydın, Z. Ö., Şeren, A., Babacan, A. E. ve Ersoy, A. F. (2024) Deciphering of karst geomorphology and sinkhole (doline) structures using multiple geophysical and geological methods (Trabzon, NE Türkiye). Bulletin of Engineering Geology and the Environment, 83(7), 286. doi.org/10.1007/s10064-024-03779-7
  • Alonso-Pandavenes, O., Bernal, D., Torrijo, F. J. Ve Garzón-Roca, J. (2023) A comparative analysis for defining the sliding surface and internal structure in an active landslide using the HVSR passive geophysical technique in Pujilí (Cotopaxi), ecuador. Land, 12(5), 961. doi.org/10.3390/land12050961
  • Barka, A., Akyuz, H. S., Altunel, E. R. H. A. N., Sunal, G., Cakir, Z., Dikbas, A. Y. N. U. R., ... ve Page, W. (2002) The surface rupture and slip distribution of the 17 August 1999 Izmit earthquake (M 7.4), North Anatolian fault. Bulletin of the Seismological Society of America, 92(1), 43-60. doi.org/10.1785/0120000841
  • Bichler, A., Bobrowsky, P., Best, M., Douma, M., Hunter, J., Calvert, T. ve Burns, R. (2004) Three-dimensional mapping of a landslide using a multi-geophysical approach: the Quesnel Forks landslide. Landslides, 1, 29-40. doi.org/10.1007/s10346-003-0008-
  • Boyd, J., Chambers, J., Wilkinson, P., Peppa, M., Watlet, A., Kirkham, M., ... ve Binley, A. (2021) A linked geomorphological and geophysical modelling methodology applied to an active landslide. Landslides, 18(8), 2689-2704. doi.org/10.1007/s10346-021-01666-w
  • Bunn, M., Leshchinsky, B. ve Olsen, M.J. (2020) Estimates of three-dimensional rupture surface geometry of deep-seated landslides using landslide inventories and high-resolution topographic data. Geomorphology, 367, 107332. doi.org/10.1016/j.geomorph.2020.107332
  • Calamita, G., Gallipoli, M. R., Gueguen, E., Sinisi, R., Summa, V., Vignola, L., ... ve Perrone, A. (2023) Integrated geophysical and geological surveys reveal new details of the large Montescaglioso (southern Italy) landslide of December 2013. Engineering Geology, 313, 106984. doi.org/10.1016/j.enggeo.2023.106984
  • Cihangir, M. E. (2022) Kayma tipi heyelanların farklı duyarlılık modellerinde kombinasyonu: Sakarya Havzası Yukarı Çığırı örneği. Türk Coğrafya Dergisi, (80), 21-38
  • Dahlin, T. ve Zhou, B. (2004) A numerical comparison of 2D resistivity imaging with 10 electrode arrays. Geophysical prospecting, 52(5), 379-398. doi.org/10.1111/j.1365- 2478.2004.00423.x
  • Emre, Ö., Duman, T. Y., Özalp, S., Şaroğlu, F., Olgun, Ş., Elmacı, H. ve Çan, T. (2018) Active fault database of Turkey. Bulletin of Earthquake Engineering, 16(8), 3229-3275
  • Frattini, P., Crosta, G. B., Rossini, M. ve Allievi, J. (2018) Activity and kinematic behaviour of deep-seated landslides from PS-InSAR displacement rate measurements. Landslides, 15, 1053-1070. doi.org/10.1007/s10346-017-0940-6
  • Gelişli, K. ve Babacan, A. E. (2021). Yeraltı Suyu Aramalarında Jeofizik Özdirenç Uygulamaları. Mühendislik Bilimleri ve Tasarım Dergisi, 9(2), 535-543
  • Imani, P., Abd EL-Raouf, A. ve Tian, G. (2021) Landslide investigation using Seismic Refraction Tomography method: a review. Annals of Geophysics, 64(6), SE657-SE657. doi.org/10.4401/ag-8633
  • Imposa, S., Grassi, S., Fazio, F., Rannisi, G. Ve Cino, P. (2017) Geophysical surveys to study a landslide body (north-eastern Sicily). Natural Hazards, 86, 327-343. doi.org/10.1007/s11069-016-2544-1
  • Kanbur, M. Z., Silahtar, A. ve Aktan, G. (2020) Local site effects evaluation by surface wave and H/V survey methods in Senirkent (Isparta) region, southwestern Turkey. Earthquake Engineering and Engineering Vibration, 19, 321-333. doi.org/10.1007/s11803-020-0564-z
