Araştırma Makalesi
BibTex RIS Kaynak Göster

EFFECTS OF RECTANGULAR-SHAPED TURBULATORS ON HEAT TRANSFER, FRICTION FACTORS, AND ENTROPY

Yıl 2025, Cilt: 30 Sayı: 3, 903 - 922, 19.12.2025
https://doi.org/10.17482/uumfd.1676540

Öz

In this study, the effects of turbulators with different P ratios placed in a circular cross-section test pipe under turbulent flow conditions using water as the working fluid on heat transfer, friction factor (f), and entropy production were investigated using Ansys-Fluent 2021. The lowest Nu was calculated as 111 at Re=11825 for P=6, while the highest Nu was calculated as 219 at Re=19133 for P=1. The increase in Nu values for P = 6, 3, 2, 1.5, 1.2, and 1 compared to the plain pipe is 10.34%-11.64%; 17.39%-18.78%; 25.31%-26.56%; 34.42%-35.88%; 43.53%-44.87%; and 50.36%-51.47%, respectively. In turbulent situations, the highest entropy production rate was found to be 0.3631 W/mK at Re=11825 for P=6, while the lowest entropy production rate was found to be 0.2215 W/mK at Re=19133 for P=1. The minimum and maximum Ns reduction compared to the empty pipe was calculated as 7.13% for Re=19133 at P=6 and 46.62% for Re=11825 at P=1, respectively. In turbulent conditions, the highest Bejan number was found to be 0.9931 at Re=11825 for P=6. As a result, it was concluded that a ratio of P=1 provides maximum benefit in terms of heat transfer, while a ratio of P=6 is ideal in terms of total entropy production.

