This paper aims to develop a new multi-objective optimization algorithm for handling construction time-cost trade-off problems (TCTPs). An intelligent strategy called opposition-based learning (OBL) is incorporated into the Jaya algorithm, resulting in the opposition-based Jaya Algorithm (OBJA). The proposed model introduces an innovative approach to opposition-based optimization by employing an iterative-based varying oppositional jumping rates. This adaptive strategy significantly contributes to increased population diversity and effective avoidance of local optima throughout both the initialization and generational phases of the optimization process. By systematically varying the opposition jumping rate, its impact on the algorithm's convergence speed, solution quality, and computational efficiency are evaluated. The experimental results demonstrate that an iterative-based varying opposition jumping rate significantly enhances OBJA's efficiency to explore and exploit the search space, leading to superior tradeoff solutions. Hence, computational experiments on 9 and 19 activity problems reveal that an iterativebased varying opposition jumping rate result in high quality solution with reduced number of function evaluations. Furthermore, the OBJA model proved to be more successful than the non-dominated sorting GA (NSGA-II), multi-objective particle swarm optimzaiton (MOPSO), and plain Jaya algorithm for handling these complex TCTPs in construction project management.
Time-cost trade-off problem Jaya algorithm Opposition-based learning Iterative-based varying opposition jumping rate.
Bu makale, inşaat sektörünün zaman-maliyet ödünleşim problemlerini (ZMÖP) çözmek için yeni bir çok amaçlı optimizasyon modeli geliştirmeyi amaçlamaktadır. Jaya algoritmasına karşıt tabanlı öğrenme (OBL) adı verilen akıllı bir strateji eklenmiş ve sonuç olarak karşıt tabanlı Jaya Algoritması (OBJA) önerilmiştir. OBL, popülasyonun daha iyi başlatılması ve popülasyonun yerel optimuma düşmemesi için nesil sıçrama oranı uygulanmaktadır. Önerilen model, iteratif tabanlı değişken karşıtlık sıçrama oranlarını kullanarak karşıt tabanlı optimizasyona yenilikçi bir yaklaşım sunmaktadır. Bu uyarlamalı strateji, optimizasyon sürecinin hem başlatma hem de nesil aşamalarında popülasyon çeşitliliğini artırmaya ve yerel optimal noktalardan etkili bir şekilde kaçınmaya önemli ölçüde katkıda bulunmaktadır. Karşıt sıçrama oranı sistematik olarak değiştirilerek algoritmanın yakınsama hızı, çözüm kalitesi ve hesaplama verimliliği üzerindeki etkisi değerlendirilmiştir. Deneysel sonuçlar, iteratif tabanlı değişken karşıt sıçrama oranının, OBJA'nın arama alanını arama ve araştırma yeteneğini önemli ölçüde artırarak üstün dengeleme çözümlerine yol açtığını göstermektedir. Bu nedenle, 9 ve 19 aktivite problemine yönelik hesaplamalı deneyler, iteratif tabanlı değişken karşıt sıçrama oranının, daha az fonksiyon değerlendirmesi ile yüksek kaliteli çözümler elde edilmesine neden olduğunu ortaya koymaktadır. Ayrıca, OBJA algoritması, bu karmaşık zaman-maliyet ödünleşim optimizasyon problemlerini yapı proje yönetiminde ele alırken NSGAII, MOPSO ve basit Jaya algoritmasından daha başarılı olduğunu kanıtlamıştır.
Zaman-maliyet ödünleşim problemi Jaya algoritması Karşıt tabanlı öğrenme iteratif tabanlı değişen karşıtlık sıçrama oranı
| Birincil Dil | İngilizce |
|---|---|
| Konular | İnşaat Mühendisliği (Diğer) |
| Bölüm | Araştırma Makalesi |
| Yazarlar | |
| Gönderilme Tarihi | 4 Ekim 2024 |
| Kabul Tarihi | 18 Ocak 2025 |
| Erken Görünüm Tarihi | 11 Nisan 2025 |
| Yayımlanma Tarihi | 28 Nisan 2025 |
| Yayımlandığı Sayı | Yıl 2025 Cilt: 30 Sayı: 1 |
DUYURU:
30.03.2021- Nisan 2021 (26/1) sayımızdan itibaren TR-Dizin yeni kuralları gereği, dergimizde basılacak makalelerde, ilk gönderim aşamasında Telif Hakkı Formu yanısıra, Çıkar Çatışması Bildirim Formu ve Yazar Katkısı Bildirim Formu da tüm yazarlarca imzalanarak gönderilmelidir. Yayınlanacak makalelerde de makale metni içinde "Çıkar Çatışması" ve "Yazar Katkısı" bölümleri yer alacaktır. İlk gönderim aşamasında doldurulması gereken yeni formlara "Yazım Kuralları" ve "Makale Gönderim Süreci" sayfalarımızdan ulaşılabilir. (Değerlendirme süreci bu tarihten önce tamamlanıp basımı bekleyen makalelerin yanısıra değerlendirme süreci devam eden makaleler için, yazarlar tarafından ilgili formlar doldurularak sisteme yüklenmelidir). Makale şablonları da, bu değişiklik doğrultusunda güncellenmiştir. Tüm yazarlarımıza önemle duyurulur.
Bursa Uludağ Üniversitesi, Mühendislik Fakültesi Dekanlığı, Görükle Kampüsü, Nilüfer, 16059 Bursa. Tel: (224) 294 1907, Faks: (224) 294 1903, e-posta: mmfd@uludag.edu.tr