  • Karaaslan, H. ve Karavul, C. (2018) Usefulness of electrical and magnetic methods in finding buried structure of the Alabanda Ancient Cistern in Çine Town, Aydın City, Turkey. Arabian Journal of Geosciences, 11, 1-11. doi.org/10.1007/s12517-018-3524-4
  • Karaaslan, H., Silahtar, A. ve Ramazanoglu, S. (2023) Characterization of an active landslide structure with integrated electrical resistivity tomography and multi‐channel analysis of surface waves methods in Değirmendere district, Sakarya (Türkiye). Earth Surface Processes and Landforms, 48(15), 3170-3180. doi.org/10.1002/esp.5689
  • Karaaslan, H. ve Silahtar, A. (2024) Elektrik Rezistivite Tomografi (ERT) ve yüzey dalgası analiz yöntemleriyle aktif bir heyelan alanının incelenmesi, Sakarya, Hendek Investigation of an active landslide area with the Electrical Resistivity Tomography (ERT) and surfacewave analysis methods in Hendek, Sakarya. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi, (baskıda)
  • Karslı, H., Babacan, A. E. ve Akın, Ö. (2024) Subsurface characterization by active and passive source geophysical methods after the 06 February 2023 earthquakes in Turkey. Natural Hazards, 120(6), 5257-5286. doi.org/10.1007/s11069-024-06422-6
  • Konno, K. ve Ohmachi, T. (1998) Ground-motion characteristics estimated from spectral ratio between horizontal and vertical components of microtremor. Bulletin of the Seismological Society of America, 88(1), 228-241
  • KRDAE, Kandilli Rasathanesi ve Deprem Araştırma Enstitüsü. Erişim Adresi: http://www.koeri.boun.edu.tr/sismo/zeqdb/ (Erişim Tarihi: 20.05.2024)
  • Loke, M. H. ve Barker, R. D. (1996) Rapid least‐squares inversion of apparent resistivity pseudosections by a quasi‐Newton method1. Geophysical prospecting, 44(1), 131-152. doi.org/10.1111/j.1365-2478.1996.tb00142.x
  • Loke, M. H. (2004). Tutorial: 2-D and 3-D electrical imaging surveys
  • Marciniak, A., Kowalczyk, S., Gontar, T., Owoc, B., Nawrot, A., Luks, B., ... ve Majdański, M. (2021) Integrated geophysical imaging of a mountain landslide–a case study from the Outer Carpathians, Poland. Journal of Applied Geophysics, 191, 104364. doi.org/10.1016/j.jappgeo.2021.104364
  • Meade, B. J., Hager, B. H., McClusky, S. C., Reilinger, R. E., Ergintav, S., Lenk, O., ... ve Ozener, H. (2002) Estimates of seismic potential in the Marmara Sea region from block models of secular deformation constrained by Global Positioning System measurements. Bulletin of the Seismological Society of America, 92(1), 208-215. doi.org/10.1785/0120000837
  • Mele, M., Bersezio, R., Bini, A., Bruno, M., Giudici, M. ve Tantardini, D. (2021) Subsurface profiling of buried valleys in central alps (northern Italy) using HVSR singlestation passive seismic. Journal of Applied Geophysics, 193, 104407. doi.org/10.1016/j.jappgeo.2021.104407
  • Meteoroloji Genel Müdürlüğü. (2024). 2023 Yılı İklim Değerlendirmesi. T.C. Çevre, Şehircilik ve İklim Değişikliği Bakanlığı, Meteoroloji Genel Müdürlüğü
  • Molnar, S., Cassidy, J. F., Castellaro, S., Cornou, C., Crow, H., Hunter, J. A., Matsushima, S., Sánchez-Sesma F. J., Yong, A. (2018) Application of microtremor horizontal-to-vertical spectral ratio (MHVSR) analysis for site characterization: State of the art. Surveys in Geophysics, 39, 613-631. doi.org/10.1007/s10712-018-9464-4
  • Mreyen, A. S., Cauchie, L., Micu, M., Onaca, A. ve Havenith, H. B. (2021) Multiple geophysical investigations to characterize massive slope failure deposits: application to the Balta rockslide, Carpathians. Geophysical Journal International, 225(2), 1032-1047. doi.org/10.1093/gji/ggab028
