Araştırma Makalesi
BibTex RIS Kaynak Göster

INCONEL 718 LAZER DOLGU KAYNAĞINDA ÜRETİM PARAMETRELERİNİN GEOMETRİK ÖZELİKLERE ETKİSİNİN İNCELENMESİ

Yıl 2025, Cilt: 30 Sayı: 1, 181 - 200, 28.04.2025
https://doi.org/10.17482/uumfd.1575363

Öz

Lazer dolgu kaynağı sürecinde, kaplamanın geometrik özelliklerinin değerlendirilmesi öncelikli hedef olarak belirlenmiştir. Bu çalışma, tarama hızı, lazer gücü ve toz besleme hızı gibi üç temel proses parametresinin, AISI 1050 çelik alt tabaka üzerindeki Inconel 718 kaplamaların geometrik özellikleri üzerindeki etkilerini incelemeyi amaçlamaktadır. Bu amaçla, üç farklı lazer gücü, dört farklı tarama hızı ve dört farklı toz besleme hızında bir deney seti oluşturulmuş ve toplam 18 farklı deney numunesi üretilmiştir. Üretilen bu kaplamaların penetrasyon derinliği, kaplama yüksekliği, kaplama genişliği ve seyreltme oranı gibi çeşitli geometrik özellikleri analiz edilmiştir. Kaplama geometrisi üzerindeki proses parametrelerinin etkilerini kapsamlı bir şekilde değerlendirmek için varyans analizi (ANOVA) yapılmıştır. Analiz sonuçları, tarama hızının kaplama genişliği (%44) ve yüksekliği (%79) üzerinde en etkili faktör olduğunu ortaya koymaktadır. Lazer gücünün, alt tabakanın erime derinliği üzerinde %54 oranında etkili olduğu, toz akış hızının ise %35’lik bir etkiye sahip olduğu tespit edilmiştir. Matematiksel regresyon modeli sonuçları deneysel ölçümlerle karşılaştırıldığında, tüm geometrik özellikler için hata oranlarının %12’nin altında kaldığı görülmüş ve modelin deneysel tasarımda etkili bir hesaplama aracı olduğu doğrulanmıştır. Deneysel veriler, lazerle kaplanmış Inconel 718’in alt tabaka üzerindeki seyreltme oranının %9 ile %13 arasında değiştiğini göstermektedir. Bu bulgular, kaplamanın performans açısından tatmin edici bir sonuç verdiğini ortaya koymaktadır.

