Araştırma Makalesi
BibTex RIS Kaynak Göster

5G mmDalga Cep Telefonu Uygulamaları için Geniş Bantlı Kapasitif Bağlaşımlı 1×8 Dizi Anten

Yıl 2025, Cilt: 30 Sayı: 3, 691 - 710, 19.12.2025
https://doi.org/10.17482/uumfd.1514008

Öz

Bu çalışmada, beşinci nesil (5G) milimetre dalga (mmDalga) mobil telefon uygulamaları için doğrusal polarize geniş bant kapasitif bağlaşımlı bir dizi anten önerilmiştir. İlk olarak dizi anten için geniş bant ve yüksek kazanca sahip birim anten tasarlanmıştır. Önerilen birim anten, besleme hattına kapasitif olarak bağlanmış bir çift dikdörtgen ışıma elemanı ve yarı eliptik ışıma elemanından oluşmaktadır. Antenin çalışma bant genişliğini ve kazancını artırmak için dikdörtgen ışıma elemanlarına kapasitif olarak bağlı iki yarı eliptik yapı eklenmiştir. Önerilen anten RTRogers5880 alttaş üzerinde modellenmiştir. Bu alttaşın kalınlığı 0.8 mm, dielektrik sabiti (εr) 2.2 ve kayıp tanjantı (δ) 0.0009’dur. Tüm tasarım ve benzetim adımları CST Microwave Studio kullanılarak gerçekleştirilmiştir. Benzetim sonuçları, birim antenin |S11|< -10 dB için 24.2 – 30.36 GHz arasında geniş bir frekans bant genişliğine sahip ve ilgili oransal bant genişliğinin (OBG) % 22.2 olduğunu göstermektedir. Birim anten, 7.15 dBi tepe kazancı ile 10 mm × 8 mm × 0.8 mm’lik bir profile sahiptir. Benzetim sonuçlarına göre, birim anten 5G mmDalga bantlarının n257, n258 ve n261 frekans bantlarını tamamını kapsamaktadır. Yüksek kazanç için, cep telefonu şasisine entegre edilmiş 60mm × 6.5mm × 0.8mm (5.5λ0 × 0.6λ0 × 0.07λ0) boyutlarına sahip 1×8 dizi anten tasarlanmıştır. λ0, 27.5 GHz’de serbest uzay dalga boyudur. Tasarlanan 1×8 dizi anten, |S11|< -10 dB için 24.7 – 30.1 GHz (OBG= %19.7) frekans bant genişliğine, 14.31 ile 15.46 dBi arasında boresight kazanca ve %88'in üzerinde ışıma verimliliğine sahiptir. Ayrıca, dizinin 1-boyutlu hüzme yönlendirme aralığı da incelenmiş ve yaklaşık ±30ο bulunmuştur. Portlar arası izolasyon çalışma bandı boyunca 16 dB'den daha iyidir. Önerilen dizi anten, geniş bant genişliği, düşük profili, hüzme yönledirme özelliği, orta seviyeli kazancı ve orta seviyeli izolasyonu nedeniyle 5G mmDalga mobil telefon uygulamaları için uygundur.

