Araştırma Makalesi
BibTex RIS Kaynak Göster

Hector SLAM Based Navigation with Integrated Object Detection

Yıl 2025, Cilt: 30 Sayı: 2, 487 - 500, 20.08.2025
https://doi.org/10.17482/uumfd.1592983

Öz

Bu çalışmanın amacı iç mekanlarda Hector Eş Zamanlı Lokalizasyon ve Haritalama (EZLH) ve “Sadece Bir Defa Bak” (SBDB) kullanan özel yapım bir otonom robotun nesneleri algılamasını ve onları sınıflandırmasını sağlayan bir yaklaşım geliştirmektir. Yaklaşım, Robot İşletim Sistemi (RİS) ve bilgisayarla görme teknolojilerine dayanmaktadır. Mobil robotun hareketi, izlediği yolu ve iletişimi, RİS navigasyon paketiyle kontrol edilmektedir. Makale, yeni bir harita oluşturmak için uygulanan algoritmanın ayrıntılı bir açıklamasının yanı sıra, mobil robotun donanım ve yazılım yapılandırmasına ilişkin bilgileri de sunmaktadır. Nesne tanımlama süreci ve harita oluşturma, düşük bütçeli bir Lazer Görüntüleme Algılama ve Mesafe Ölçümü (LGAMÖ) sensörü ile enkodersiz direkt akım (DA) motorlar kullanılarak yapılmaktadır. Sonuçlar, önerilen tekniğin nesneleri sırasıyla x ve y kartezyen eksenlerinde % 97.8 ve % 94.86 doğrulukla tespit edebildiğini göstermektedir.

Kaynakça

  • Bisallah, H.I., Oguin, K.J. and Oguine, O.C. (2022), YOLO v3: Visual and Real-Time Object Detection Model for Smart Surveillance Systems(3s), doi: 10.48550/arXiv.2209.12447
  • Chghaf, M.R. (2022), Camera, lidar and multi-modal SLAM systems for autonomous ground vehicles: a survey, Journal of Intelligent & Robotic Systems, volume (105):2. doi: 10.1007/s10846-022-01582-8
  • Craig, J.J. (2014), Introduction to Robotics Mechanics and Control (3 ed.), Leeds: Pearson Education Limited
  • Fadhil A. and Hakim H. (2019) Indoor low cost assistive device using 2D SLAM based on LIDAR for visually impaired people, Iraqi Journal of Electrical and Electronic Engineering (15)2: pp 115-12, doi: 10.37917/IJEEE.15.2.12
  • Hess, W., Kohler, D., Rapp, H. and Andor, D. (2016), Real-Time loop closure in 2D LIDAR SLAM, 2016 IEEE International Conference on Robotics and Automation (ICRA), pp: 1271-1278., doi: 10.1109/ICRA.2016.7487258.
  • Hossain, A. and Chowdhury, R.H. (2024) "Implementation of Hector SLAM Algorithm for Mapping Indoor Environments with Obstacles," 2024 IEEE 3rd International Conference on.
  • https://jokane.net/agitr/agitr-letter.pdf, Date of Access: 06.06.2023, Topic: A Gentle Introduction to ROS
  • https://sceweb.sce.uhcl.edu/harman/CENG5437_MobileRobots/Webitems2020/ROS_ROBOTICS_BY_EXAMPLE_SECOND_EDITION.pdf, Date of Access: 07.06.2023, Topic: ROS Robotics By Example-Second Edition. Leeds: Packt.
  • Hyeong, R.K., Lee, S., Park, T. and Kim, C. (2015) RViz: a toolkit for real domain data visualization, Telecommunication Systems (60): 337-345, doi: 10.1007/s11235-015-0034-5
  • K. Kamarudin et al. (2015), Improving performance of 2D SLAM methods by complementing Kinect with laser scanner, 2015 IEEE International Symposium on Robotics and Intelligent Sensors (IRIS), Langkawi, 278-283, doi: 10.1109/IRIS.2015.7451625.
  • Kashi, M.S, Sriram, T.B. and Mohan, R. (2019), An Approach to labelled indoor mapping using SLAM and object detection. 2019 IEEE Region 10 Symposium (TENSYMP), 321-325. doi: 10.1109/TENSYMP46218.2019.8971298
  • Kohlbrecher, S., Meyer, J., Stryk O. von and U. Klingauf (2011), A flexible and scalable SLAM system with full 3D motion estimation, Proc. IEEE International Symposium on Safety, Security and Rescue Robotics (SSRR), 155-160, doi: 10.1109/SSRR.2011.6106777.
  • M. Filipenko and I. Afanasyev (2018). Comparison of Various SLAM Systems for Mobile Robot in an Indoor Environment. In 2018 International Conference on Intelligent Systems (IS), pp. 400-407. doi: 10.1109/IS.2018.8710464.
  • Marder-Eppstein, E. et al. (2010), The office marathon: robust navigation in an indoor office environment, International Conference on Robotics and Automation, 300-307, doi: 10.1109/ROBOT.2010.5509725
  • Robotics, Automation, Artificial-Intelligence and Internet-of-Things (RAAICON), Dhaka, Bangladesh, 2024, pp. 218-223, doi: 10.1109/RAAICON64172.2024.10928605 https://dspace.mit.edu/bitstream/handle/1721.1/119149/16-412j-spring2005/contents/projects/1aslam_blas_repo.pdf, Date of Access: 07.06.2023, Topic: Blas MR and Riisgaard S (2005) SLAM for Dummies: A Tutorial Approach to Simultaneous Localization and Mapping.
  • Sapmaz, S. (2022), Eş zamanlı konum belirleme ve haritalama için bilgisayarlı görü ve sensör tabanlı otonom gezgin robot [A computer vision and sensor based autonomous mobile robot for simultenaous localization and mapping], M. Sc. Thesis, Ege University, TR.