Destekleyen Kurum

Ostim Teknik Üniversitesi

Proje Numarası

BAP202316

Kaynakça

  • Alizadeh-Sh, M., Marashi, S. P. H., Ranjbarnodeh, E., Shoja-Razavi, R. ve Oliveira, J. P. (2020). Prediction of solidification cracking by an empirical-statistical analysis for laser cladding of Inconel 718 powder on a non-weldable substrate. Optics & Laser Technology, 128, 106244. https://doi.org/10.1016/J.OPTLASTEC.2020.106244
  • Ari, A. (2024). Comprehensive analysis of morphology, microstructure, and mechanical characterization of parameters in the Inconel 718 laser cladding process on AISI 1050. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 238(22), 10772–10784. https://doi.org/10.1177/09544062241277732
  • Ari, A., Karagöz, T., Arslan, O. ve Bayram, A. (2023). AISI 1050 çeliği üzerine Inconel 718 lazer dolgu kaynağının morfolojisi, mikroyapısı ve mekanik karakterizasyonu. University Journal of The Faculty of Engineering, 28(2), 613–630. https://doi.org/10.17482/uumfd.1228584
  • Barekat, M., Shoja Razavi, R. ve Ghasemi, A. (2016). Nd:YAG laser cladding of Co-Cr-Mo alloy on γ-TiAl substrate. Optics and Laser Technology, 80, 145–152.
  • Bhaduri, A. K., Indira, R., Albert, S. K., Rao, B. P. S., Jain, S. C. ve Asokkumar, S. (2004). Selection of hardfacing material for components of the Indian Prototype Fast Breeder Reactor. Journal of Nuclear Materials, 334(2–3), 109–114.
  • Bloemer, P. R. A., Pacheco, J. T., Cunha, A., Veiga, M. T., Filho, O. C. d. M., Meura, V. H. ve Teixeira, M. F. (2022). Laser cladding of Inconel 625 on AISI 316L: microstructural and mechanical evaluation of parameters estimated by empirical-statistical model. Journal of Materials Engineering and Performance, 31(1), 211–220. https://doi.org/10.1007/s11665-021-06147-8
  • Chen, C., Zeng, X., Wang, Q., Lian, G., Huang, X. ve Wang, Y. (2020). Statistical modelling and optimization of microhardness transition through depth of laser surface hardened AISI 1045 carbon steel. Optics and Laser Technology, 124, 105976. https://doi.org/10.1016/j.optlastec.2019.105976
  • Corbin, D. J., Nassar, A. R., Reutzel, E. W., Beese, A. M. ve Michaleris, P. (2018). Effect of substrate thickness and preheating on the distortion of laser deposited ti-6al-4v. Journal of Manufacturing Science and Engineering, Transactions of the ASME, 140(6), 1–9. https://doi.org/10.1115/1.4038890
  • de Oliveira, U., Ocelík, V. ve De Hosson, J. T. M. (2005). Analysis of coaxial laser cladding processing conditions. Surface and Coatings Technology, 197(2–3), 127–136. https://doi.org/10.1016/j.surfcoat.2004.06.029
  • Erfanmanesh, M., Abdollah-Pour, H., Mohammadian-Semnani, H. ve Shoja-Razavi, R. (2017). An empirical-statistical model for laser cladding of WC-12Co powder on AISI 321 stainless steel. Optics and Laser Technology, 97, 180–186. https://doi.org/10.1016/j.optlastec.2017.06.026
  • Ermergen, T. ve Taylan, F. (2024). Investigation of DOE model analyses for open atmosphere laser polishing of additively manufactured Ti-6Al-4V samples by using ANOVA. Optics & Laser Technology, 168, 109832. https://doi.org/10.1016/J.OPTLASTEC.2023.109832
  • Goodarzi, D. M., Pekkarinen, J. ve Salminen, A. (2017). Analysis of laser cladding process parameter influence on the clad bead geometry. Welding in the World, 61(5), 883–891. https://doi.org/10.1007/s40194-017-0495-0
  • Herzog, D., Seyda, V., Wycisk, E. ve Emmelmann, C. (2016). Additive manufacturing of metals. Acta Materialia, 117, 371–392. https://doi.org/10.1016/j.actamat.2016.07.019
  • Huebner, J., Rutkowski, P., Kata, D. ve Kusiński, J. (2017). Microstructural and mechanical study of Inconel 625-Tungsten Carbide composite coatings obtained by powder laser cladding. Archives of Metallurgy and Materials, 62(2), 531–538. https://doi.org/10.1515/amm-2017-0078
  • Ilanlou, M., Shoja Razavi, R., Nourollahi, A., Hosseini, S. ve Haghighat, S. (2022). Prediction of the geometric characteristics of the laser cladding of Inconel 718 on the Inconel 738 substrate via genetic algorithm and linear regression. Optics & Laser Technology, 156, 108507. https://doi.org/10.1016/J.OPTLASTEC.2022.108507
  • Jelvani, S., Shoja Razavi, R., Barekat, M. ve Dehnavi, M. (2020). Empirical-Statistical Modeling and Prediction of Geometric Characteristics for Laser-Aided Direct Metal Deposition of Inconel 718 Superalloy. Metals and Materials International, 26(5), 668–681. https://doi.org/10.1007/s12540-019-00355-7
  • Lee, E. M., Shin, G. Y., Yoon, H. S. ve Shim, D. S. (2017). Study of the effects of process parameters on deposited single track of M4 powder based direct energy deposition. Journal of Mechanical Science and Technology, 31(7), 3411–3418. https://doi.org/10.1007/s12206-017-0239-5