Kaynakça

  • Ali, M. M. M., Haraz, O., Alshebeili, S. and Sebak, A. -R. (2016). Broadband printed slot antenna for the fifth generation (5G) mobile and wireless communications. 2016 17th International Symposium on Antenna Technology and Applied Electromagnetics (ANTEM), Montreal, QC, Canada, 1-2.
  • Alreshaid, A. T., Hammi, O., Sharawi, M. S. and Sarabandi, K. (2015). A compact millimeter-wave slot antenna array for 5G standards. 2015 IEEE 4th Asia-Pacific Conference on Antennas and Propagation (APCAP), Bali, Indonesia, 84-85, doi: 10.1109/APCAP.2015.7374281.
  • Asci, Y. (2023). Broadband, high gain 2 × 2 subarray and 2 × 8 cavity-backed antenna arrays for 5G mmWave applications. Microwave Optical Technology Letters, 1-9. doi:10.1002/mop.33961
  • Ikram, M., Sharawi, M. S. and Shamim, A. (2017). A millimeter-wave connected antenna array for 5G applications. 2017 IEEE International Symposium on Antennas and Propagation & USNC/URSI National Radio Science Meeting, San Diego, CA, USA, 1449-1450.
  • Islam, S., Zada, M. and Yoo, H., (2022). Highly Compact Integrated Sub-6 GHz and Millimeter-Wave Band Antenna Array for 5G Smartphone Communications. IEEE Transactions on Antennas and Propagation, 70(12), 11629-11638.
  • Jilani, S. F. and Alomainy, A. (2017). Millimeter-wave conformal antenna array for 5G wireless applications. 2017 IEEE International Symposium on Antennas and Propagation & USNC/URSI National Radio Science Meeting, San Diego, CA, USA, 2017, pp. 1439-1440, doi: 10.1109/APUSNCURSINRSM.2017.8072762.
  • Khalily, M., Tafazolli, R., Xiao, P. and Kishk, A., (2018). Broadband mm-Wave Microstrip Array Antenna with Improved Radiation Characteristics for Different 5G Applications. IEEE Transactions on Antennas and Propagation, 66(9), 4641-4647.
  • Kurvinen, J., Kähkönen, H., Lehtovuori, A., Ala-Laurinaho, J. and Viikari, V. (2019). Co-Designed mm-Wave and LTE Handset Antennas. IEEE Transactions on Antennas and Propagation, 67(3), 1545-1553. doi: 10.1109/TAP.2018.2888823.
  • Magray, M. I., Su, S. -W., Juan, P. -H. and Lu, J. -H. (2023). Low-Profile 5G mmWave Antenna-in-Package with Dual-Polarization Operation. Asia-Pacific Microwave Conference (APMC), Taipei, Taiwan, 444-446. doi: 10.1109/APMC57107.2023.10439688.
  • Mangal, J. and Kumar, A. A. (2021). A Compact Millimeter Wave 5G Patch Antenna for n-260 Band Frequency Range Applications. 2021 10th IEEE International Conference on Communication Systems and Network Technologies (CSNT), Bhopal, India, 5-9. doi: 10.1109/CSNT51715.2021.9509612.
  • Mao, C. -X., Khalily, M., Xiao, P., Brown, T. W. C. and Gao, S. (2019). Planar Sub-Millimeter-Wave Array Antenna with Enhanced Gain and Reduced Sidelobes for 5G Broadcast Applications. IEEE Transactions on Antennas and Propagation, 67(1), 160-168. doi: 10.1109/TAP.2018.2874796.
  • Mishra, M., Sharma, R. and Chaudhary, R. K. (2023). A Multilayer Slot Coupled Multi-element Monopole Radiator with End-fire Radiation Pattern for mmWave Applications. IEEE Microwaves, Antennas, and Propagation Conference (MAPCON), Ahmedabad, India, 2023, pp. 1-3, doi: 10.1109/MAPCON58678.2023.10463772.
  • Naeini, M. R. and Fakharzadeh, M. (2017). A 28 GHz beam-switching Yagi-Uda array using Rotman Lens for 5G wireless communications. 2017 IEEE International Symposium on Antennas and Propagation & USNC/URSI National Radio Science Meeting, San Diego, CA, USA, 2617-2618. doi: 10.1109/APUSNCURSINRSM.2017.8073351.
  • Ojaroudiparchin, N., Ming, S. and Pedersen, G. F. (2016). 8×8 planar phased array antenna with high efficiency and insensitivity properties for 5G mobile base stations. 2016 10th European Conference on Antennas and Propagation (EuCAP), Davos, Switzerland, 1-5.
  • Ojaroudiparchin, N., Ming, S. and Pedersen, G. F. (2015). Design of Vivaldi antenna array with end-fire beam steering function for 5G mobile terminals. 2015 23rd Telecommunications Forum Telfor (TELFOR), Belgrade, Serbia, 2015, 587-590.
  • Parchin, N. O., Shen, M. and Pedersen, G. F., (2016). UWB MM-Wave antenna array with quasi omnidirectional beams for 5G handheld devices. 2016 IEEE International Conference on Ubiquitous Wireless Broadband (ICUWB), Nanjing, China, 1-4. doi: 10.1109/ICUWB.2016.7790483.
  • Rawat A., Soni G. K., Yadav D. and Tiwari M. (2023). Design of High Gain and Wideband mmWave Antenna for LMDS and Ka-Band 5G Applications. 2023 International Conference on Sustainable Communication Networks and Application (ICSCNA), Theni, India, 117-121. doi: 10.1109/ICSCNA58489.2023.10370351.
  • Stanley, M., Huang, Y., Wang, H., Zhou, H., Alieldin, A. and Joseph, S. (2018a). A Capacitive Coupled Patch Antenna Array with High Gain and Wide Coverage for 5G Smartphone Applications. IEEE Access, 6, 41942-41954.
  • Stanley, M., Huang, Y., Loh, T., Xu, Q., Wang, H. and Zhou, H., (2017). A high gain steerable millimeter-wave antenna array for 5G smartphone applications. 2017 11th European Conference on Antennas and Propagation (EUCAP), Paris, France.
  • Stanley, M., Huang Y., Wang, H., Zhou, H., Alieldin, A. and Joseph. (2018b). S. A Transparent Dual-Polarized Antenna Array for 5G Smartphone Applications. 2018 IEEE International Symposium on Antennas and Propagation & USNC/URSI National Radio Science Meeting, Boston, MA, USA, 635-636.
  • Sufian, M. A., Hussain, N., Abbas, A., Choi, D., Hussain, Q. and Kim, N. (2023). Performance Enhancement of a mmWave Antenna using Modified Series-Fed Array Structure. 2023 17th European Conference on Antennas and Propagation (EuCAP), Florence, Italy, 1-3. doi: 10.23919/EuCAP57121.2023.10133747.
  • Varum, T. and Matos, J. N. (2019). Compact Slot Antenna Array for 5G Communications. 2019 IEEE International Symposium on Antennas and Propagation and USNC-URSI Radio Science Meeting, Atlanta, GA, USA,1415-1416.
  • Yu, B., Yang, K., Sim, C. -Y. -D. and Yang, G. (2018). A Novel 28 GHz Beam Steering Array for 5G Mobile Device with Metallic Casing Application. IEEE Transactions on Antennas and Propagation, 66(1), 462-466.