HECTOR SLAM BASED NAVIGATION WITH INTEGRATED OBJECT DETECTION

Yıl 2025, Cilt: 30 Sayı: 2, 487 - 500, 20.08.2025
https://doi.org/10.17482/uumfd.1592983

Öz

The main aim of this study is to develop an approach that detects and classifies objects in indoor areas by applying Hector Simultaneous Localization and Mapping (SLAM) and "You Only Look Once" (YOLO) algorithms to an autonomous, custom-made mobile robot. The approach is based on the Robot Operating System (ROS) and computer vision. The mobile robot's motion, path, and communication are controlled by the ROS navigation package. This paper provides a detailed description of the approach implemented to create a new map with objects, as well as information about the hardware and software configuration of the mobile robot. The object identification process and map creation are performed using a low-budget Laser Imaging Detection and Ranging (LIDAR) sensor and non-encoder DC motors. The results show that the proposed technique can detect objects with an accuracy of 97.8% and 94.86% for the x and y cartesian axes, respectively.

Kaynakça

  • Bisallah, H.I., Oguin, K.J. and Oguine, O.C. (2022), YOLO v3: Visual and Real-Time Object Detection Model for Smart Surveillance Systems(3s), doi: 10.48550/arXiv.2209.12447
  • Chghaf, M.R. (2022), Camera, lidar and multi-modal SLAM systems for autonomous ground vehicles: a survey, Journal of Intelligent & Robotic Systems, volume (105):2. doi: 10.1007/s10846-022-01582-8
  • Craig, J.J. (2014), Introduction to Robotics Mechanics and Control (3 ed.), Leeds: Pearson Education Limited
  • Fadhil A. and Hakim H. (2019) Indoor low cost assistive device using 2D SLAM based on LIDAR for visually impaired people, Iraqi Journal of Electrical and Electronic Engineering (15)2: pp 115-12, doi: 10.37917/IJEEE.15.2.12
  • Hess, W., Kohler, D., Rapp, H. and Andor, D. (2016), Real-Time loop closure in 2D LIDAR SLAM, 2016 IEEE International Conference on Robotics and Automation (ICRA), pp: 1271-1278., doi: 10.1109/ICRA.2016.7487258.
  • Hossain, A. and Chowdhury, R.H. (2024) "Implementation of Hector SLAM Algorithm for Mapping Indoor Environments with Obstacles," 2024 IEEE 3rd International Conference on.
  • https://jokane.net/agitr/agitr-letter.pdf, Date of Access: 06.06.2023, Topic: A Gentle Introduction to ROS
  • https://sceweb.sce.uhcl.edu/harman/CENG5437_MobileRobots/Webitems2020/ROS_ROBOTICS_BY_EXAMPLE_SECOND_EDITION.pdf, Date of Access: 07.06.2023, Topic: ROS Robotics By Example-Second Edition. Leeds: Packt.
  • Hyeong, R.K., Lee, S., Park, T. and Kim, C. (2015) RViz: a toolkit for real domain data visualization, Telecommunication Systems (60): 337-345, doi: 10.1007/s11235-015-0034-5
  • K. Kamarudin et al. (2015), Improving performance of 2D SLAM methods by complementing Kinect with laser scanner, 2015 IEEE International Symposium on Robotics and Intelligent Sensors (IRIS), Langkawi, 278-283, doi: 10.1109/IRIS.2015.7451625.
  • Kashi, M.S, Sriram, T.B. and Mohan, R. (2019), An Approach to labelled indoor mapping using SLAM and object detection. 2019 IEEE Region 10 Symposium (TENSYMP), 321-325. doi: 10.1109/TENSYMP46218.2019.8971298
  • Kohlbrecher, S., Meyer, J., Stryk O. von and U. Klingauf (2011), A flexible and scalable SLAM system with full 3D motion estimation, Proc. IEEE International Symposium on Safety, Security and Rescue Robotics (SSRR), 155-160, doi: 10.1109/SSRR.2011.6106777.
  • M. Filipenko and I. Afanasyev (2018). Comparison of Various SLAM Systems for Mobile Robot in an Indoor Environment. In 2018 International Conference on Intelligent Systems (IS), pp. 400-407. doi: 10.1109/IS.2018.8710464.
  • Marder-Eppstein, E. et al. (2010), The office marathon: robust navigation in an indoor office environment, International Conference on Robotics and Automation, 300-307, doi: 10.1109/ROBOT.2010.5509725
  • Robotics, Automation, Artificial-Intelligence and Internet-of-Things (RAAICON), Dhaka, Bangladesh, 2024, pp. 218-223, doi: 10.1109/RAAICON64172.2024.10928605 https://dspace.mit.edu/bitstream/handle/1721.1/119149/16-412j-spring2005/contents/projects/1aslam_blas_repo.pdf, Date of Access: 07.06.2023, Topic: Blas MR and Riisgaard S (2005) SLAM for Dummies: A Tutorial Approach to Simultaneous Localization and Mapping.
  • Sapmaz, S. (2022), Eş zamanlı konum belirleme ve haritalama için bilgisayarlı görü ve sensör tabanlı otonom gezgin robot [A computer vision and sensor based autonomous mobile robot for simultenaous localization and mapping], M. Sc. Thesis, Ege University, TR.
Toplam 16 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Kontrol Mühendisliği, Mekatronik ve Robotik (Diğer)
Bölüm Araştırma Makalesi
Yazarlar