  • Muvvala, G., Mullick, S. ve Nath, A. K. (2020). Development of process maps based on molten pool thermal history during laser cladding of Inconel 718/TiC metal matrix composite coatings. Surface and Coatings Technology, 399, 126100.
  • Nabhani, M., Razavi, R. S. ve Barekat, M. (2018). An empirical-statistical model for laser cladding of Ti-6Al-4V powder on Ti-6Al-4V substrate. Optics and Laser Technology, 100, 265–271. https://doi.org/10.1016/j.optlastec.2017.10.015
  • Ning, J., Zhang, H. B., Chen, S. M., Zhang, L. J. ve Na, S. J. (2021). Intensive laser repair through additive manufacturing of high-strength martensitic stainless steel powders (I) –powder preparation, laser cladding and microstructures and properties of laser-cladded metals. Journal of Materials Research and Technology, 15, 5746–5761. https://doi.org/10.1016/J.JMRT.2021.10.109
  • Onwubolu, G. C., Davim, J. P., Oliveira, C. ve Cardoso, A. (2007). Prediction of clad angle in laser cladding by powder using response surface methodology and scatter search. Optics and Laser Technology, 39(6), 1130–1134.
  • Saboori, A., Aversa, A., Marchese, G., Biamino, S., Lombardi, M. ve Fino, P. (2019). Application of directed energy deposition-based additive manufacturing in repair. Applied Sciences (Switzerland), 9(16). https://doi.org/10.3390/app9163316
  • Sciammarella, F. M. ve Najafabadi, B. S. (2018). Processing parameter doe for 316l using directed energy deposition. Journal of Manufacturing and Materials Processing, 2(3).
  • Seede, R., Mostafa, A., Brailovski, V., Jahazi, M. ve Medraj, M. (2018). Microstructural and microhardness evolution from homogenization and hot isostatic pressing on selective laser melted Inconel 718: structure, texture, and phases. Journal of Manufacturing and Materials Processing, 2(2). https://doi.org/10.3390/jmmp2020030
  • Shayanfar, P., Daneshmanesh, H. ve Janghorban, K. (2020). Parameters optimization for laser cladding of Inconel 625 on ASTM A592 steel. Journal of Materials Research and Technology, 9(4), 8258–8265. https://doi.org/10.1016/j.jmrt.2020.05.094
  • Shi, S., Xu, A., Fan, J. ve Wei, H. (2012). Study of cobalt-free, Fe-based alloy powder used for sealing surfaces of nuclear valves by laser cladding. Nuclear Engineering and Design, 245, 8–12. https://doi.org/10.1016/j.nucengdes.2012.01.015
  • Shi, X., Ma, S., Liu, C. ve Wu, Q. (2017). Parameter optimization for Ti-47Al-2Cr-2Nb in selective laser melting based on geometric characteristics of single scan tracks. Optics and Laser Technology, 90, 71–79. https://doi.org/10.1016/j.optlastec.2016.11.002
  • Sun, Y. ve Hao, M. (2012). Statistical analysis and optimization of process parameters in Ti6Al4V laser cladding using Nd:YAG laser. Optics and Lasers in Engineering, 50(7), 985–995. https://doi.org/10.1016/j.optlaseng.2012.01.018
  • Tabernero, I., Lamikiz, A., Martínez, S., Ukar, E. ve Figueras, J. (2011). Evaluation of the mechanical properties of Inconel 718 components built by laser cladding. International Journal of Machine Tools and Manufacture, 51(6), 465–470.
  • Thawari, N., Gullipalli, C., Katiyar, J. K. ve Gupta, T. V. K. (2021). Effect of multi-layer laser cladding of Stellite 6 and Inconel 718 materials on clad geometry, microstructure evolution and mechanical properties. Materials Today Communications, 28, 102604.
  • Twomey, P. J. ve Kroll, M. H. (2008). How to use linear regression and correlation in quantitative method comparison studies. International Journal of Clinical Practice, 62(4), 529–538. https://doi.org/10.1111/j.1742-1241.2008.01709.x
  • Wang, C., Zhou, J., Zhang, T., Meng, X., Li, P. ve Huang, S. (2022). Numerical simulation and solidification characteristics for laser cladding of Inconel 718. Optics & Laser Technology, 149, 107843. https://doi.org/10.1016/J.OPTLASTEC.2021.107843
  • Wolff, S. J., ve diğ. (2019). Experimentally validated predictions of thermal history and microhardness in laser-deposited Inconel 718 on carbon steel. Additive Manufacturing, 27, 540–551. https://doi.org/10.1016/j.addma.2019.03.019
  • Yilbas, B. S., Akhtar, S. S. ve Karatas, C. (2010). Laser surface treatment of Inconel 718 alloy: thermal stress analysis. Optics and Lasers in Engineering, 48(7–8), 740–749.
  • Zhai, L. L., Ban, C. Y. ve Zhang, J. W. (2019). Investigation on laser cladding Ni-base coating assisted by electromagnetic field. Optics & Laser Technology, 114, 81–88. https://doi.org/10.1016/J.OPTLASTEC.2019.01.017
  • Zhong, C., Liu, J., Zhao, T., Schopphoven, T., Fu, J., Gasser, A. ve Schleifenbaum, J. H. (2020). Laser metal deposition of Ti6Al4V—a brief review. Applied Sciences, 10(3), 764. https://doi.org/10.3390/APP10030764