WIDEBAND CAPACITIVELY COUPLED 1×8 ARRAY ANTENNA FOR 5G mmWAVE MOBILE PHONE APPLICATIONS

Yıl 2025, Cilt: 30 Sayı: 3, 691 - 710, 19.12.2025
https://doi.org/10.17482/uumfd.1514008

Öz

This communication proposes a linearly polarized, wideband capacitively coupled array antenna for the fifth generation (5G) millimeterwave (mmWave) mobile phone applications. The wideband, high gain unit antenna is first designed in order to form the 1×8 array antenna. The proposed unit antenna made up of a pair of rectangular radiators that are capacitively coupled to the feed line, and two semi-elliptical radiators that are coupled to rectangular radiators. The use of two semi-elliptical structures improves operating bandwidth and gain. The proposed antenna is printed on the commercial RTRogers5880 substrate (εr= 2.2, δ= 0.009) with a thickness of 0.8 mm. All design and simulation steps are implemented via CST Microwave Studio. According to simulation results, the unit antenna has a wide frequency bandwidth of 24.2 – 30.36 GHz for |S11|< -10 dB, with a corresponding fractional bandwidth (FBW) of 22.2%. The unit antenna has low profile of 10mm × 8mm × 0.8mm with peak gain of 7.15 dBi. The simulation results show that the unit antenna covers the entire frequency spectrum of 5G mmWave bands of n257, n258, and n261. For high-gain, 1×8 array antenna is designed which is integrated into the mobile phone chassis, with a dimension of 60mm × 6.5mm × 0.8mm (5.5λ0 × 0.6λ0 × 0.07λ0; λ0 is the free space wavelength at 27.5GHz – 10.9mm), which has a frequency bandwidth of 24.7 – 30.1 GHz (FBW= 19.7%) for |S11|< -10 dB. The boresight gain of the 1×8 array antenna is between 14.31 and 15.46 dBi with a radiation efficiency of more than 88%. In addition, the 1-D beam steering range of the array is also investigated. It is found that scanning range is approximately ±30ο. The isolation between ports is better than 16 dB over the operating band. The proposed 1×8 array antenna is ideal for 5G mmWave mobile phone applications due to its wide bandwidth, low profile, beam steering property, moderate gain and isolation.