Saran Sapmaz 0000-0002-9337-3660

Mahmut Pekedis 0000-0002-3350-0277

Gönderilme Tarihi 28 Kasım 2024
Kabul Tarihi 27 Haziran 2025
Erken Görünüm Tarihi 30 Temmuz 2025
Yayımlanma Tarihi 20 Ağustos 2025
Yayımlandığı Sayı Yıl 2025 Cilt: 30 Sayı: 2

Kaynak Göster

APA Sapmaz, S., & Pekedis, M. (2025). HECTOR SLAM BASED NAVIGATION WITH INTEGRATED OBJECT DETECTION. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi, 30(2), 487-500. https://doi.org/10.17482/uumfd.1592983
AMA Sapmaz S, Pekedis M. HECTOR SLAM BASED NAVIGATION WITH INTEGRATED OBJECT DETECTION. UUJFE. Ağustos 2025;30(2):487-500. doi:10.17482/uumfd.1592983
Chicago Sapmaz, Saran, ve Mahmut Pekedis. “HECTOR SLAM BASED NAVIGATION WITH INTEGRATED OBJECT DETECTION”. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi 30, sy. 2 (Ağustos 2025): 487-500. https://doi.org/10.17482/uumfd.1592983.
EndNote Sapmaz S, Pekedis M (01 Ağustos 2025) HECTOR SLAM BASED NAVIGATION WITH INTEGRATED OBJECT DETECTION. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi 30 2 487–500.
IEEE S. Sapmaz ve M. Pekedis, “HECTOR SLAM BASED NAVIGATION WITH INTEGRATED OBJECT DETECTION”, UUJFE, c. 30, sy. 2, ss. 487–500, 2025, doi: 10.17482/uumfd.1592983.
ISNAD Sapmaz, Saran - Pekedis, Mahmut. “HECTOR SLAM BASED NAVIGATION WITH INTEGRATED OBJECT DETECTION”. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi 30/2 (Ağustos2025), 487-500. https://doi.org/10.17482/uumfd.1592983.
JAMA Sapmaz S, Pekedis M. HECTOR SLAM BASED NAVIGATION WITH INTEGRATED OBJECT DETECTION. UUJFE. 2025;30:487–500.
MLA Sapmaz, Saran ve Mahmut Pekedis. “HECTOR SLAM BASED NAVIGATION WITH INTEGRATED OBJECT DETECTION”. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi, c. 30, sy. 2, 2025, ss. 487-00, doi:10.17482/uumfd.1592983.
Vancouver Sapmaz S, Pekedis M. HECTOR SLAM BASED NAVIGATION WITH INTEGRATED OBJECT DETECTION. UUJFE. 2025;30(2):487-500.

DUYURU:

30.03.2021- Nisan 2021 (26/1) sayımızdan itibaren TR-Dizin yeni kuralları gereği, dergimizde basılacak makalelerde, ilk gönderim aşamasında Telif Hakkı Formu yanısıra, Çıkar Çatışması Bildirim Formu ve Yazar Katkısı Bildirim Formu da tüm yazarlarca imzalanarak gönderilmelidir. Yayınlanacak makalelerde de makale metni içinde "Çıkar Çatışması" ve "Yazar Katkısı" bölümleri yer alacaktır. İlk gönderim aşamasında doldurulması gereken yeni formlara "Yazım Kuralları" ve "Makale Gönderim Süreci" sayfalarımızdan ulaşılabilir. (Değerlendirme süreci bu tarihten önce tamamlanıp basımı bekleyen makalelerin yanısıra değerlendirme süreci devam eden makaleler için, yazarlar tarafından ilgili formlar doldurularak sisteme yüklenmelidir).  Makale şablonları da, bu değişiklik doğrultusunda güncellenmiştir. Tüm yazarlarımıza önemle duyurulur.

Bursa Uludağ Üniversitesi, Mühendislik Fakültesi Dekanlığı, Görükle Kampüsü, Nilüfer, 16059 Bursa. Tel: (224) 294 1907, Faks: (224) 294 1903, e-posta: mmfd@uludag.edu.tr