Analysis of the Effect of Production Parameters on the Geometric Properties of Inconel 718 Laser Cladding

Yıl 2025, Cilt: 30 Sayı: 1, 181 - 200, 28.04.2025
https://doi.org/10.17482/uumfd.1575363

Öz

In the laser cladding process, evaluating the geometric properties of the cladding has been identified as the primary objective. This study aims to investigate the effects of three fundamental process parameters—scanning speed, laser power, and powder feed rate—on the geometric properties of Inconel 718 coatings on an AISI 1050 steel substrate. For this purpose, an experimental set was created with three different laser powers, four different scanning speeds, and four different powder feed rates, resulting in a total of 18 different experimental samples. To comprehensively evaluate the effects of the process parameters on the coating geometry, analysis of variance (ANOVA) was conducted. The results of the analysis show that the scanning speed is the most influential factor on coating width (44%) and height (79%). It was found that the laser power has a 54% effect on the substrate melting depth, while the powder flow rate has a 35% effect. When comparing the results of the mathematical regression model with experimental measurements, the error rates for all geometric properties were found to be below 12%, confirming that the model is an effective computational tool in the experimental design. The experimental data show that the dilution rate of the laser-clad Inconel 718 on the substrate varies between 9% and 13%. These findings indicate that the coating provides a satisfactory result in terms of performance.