Kaynakça

  • Ali, M. M. M., Haraz, O., Alshebeili, S. and Sebak, A. -R. (2016). Broadband printed slot antenna for the fifth generation (5G) mobile and wireless communications. 2016 17th International Symposium on Antenna Technology and Applied Electromagnetics (ANTEM), Montreal, QC, Canada, 1-2.
  • Alreshaid, A. T., Hammi, O., Sharawi, M. S. and Sarabandi, K. (2015). A compact millimeter-wave slot antenna array for 5G standards. 2015 IEEE 4th Asia-Pacific Conference on Antennas and Propagation (APCAP), Bali, Indonesia, 84-85, doi: 10.1109/APCAP.2015.7374281.
  • Asci, Y. (2023). Broadband, high gain 2 × 2 subarray and 2 × 8 cavity-backed antenna arrays for 5G mmWave applications. Microwave Optical Technology Letters, 1-9. doi:10.1002/mop.33961
  • Ikram, M., Sharawi, M. S. and Shamim, A. (2017). A millimeter-wave connected antenna array for 5G applications. 2017 IEEE International Symposium on Antennas and Propagation & USNC/URSI National Radio Science Meeting, San Diego, CA, USA, 1449-1450.
  • Islam, S., Zada, M. and Yoo, H., (2022). Highly Compact Integrated Sub-6 GHz and Millimeter-Wave Band Antenna Array for 5G Smartphone Communications. IEEE Transactions on Antennas and Propagation, 70(12), 11629-11638.
  • Jilani, S. F. and Alomainy, A. (2017). Millimeter-wave conformal antenna array for 5G wireless applications. 2017 IEEE International Symposium on Antennas and Propagation & USNC/URSI National Radio Science Meeting, San Diego, CA, USA, 2017, pp. 1439-1440, doi: 10.1109/APUSNCURSINRSM.2017.8072762.
  • Khalily, M., Tafazolli, R., Xiao, P. and Kishk, A., (2018). Broadband mm-Wave Microstrip Array Antenna with Improved Radiation Characteristics for Different 5G Applications. IEEE Transactions on Antennas and Propagation, 66(9), 4641-4647.
  • Kurvinen, J., Kähkönen, H., Lehtovuori, A., Ala-Laurinaho, J. and Viikari, V. (2019). Co-Designed mm-Wave and LTE Handset Antennas. IEEE Transactions on Antennas and Propagation, 67(3), 1545-1553. doi: 10.1109/TAP.2018.2888823.
  • Magray, M. I., Su, S. -W., Juan, P. -H. and Lu, J. -H. (2023). Low-Profile 5G mmWave Antenna-in-Package with Dual-Polarization Operation. Asia-Pacific Microwave Conference (APMC), Taipei, Taiwan, 444-446. doi: 10.1109/APMC57107.2023.10439688.
  • Mangal, J. and Kumar, A. A. (2021). A Compact Millimeter Wave 5G Patch Antenna for n-260 Band Frequency Range Applications. 2021 10th IEEE International Conference on Communication Systems and Network Technologies (CSNT), Bhopal, India, 5-9. doi: 10.1109/CSNT51715.2021.9509612.
  • Mao, C. -X., Khalily, M., Xiao, P., Brown, T. W. C. and Gao, S. (2019). Planar Sub-Millimeter-Wave Array Antenna with Enhanced Gain and Reduced Sidelobes for 5G Broadcast Applications. IEEE Transactions on Antennas and Propagation, 67(1), 160-168. doi: 10.1109/TAP.2018.2874796.
  • Mishra, M., Sharma, R. and Chaudhary, R. K. (2023). A Multilayer Slot Coupled Multi-element Monopole Radiator with End-fire Radiation Pattern for mmWave Applications. IEEE Microwaves, Antennas, and Propagation Conference (MAPCON), Ahmedabad, India, 2023, pp. 1-3, doi: 10.1109/MAPCON58678.2023.10463772.