  • Nakamura, Y. (1989) A method for dynamic characteristics estimation of subsurface using microtremor on the ground surface. Railway Technical Research Institute, Quarterly Reports, 30(1)
  • Olafsdottir, E. A., Erlingsson, S. ve Bessason, B. (2018) Tool for analysis of multichannel analysis of surface waves (MASW) field data and evaluation of shear wave velocity profiles of soils. Canadian Geotechnical Journal, 55(2), 217-233. doi.org/10.1139/cgj-2016-0302
  • Park, C. B., Miller, R. D. ve Xia, J. (1999) Multichannel analysis of surface waves. Geophysics, 64(3), 800-808. doi.org/10.1190/1.1444590
  • Park, C. B., Miller, R. D. ve Miura, H. (2002) Optimum field parameters of an MASW survey. Japanese Society of Exploration Geophysics Extended Abstracts, 36
  • Rezaei, S., Shooshpasha, I. Ve Rezaei, H. (2020) Evaluation of ground dynamic characteristics using ambient noise measurements in a landslide area. Bulletin of Engineering Geology and the Environment, 79(4), 1749-1763. doi.org/10.1007/s10064-019- 01637-5
  • Sarıaslan, M. M., Yurdakul, M. E., Osmançelebioğlu, R., Basa, F., Erkal, T., Keçer, M., ... ve Aktimur, H. T. (1998) Ankara ilinin çevre jeolojisi ve doğal kaynakları. MTA Rapor, (10069)
  • Senkaya, M., Babacan, A. E., Karslı, H. ve San, B. T. (2022) Origins of diverse present displacements in a paleo-landslide area (Isiklar, Trabzon, northeast Turkey). Environmental Earth Sciences, 81(8), 245. doi.org/10.1007/s12665-022-10372-
  • Silahtar, A. (2023) Evaluation of local soil conditions with 1D nonlinear site response analysis of Arifiye (Sakarya District), Turkey. Natural Hazards, 116(1), 727-751. doi.org/10.1007/s11069-022-05695-z
  • Skempton, A. W. ve Hutchinson, J. (1969) Stability of natural slopes and embankmentfoundations. In Soil Mech & Fdn Eng Conf Proc/Mexico
  • Song, C., Yu, C., Li, Z., Pazzi, V., Del Soldato, M., Cruz, A. ve Utili, S. (2021) Landslide geometry and activity in Villa de la Independencia (Bolivia) revealed by InSAR and seismic noise measurements. Landslides, 18(8), 2721-2737. doi.org/10.1007/s10346-021-01659-9
  • Uyanık, O., Çatlıoğlu B. (2014) Elektrik özdirenç ve sismik kırılma yöntemlerinden heyelan geometrisinin belirlenmesi. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 18(3), 22-29
  • WP/WLI, (UNESCO Working Party on World Landslide Inventory) (1993) A suggested method for describing the activity of a landslide. Bulletin of the International Association of Engineering Geology, 47: 53-57
  • Wróbel, M., Stan-Kłeczek, I., Marciniak, A., Majdański, M., Kowalczyk, S., Nawrot, A. ve Cader, J. (2022) Integrated geophysical imaging and remote sensing for enhancing geological interpretation of landslides with uncertainty estimation—A case study from Cisiec, Poland. Remote Sensing, 15(1), 238. doi.org/10.3390/rs15010238
  • Zhang, G., Tu, F., Tang, Y., Chen, X., Xie, K. ve Dai, S. (2023) Application of geophysical prospecting methods ERT and MASW in the landslide of Daofu County, China. Frontiers in Earth Science, 10, 1054394. doi.org/10.3389/feart.2022.1054394
  • Zhang, Y., Meng, X. M., Dijkstra, T. A., Jordan, C. J., Chen, G., Zeng, R. Q. ve Novellino, A. (2020) Forecasting the magnitude of potential landslides based on InSAR techniques. Remote Sensing of Environment, 241, 111738. doi.org/10.1016/j.rse.2020.111738
Toplam 45 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular İnşaat Mühendisliği (Diğer)
Bölüm Araştırma Makaleleri
Yazarlar