Proje Numarası

BAP202316

Kaynakça

  • Alizadeh-Sh, M., Marashi, S. P. H., Ranjbarnodeh, E., Shoja-Razavi, R. ve Oliveira, J. P. (2020). Prediction of solidification cracking by an empirical-statistical analysis for laser cladding of Inconel 718 powder on a non-weldable substrate. Optics & Laser Technology, 128, 106244. https://doi.org/10.1016/J.OPTLASTEC.2020.106244
  • Ari, A. (2024). Comprehensive analysis of morphology, microstructure, and mechanical characterization of parameters in the Inconel 718 laser cladding process on AISI 1050. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 238(22), 10772–10784. https://doi.org/10.1177/09544062241277732
  • Ari, A., Karagöz, T., Arslan, O. ve Bayram, A. (2023). AISI 1050 çeliği üzerine Inconel 718 lazer dolgu kaynağının morfolojisi, mikroyapısı ve mekanik karakterizasyonu. University Journal of The Faculty of Engineering, 28(2), 613–630. https://doi.org/10.17482/uumfd.1228584
  • Barekat, M., Shoja Razavi, R. ve Ghasemi, A. (2016). Nd:YAG laser cladding of Co-Cr-Mo alloy on γ-TiAl substrate. Optics and Laser Technology, 80, 145–152.
  • Bhaduri, A. K., Indira, R., Albert, S. K., Rao, B. P. S., Jain, S. C. ve Asokkumar, S. (2004). Selection of hardfacing material for components of the Indian Prototype Fast Breeder Reactor. Journal of Nuclear Materials, 334(2–3), 109–114.
  • Bloemer, P. R. A., Pacheco, J. T., Cunha, A., Veiga, M. T., Filho, O. C. d. M., Meura, V. H. ve Teixeira, M. F. (2022). Laser cladding of Inconel 625 on AISI 316L: microstructural and mechanical evaluation of parameters estimated by empirical-statistical model. Journal of Materials Engineering and Performance, 31(1), 211–220. https://doi.org/10.1007/s11665-021-06147-8
  • Chen, C., Zeng, X., Wang, Q., Lian, G., Huang, X. ve Wang, Y. (2020). Statistical modelling and optimization of microhardness transition through depth of laser surface hardened AISI 1045 carbon steel. Optics and Laser Technology, 124, 105976. https://doi.org/10.1016/j.optlastec.2019.105976
  • Corbin, D. J., Nassar, A. R., Reutzel, E. W., Beese, A. M. ve Michaleris, P. (2018). Effect of substrate thickness and preheating on the distortion of laser deposited ti-6al-4v. Journal of Manufacturing Science and Engineering, Transactions of the ASME, 140(6), 1–9. https://doi.org/10.1115/1.4038890
  • de Oliveira, U., Ocelík, V. ve De Hosson, J. T. M. (2005). Analysis of coaxial laser cladding processing conditions. Surface and Coatings Technology, 197(2–3), 127–136. https://doi.org/10.1016/j.surfcoat.2004.06.029
  • Erfanmanesh, M., Abdollah-Pour, H., Mohammadian-Semnani, H. ve Shoja-Razavi, R. (2017). An empirical-statistical model for laser cladding of WC-12Co powder on AISI 321 stainless steel. Optics and Laser Technology, 97, 180–186. https://doi.org/10.1016/j.optlastec.2017.06.026
  • Ermergen, T. ve Taylan, F. (2024). Investigation of DOE model analyses for open atmosphere laser polishing of additively manufactured Ti-6Al-4V samples by using ANOVA. Optics & Laser Technology, 168, 109832. https://doi.org/10.1016/J.OPTLASTEC.2023.109832
  • Goodarzi, D. M., Pekkarinen, J. ve Salminen, A. (2017). Analysis of laser cladding process parameter influence on the clad bead geometry. Welding in the World, 61(5), 883–891. https://doi.org/10.1007/s40194-017-0495-0
  • Herzog, D., Seyda, V., Wycisk, E. ve Emmelmann, C. (2016). Additive manufacturing of metals. Acta Materialia, 117, 371–392. https://doi.org/10.1016/j.actamat.2016.07.019
  • Huebner, J., Rutkowski, P., Kata, D. ve Kusiński, J. (2017). Microstructural and mechanical study of Inconel 625-Tungsten Carbide composite coatings obtained by powder laser cladding. Archives of Metallurgy and Materials, 62(2), 531–538. https://doi.org/10.1515/amm-2017-0078
  • Ilanlou, M., Shoja Razavi, R., Nourollahi, A., Hosseini, S. ve Haghighat, S. (2022). Prediction of the geometric characteristics of the laser cladding of Inconel 718 on the Inconel 738 substrate via genetic algorithm and linear regression. Optics & Laser Technology, 156, 108507. https://doi.org/10.1016/J.OPTLASTEC.2022.108507
  • Jelvani, S., Shoja Razavi, R., Barekat, M. ve Dehnavi, M. (2020). Empirical-Statistical Modeling and Prediction of Geometric Characteristics for Laser-Aided Direct Metal Deposition of Inconel 718 Superalloy. Metals and Materials International, 26(5), 668–681. https://doi.org/10.1007/s12540-019-00355-7
  • Lee, E. M., Shin, G. Y., Yoon, H. S. ve Shim, D. S. (2017). Study of the effects of process parameters on deposited single track of M4 powder based direct energy deposition. Journal of Mechanical Science and Technology, 31(7), 3411–3418. https://doi.org/10.1007/s12206-017-0239-5