  • Naeini, M. R. and Fakharzadeh, M. (2017). A 28 GHz beam-switching Yagi-Uda array using Rotman Lens for 5G wireless communications. 2017 IEEE International Symposium on Antennas and Propagation & USNC/URSI National Radio Science Meeting, San Diego, CA, USA, 2617-2618. doi: 10.1109/APUSNCURSINRSM.2017.8073351.
  • Ojaroudiparchin, N., Ming, S. and Pedersen, G. F. (2016). 8×8 planar phased array antenna with high efficiency and insensitivity properties for 5G mobile base stations. 2016 10th European Conference on Antennas and Propagation (EuCAP), Davos, Switzerland, 1-5.
  • Ojaroudiparchin, N., Ming, S. and Pedersen, G. F. (2015). Design of Vivaldi antenna array with end-fire beam steering function for 5G mobile terminals. 2015 23rd Telecommunications Forum Telfor (TELFOR), Belgrade, Serbia, 2015, 587-590.
  • Parchin, N. O., Shen, M. and Pedersen, G. F., (2016). UWB MM-Wave antenna array with quasi omnidirectional beams for 5G handheld devices. 2016 IEEE International Conference on Ubiquitous Wireless Broadband (ICUWB), Nanjing, China, 1-4. doi: 10.1109/ICUWB.2016.7790483.
  • Rawat A., Soni G. K., Yadav D. and Tiwari M. (2023). Design of High Gain and Wideband mmWave Antenna for LMDS and Ka-Band 5G Applications. 2023 International Conference on Sustainable Communication Networks and Application (ICSCNA), Theni, India, 117-121. doi: 10.1109/ICSCNA58489.2023.10370351.
  • Stanley, M., Huang, Y., Wang, H., Zhou, H., Alieldin, A. and Joseph, S. (2018a). A Capacitive Coupled Patch Antenna Array with High Gain and Wide Coverage for 5G Smartphone Applications. IEEE Access, 6, 41942-41954.
  • Stanley, M., Huang, Y., Loh, T., Xu, Q., Wang, H. and Zhou, H., (2017). A high gain steerable millimeter-wave antenna array for 5G smartphone applications. 2017 11th European Conference on Antennas and Propagation (EUCAP), Paris, France.
  • Stanley, M., Huang Y., Wang, H., Zhou, H., Alieldin, A. and Joseph. (2018b). S. A Transparent Dual-Polarized Antenna Array for 5G Smartphone Applications. 2018 IEEE International Symposium on Antennas and Propagation & USNC/URSI National Radio Science Meeting, Boston, MA, USA, 635-636.
  • Sufian, M. A., Hussain, N., Abbas, A., Choi, D., Hussain, Q. and Kim, N. (2023). Performance Enhancement of a mmWave Antenna using Modified Series-Fed Array Structure. 2023 17th European Conference on Antennas and Propagation (EuCAP), Florence, Italy, 1-3. doi: 10.23919/EuCAP57121.2023.10133747.
  • Varum, T. and Matos, J. N. (2019). Compact Slot Antenna Array for 5G Communications. 2019 IEEE International Symposium on Antennas and Propagation and USNC-URSI Radio Science Meeting, Atlanta, GA, USA,1415-1416.
  • Yu, B., Yang, K., Sim, C. -Y. -D. and Yang, G. (2018). A Novel 28 GHz Beam Steering Array for 5G Mobile Device with Metallic Casing Application. IEEE Transactions on Antennas and Propagation, 66(1), 462-466.
Toplam 23 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Elektronik, Sensörler ve Dijital Donanım (Diğer)
Bölüm Araştırma Makalesi
Yazarlar

Yavuz Aşçı 0000-0002-7469-3685

Gönderilme Tarihi 10 Temmuz 2024
Kabul Tarihi 7 Ekim 2025
Erken Görünüm Tarihi 11 Aralık 2025
Yayımlanma Tarihi 19 Aralık 2025
Yayımlandığı Sayı Yıl 2025 Cilt: 30 Sayı: 3