Ali Silahtar 0000-0002-7259-4560

Hasan Karaaslan Bu kişi benim 0000-0002-0718-8224

Erken Görünüm Tarihi 20 Ağustos 2024
Yayımlanma Tarihi 30 Ağustos 2024
Gönderilme Tarihi 27 Mayıs 2024
Kabul Tarihi 2 Ağustos 2024
Yayımlandığı Sayı Yıl 2024

Kaynak Göster

APA Silahtar, A., & Karaaslan, H. (2024). Jeofizik Yöntemler İle Kütle Hareketi Modellemesi: Karapürçek, Sakarya Örneği. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi, 29(2), 567-582. https://doi.org/10.17482/uumfd.1490775
AMA Silahtar A, Karaaslan H. Jeofizik Yöntemler İle Kütle Hareketi Modellemesi: Karapürçek, Sakarya Örneği. UUJFE. Ağustos 2024;29(2):567-582. doi:10.17482/uumfd.1490775
Chicago Silahtar, Ali, ve Hasan Karaaslan. “Jeofizik Yöntemler İle Kütle Hareketi Modellemesi: Karapürçek, Sakarya Örneği”. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi 29, sy. 2 (Ağustos 2024): 567-82. https://doi.org/10.17482/uumfd.1490775.
EndNote Silahtar A, Karaaslan H (01 Ağustos 2024) Jeofizik Yöntemler İle Kütle Hareketi Modellemesi: Karapürçek, Sakarya Örneği. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi 29 2 567–582.
IEEE A. Silahtar ve H. Karaaslan, “Jeofizik Yöntemler İle Kütle Hareketi Modellemesi: Karapürçek, Sakarya Örneği”, UUJFE, c. 29, sy. 2, ss. 567–582, 2024, doi: 10.17482/uumfd.1490775.
ISNAD Silahtar, Ali - Karaaslan, Hasan. “Jeofizik Yöntemler İle Kütle Hareketi Modellemesi: Karapürçek, Sakarya Örneği”. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi 29/2 (Ağustos 2024), 567-582. https://doi.org/10.17482/uumfd.1490775.
JAMA Silahtar A, Karaaslan H. Jeofizik Yöntemler İle Kütle Hareketi Modellemesi: Karapürçek, Sakarya Örneği. UUJFE. 2024;29:567–582.
MLA Silahtar, Ali ve Hasan Karaaslan. “Jeofizik Yöntemler İle Kütle Hareketi Modellemesi: Karapürçek, Sakarya Örneği”. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi, c. 29, sy. 2, 2024, ss. 567-82, doi:10.17482/uumfd.1490775.
Vancouver Silahtar A, Karaaslan H. Jeofizik Yöntemler İle Kütle Hareketi Modellemesi: Karapürçek, Sakarya Örneği. UUJFE. 2024;29(2):567-82.

DUYURU:

30.03.2021- Nisan 2021 (26/1) sayımızdan itibaren TR-Dizin yeni kuralları gereği, dergimizde basılacak makalelerde, ilk gönderim aşamasında Telif Hakkı Formu yanısıra, Çıkar Çatışması Bildirim Formu ve Yazar Katkısı Bildirim Formu da tüm yazarlarca imzalanarak gönderilmelidir. Yayınlanacak makalelerde de makale metni içinde "Çıkar Çatışması" ve "Yazar Katkısı" bölümleri yer alacaktır. İlk gönderim aşamasında doldurulması gereken yeni formlara "Yazım Kuralları" ve "Makale Gönderim Süreci" sayfalarımızdan ulaşılabilir. (Değerlendirme süreci bu tarihten önce tamamlanıp basımı bekleyen makalelerin yanısıra değerlendirme süreci devam eden makaleler için, yazarlar tarafından ilgili formlar doldurularak sisteme yüklenmelidir).  Makale şablonları da, bu değişiklik doğrultusunda güncellenmiştir. Tüm yazarlarımıza önemle duyurulur.

Bursa Uludağ Üniversitesi, Mühendislik Fakültesi Dekanlığı, Görükle Kampüsü, Nilüfer, 16059 Bursa. Tel: (224) 294 1907, Faks: (224) 294 1903, e-posta: mmfd@uludag.edu.tr