  • Muvvala, G., Mullick, S. ve Nath, A. K. (2020). Development of process maps based on molten pool thermal history during laser cladding of Inconel 718/TiC metal matrix composite coatings. Surface and Coatings Technology, 399, 126100.
  • Nabhani, M., Razavi, R. S. ve Barekat, M. (2018). An empirical-statistical model for laser cladding of Ti-6Al-4V powder on Ti-6Al-4V substrate. Optics and Laser Technology, 100, 265–271. https://doi.org/10.1016/j.optlastec.2017.10.015
  • Ning, J., Zhang, H. B., Chen, S. M., Zhang, L. J. ve Na, S. J. (2021). Intensive laser repair through additive manufacturing of high-strength martensitic stainless steel powders (I) –powder preparation, laser cladding and microstructures and properties of laser-cladded metals. Journal of Materials Research and Technology, 15, 5746–5761. https://doi.org/10.1016/J.JMRT.2021.10.109
  • Onwubolu, G. C., Davim, J. P., Oliveira, C. ve Cardoso, A. (2007). Prediction of clad angle in laser cladding by powder using response surface methodology and scatter search. Optics and Laser Technology, 39(6), 1130–1134.
  • Saboori, A., Aversa, A., Marchese, G., Biamino, S., Lombardi, M. ve Fino, P. (2019). Application of directed energy deposition-based additive manufacturing in repair. Applied Sciences (Switzerland), 9(16). https://doi.org/10.3390/app9163316
  • Sciammarella, F. M. ve Najafabadi, B. S. (2018). Processing parameter doe for 316l using directed energy deposition. Journal of Manufacturing and Materials Processing, 2(3).
  • Seede, R., Mostafa, A., Brailovski, V., Jahazi, M. ve Medraj, M. (2018). Microstructural and microhardness evolution from homogenization and hot isostatic pressing on selective laser melted Inconel 718: structure, texture, and phases. Journal of Manufacturing and Materials Processing, 2(2). https://doi.org/10.3390/jmmp2020030
  • Shayanfar, P., Daneshmanesh, H. ve Janghorban, K. (2020). Parameters optimization for laser cladding of Inconel 625 on ASTM A592 steel. Journal of Materials Research and Technology, 9(4), 8258–8265. https://doi.org/10.1016/j.jmrt.2020.05.094
  • Shi, S., Xu, A., Fan, J. ve Wei, H. (2012). Study of cobalt-free, Fe-based alloy powder used for sealing surfaces of nuclear valves by laser cladding. Nuclear Engineering and Design, 245, 8–12. https://doi.org/10.1016/j.nucengdes.2012.01.015
  • Shi, X., Ma, S., Liu, C. ve Wu, Q. (2017). Parameter optimization for Ti-47Al-2Cr-2Nb in selective laser melting based on geometric characteristics of single scan tracks. Optics and Laser Technology, 90, 71–79. https://doi.org/10.1016/j.optlastec.2016.11.002
  • Sun, Y. ve Hao, M. (2012). Statistical analysis and optimization of process parameters in Ti6Al4V laser cladding using Nd:YAG laser. Optics and Lasers in Engineering, 50(7), 985–995. https://doi.org/10.1016/j.optlaseng.2012.01.018
  • Tabernero, I., Lamikiz, A., Martínez, S., Ukar, E. ve Figueras, J. (2011). Evaluation of the mechanical properties of Inconel 718 components built by laser cladding. International Journal of Machine Tools and Manufacture, 51(6), 465–470.
  • Thawari, N., Gullipalli, C., Katiyar, J. K. ve Gupta, T. V. K. (2021). Effect of multi-layer laser cladding of Stellite 6 and Inconel 718 materials on clad geometry, microstructure evolution and mechanical properties. Materials Today Communications, 28, 102604.
  • Twomey, P. J. ve Kroll, M. H. (2008). How to use linear regression and correlation in quantitative method comparison studies. International Journal of Clinical Practice, 62(4), 529–538. https://doi.org/10.1111/j.1742-1241.2008.01709.x
  • Wang, C., Zhou, J., Zhang, T., Meng, X., Li, P. ve Huang, S. (2022). Numerical simulation and solidification characteristics for laser cladding of Inconel 718. Optics & Laser Technology, 149, 107843. https://doi.org/10.1016/J.OPTLASTEC.2021.107843
  • Wolff, S. J., ve diğ. (2019). Experimentally validated predictions of thermal history and microhardness in laser-deposited Inconel 718 on carbon steel. Additive Manufacturing, 27, 540–551. https://doi.org/10.1016/j.addma.2019.03.019
  • Yilbas, B. S., Akhtar, S. S. ve Karatas, C. (2010). Laser surface treatment of Inconel 718 alloy: thermal stress analysis. Optics and Lasers in Engineering, 48(7–8), 740–749.
  • Zhai, L. L., Ban, C. Y. ve Zhang, J. W. (2019). Investigation on laser cladding Ni-base coating assisted by electromagnetic field. Optics & Laser Technology, 114, 81–88. https://doi.org/10.1016/J.OPTLASTEC.2019.01.017
  • Zhong, C., Liu, J., Zhao, T., Schopphoven, T., Fu, J., Gasser, A. ve Schleifenbaum, J. H. (2020). Laser metal deposition of Ti6Al4V—a brief review. Applied Sciences, 10(3), 764. https://doi.org/10.3390/APP10030764
Toplam 36 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Makine Mühendisliği (Diğer)
Bölüm Araştırma Makalesi
Yazarlar