Kaynak Göster

APA Aşçı, Y. (2025). WIDEBAND CAPACITIVELY COUPLED 1×8 ARRAY ANTENNA FOR 5G mmWAVE MOBILE PHONE APPLICATIONS. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi, 30(3), 691-710. https://doi.org/10.17482/uumfd.1514008
AMA Aşçı Y. WIDEBAND CAPACITIVELY COUPLED 1×8 ARRAY ANTENNA FOR 5G mmWAVE MOBILE PHONE APPLICATIONS. UUJFE. Aralık 2025;30(3):691-710. doi:10.17482/uumfd.1514008
Chicago Aşçı, Yavuz. “WIDEBAND CAPACITIVELY COUPLED 1×8 ARRAY ANTENNA FOR 5G mmWAVE MOBILE PHONE APPLICATIONS”. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi 30, sy. 3 (Aralık 2025): 691-710. https://doi.org/10.17482/uumfd.1514008.
EndNote Aşçı Y (01 Aralık 2025) WIDEBAND CAPACITIVELY COUPLED 1×8 ARRAY ANTENNA FOR 5G mmWAVE MOBILE PHONE APPLICATIONS. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi 30 3 691–710.
IEEE Y. Aşçı, “WIDEBAND CAPACITIVELY COUPLED 1×8 ARRAY ANTENNA FOR 5G mmWAVE MOBILE PHONE APPLICATIONS”, UUJFE, c. 30, sy. 3, ss. 691–710, 2025, doi: 10.17482/uumfd.1514008.
ISNAD Aşçı, Yavuz. “WIDEBAND CAPACITIVELY COUPLED 1×8 ARRAY ANTENNA FOR 5G mmWAVE MOBILE PHONE APPLICATIONS”. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi 30/3 (Aralık2025), 691-710. https://doi.org/10.17482/uumfd.1514008.
JAMA Aşçı Y. WIDEBAND CAPACITIVELY COUPLED 1×8 ARRAY ANTENNA FOR 5G mmWAVE MOBILE PHONE APPLICATIONS. UUJFE. 2025;30:691–710.
MLA Aşçı, Yavuz. “WIDEBAND CAPACITIVELY COUPLED 1×8 ARRAY ANTENNA FOR 5G mmWAVE MOBILE PHONE APPLICATIONS”. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi, c. 30, sy. 3, 2025, ss. 691-10, doi:10.17482/uumfd.1514008.
Vancouver Aşçı Y. WIDEBAND CAPACITIVELY COUPLED 1×8 ARRAY ANTENNA FOR 5G mmWAVE MOBILE PHONE APPLICATIONS. UUJFE. 2025;30(3):691-710.

DUYURU:

30.03.2021- Nisan 2021 (26/1) sayımızdan itibaren TR-Dizin yeni kuralları gereği, dergimizde basılacak makalelerde, ilk gönderim aşamasında Telif Hakkı Formu yanısıra, Çıkar Çatışması Bildirim Formu ve Yazar Katkısı Bildirim Formu da tüm yazarlarca imzalanarak gönderilmelidir. Yayınlanacak makalelerde de makale metni içinde "Çıkar Çatışması" ve "Yazar Katkısı" bölümleri yer alacaktır. İlk gönderim aşamasında doldurulması gereken yeni formlara "Yazım Kuralları" ve "Makale Gönderim Süreci" sayfalarımızdan ulaşılabilir. (Değerlendirme süreci bu tarihten önce tamamlanıp basımı bekleyen makalelerin yanısıra değerlendirme süreci devam eden makaleler için, yazarlar tarafından ilgili formlar doldurularak sisteme yüklenmelidir).  Makale şablonları da, bu değişiklik doğrultusunda güncellenmiştir. Tüm yazarlarımıza önemle duyurulur.

Bursa Uludağ Üniversitesi, Mühendislik Fakültesi Dekanlığı, Görükle Kampüsü, Nilüfer, 16059 Bursa. Tel: (224) 294 1907, Faks: (224) 294 1903, e-posta: mmfd@uludag.edu.tr