Ali Arı 0000-0003-2702-2982

Proje Numarası BAP202316
Gönderilme Tarihi 29 Ekim 2024
Kabul Tarihi 3 Mart 2025
Erken Görünüm Tarihi 11 Nisan 2025
Yayımlanma Tarihi 28 Nisan 2025
Yayımlandığı Sayı Yıl 2025 Cilt: 30 Sayı: 1

Kaynak Göster

APA Arı, A. (2025). INCONEL 718 LAZER DOLGU KAYNAĞINDA ÜRETİM PARAMETRELERİNİN GEOMETRİK ÖZELİKLERE ETKİSİNİN İNCELENMESİ. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi, 30(1), 181-200. https://doi.org/10.17482/uumfd.1575363
AMA Arı A. INCONEL 718 LAZER DOLGU KAYNAĞINDA ÜRETİM PARAMETRELERİNİN GEOMETRİK ÖZELİKLERE ETKİSİNİN İNCELENMESİ. UUJFE. Nisan 2025;30(1):181-200. doi:10.17482/uumfd.1575363
Chicago Arı, Ali. “INCONEL 718 LAZER DOLGU KAYNAĞINDA ÜRETİM PARAMETRELERİNİN GEOMETRİK ÖZELİKLERE ETKİSİNİN İNCELENMESİ”. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi 30, sy. 1 (Nisan 2025): 181-200. https://doi.org/10.17482/uumfd.1575363.
EndNote Arı A (01 Nisan 2025) INCONEL 718 LAZER DOLGU KAYNAĞINDA ÜRETİM PARAMETRELERİNİN GEOMETRİK ÖZELİKLERE ETKİSİNİN İNCELENMESİ. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi 30 1 181–200.
IEEE A. Arı, “INCONEL 718 LAZER DOLGU KAYNAĞINDA ÜRETİM PARAMETRELERİNİN GEOMETRİK ÖZELİKLERE ETKİSİNİN İNCELENMESİ”, UUJFE, c. 30, sy. 1, ss. 181–200, 2025, doi: 10.17482/uumfd.1575363.
ISNAD Arı, Ali. “INCONEL 718 LAZER DOLGU KAYNAĞINDA ÜRETİM PARAMETRELERİNİN GEOMETRİK ÖZELİKLERE ETKİSİNİN İNCELENMESİ”. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi 30/1 (Nisan2025), 181-200. https://doi.org/10.17482/uumfd.1575363.
JAMA Arı A. INCONEL 718 LAZER DOLGU KAYNAĞINDA ÜRETİM PARAMETRELERİNİN GEOMETRİK ÖZELİKLERE ETKİSİNİN İNCELENMESİ. UUJFE. 2025;30:181–200.
MLA Arı, Ali. “INCONEL 718 LAZER DOLGU KAYNAĞINDA ÜRETİM PARAMETRELERİNİN GEOMETRİK ÖZELİKLERE ETKİSİNİN İNCELENMESİ”. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi, c. 30, sy. 1, 2025, ss. 181-00, doi:10.17482/uumfd.1575363.
Vancouver Arı A. INCONEL 718 LAZER DOLGU KAYNAĞINDA ÜRETİM PARAMETRELERİNİN GEOMETRİK ÖZELİKLERE ETKİSİNİN İNCELENMESİ. UUJFE. 2025;30(1):181-200.

DUYURU:

30.03.2021- Nisan 2021 (26/1) sayımızdan itibaren TR-Dizin yeni kuralları gereği, dergimizde basılacak makalelerde, ilk gönderim aşamasında Telif Hakkı Formu yanısıra, Çıkar Çatışması Bildirim Formu ve Yazar Katkısı Bildirim Formu da tüm yazarlarca imzalanarak gönderilmelidir. Yayınlanacak makalelerde de makale metni içinde "Çıkar Çatışması" ve "Yazar Katkısı" bölümleri yer alacaktır. İlk gönderim aşamasında doldurulması gereken yeni formlara "Yazım Kuralları" ve "Makale Gönderim Süreci" sayfalarımızdan ulaşılabilir. (Değerlendirme süreci bu tarihten önce tamamlanıp basımı bekleyen makalelerin yanısıra değerlendirme süreci devam eden makaleler için, yazarlar tarafından ilgili formlar doldurularak sisteme yüklenmelidir).  Makale şablonları da, bu değişiklik doğrultusunda güncellenmiştir. Tüm yazarlarımıza önemle duyurulur.

Bursa Uludağ Üniversitesi, Mühendislik Fakültesi Dekanlığı, Görükle Kampüsü, Nilüfer, 16059 Bursa. Tel: (224) 294 1907, Faks: (224) 294 1903, e-posta: mmfd@uludag.edu.tr