Kaynakça

  • Alam, T., and Kim, M. H. (2018) A comprehensive review on single phase heat transfer enhancement techniques in heat exchanger applications, Renewable and Sustainable Energy Reviews, 81, 813-839. doi:10.1016/J.RSER.2017.08.060
  • Ameen, A. (2006) Refrigeration and Air conditioning, Prentice-Hall of India, New Delhi.
  • Ary, B. K. P., Lee, M. S., Ahn, S. W., and Lee, D. H. (2012) The effect of the inclined perforated baffle on heat transfer and flow patterns in the channel, International Communications in Heat and Mass Transfer, 39(10), 1578-1583. doi:10.1016/J.ICHEATMASSTRANSFER.2012.10.010
  • Bajpai, P. (1999) Application of enzymes in the pulp and paper industry. Biotechnology Progress, 15(2), 147-157. doi:10.1021/bp990013k
  • Bas, H., and Ozceyhan, V. (2012) Heat transfer enhancement in a tube with twisted tape inserts placed separately from the tube wall, Experimental Thermal and Fluid Science, 41, 51-58. doi:10.1016/J.EXPTHERMFLUSCI.2012.03.008
  • Bassols, J., Kuckelkorn, B., Langreck, J., Schneider, R., and Veelken, H. (2002) Trigeneration in the food industry, Applied Thermal Engineering, 22(6), 595-602. doi:10.1016/S1359-4311(01)00111-9
  • Berber, A., Bagirsakci, K., and Gurdal, M. (2018) Investigation of effects on heat transfer and flow characteristics of Cr-Ni alloy and aluminum pins placed in AISI 304 tube, Thermal Science, 1999-2011. doi:10.2298/TSCI180421306B
  • Bhuiya, M. M. K., Sayem, A. S. M., Islam, M., Chowdhury, M. S. U., and Shahabuddin, M. (2014) Performance assessment in a heat exchanger tube fitted with double counter twisted tape inserts, International Communications in Heat and Mass Transfer, 50, 25-33. doi:10.1016/J.ICHEATMASSTRANSFER.2013.11.005
  • Biswal, G., and Kumar Dash, S. (2024) Numerical investigation of unsteady heat transfer from a vertical helical coil, Applied Thermal Engineering, 245, 122872. doi:10.1016/J.APPLTHERMALENG.2024.122872
  • Chowdhury, T. S., Mohsin, F. T., Tonni, M. M., Mita, M. N. H., and Ehsan, M. M. (2023) A critical review on gas turbine cooling performance and failure analysis of turbine blades, International Journal of Thermofluids, 18, 100329. doi:10.1016/J.IJFT.2023.100329
  • Coker, A. K. (2018) Petroleum Refining Design and Applications Handbook, Publisher: Wiley-Scrivener-ISBN:978-1-118-23369-6, https://www.researchgate.net/publication/376397910
  • Eiamsa-Ard, S., Somkleang, P., Nuntadusit, C., and Thianpong, C. (2013) Heat transfer enhancement in tube by inserting uniform/non-uniform twisted-tapes with alternate axes: effect of rotated-axis length, Applied Thermal Engineering, 54(1), 289-309. doi:10.1016/J.APPLTHERMALENG.2013.01.041
  • Firat, I., Karagoz, S., Yildirim, O., and Sonmez, F. (2023) Experimental investigation of the thermal performance effects of turbulators with different fin angles in a circular pipe, International Journal of Thermal Sciences, 184, 107969. doi:10.1016/j.ijthermalsci.2022.107969
  • Firat, I., Karagoz, S., Yildirim, O., and Yilmaz, M. (2023) Performance and entropy production analysis of angle blade turbulators used to increase heat transfer, Journal of Thermal Analysis and Calorimetry, 148, 7811-7828. doi:10.1007/s10973-023-12253-7
  • Heldman, D. R., and Moraru, C. I. (2010) Encyclopedia of Agricultural, Food, and Biological Engineering, Second Edition, CRC Press, Boca Raton. doi:10.1201/9780429257599
  • Fan, Z., Wang, L., Liu, C., and Abdollahi, S. A. (2024) Thermal performance augmentation in a pipe employing hybrid nanofluid and a plate as turbulator with V-shaped double-winglet ribs, Scientific Reports, 14(1). doi:10.1038/s41598-024-57374-7
  • Ganapathy, V. (2014) Steam Generators and Waste Heat Boilers, Crc Press, Boca Raton.
  • Goh, L. H. K., Hung, Y. M., Chen, G. M., and Tso, C. P. (2021) Entropy generation analysis of turbulent convection in a heat exchanger with self-rotating turbulator inserts, International Journal of Thermal Sciences, 160, 106652. doi:10.1016/J.IJTHERMALSCI.2020.106652
  • Guo, J., Cheng, L., and Xu, M. (2009) Optimization design of shell-and-tube heat exchanger by entropy generation minimization and genetic algorithm, Applied Thermal Engineering, 29(14-15), 2954-2960. doi:10.1016/J.APPLTHERMALENG.2009.03.011
  • Han, Y., Wang, X. -sheng, Zhang, H. -nan, Chen, Q. -zhu, and Zhang, Z. (2020) Multi-objective optimization of helically coiled tube heat exchanger based on entropy generation theory, International Journal of Thermal Sciences, 147, 106150. doi:10.1016/J.IJTHERMALSCI.2019.106150
  • Hong, Y., Du, J., and Wang, S. (2017) Turbulent thermal, fluid flow and thermodynamic characteristics in a plain tube fitted with overlapped multiple twisted tapes, International Journal of Heat and Mass Transfer, 115(Part B), 551-565. doi:10.1016/j.ijheatmasstransfer.2017.08.017
  • Ifraj, N. F., Fahad, M. K., Tahsin, S. H., Haque, M. R., and Haque, M. M. (2023) Numerical investigation of the thermal performance optimization inside a heat exchanger tube using different novel combination of perforations on Y-shaped insert, International Journal of Thermal Sciences, 194. doi:10.1016/j.ijthermalsci.2023.108583
  • Jalili, P., and Jalili, B. (2025) Case Studies in Thermal Engineering Computational fluid dynamics simulation of enhanced heat transfer in ground-air heat exchangers using turbulators in PVC pipe systems, Case Studies in Thermal Engineering, 68(February), 105949. doi:10.1016/j.csite.2025.105949
  • Kakaç, S. and Liu, H. (2002) Heat Exchangers Selection, Rating, and Thermal Design, Second Edition, Crc Press, New York.
  • Khanmohammadi, S., and Mazaheri, N. (2019) Second law analysis and multi-criteria optimization of turbulent heat transfer in a tube with inserted single and double twisted tape, International Journal of Thermal Sciences, 145. doi:10.1016/j.ijthermalsci.2019.105998
  • Khfagi, A. M., Hunt, G., Paul, M. C., and Karimi, N. (2022) Computational analysis of heat transfer augmentation and thermodynamic irreversibility of hybrid nanofluids in a tube fitted with classical and elliptical cut twisted tape inserts, Journal of Thermal Analysis and Calorimetry, 147(21), 12093-12110. doi:10.1007/s10973-022-11418-0
  • Khoshvaght-Aliabadi, M., Farsi, M., Hassani, S. M., Abu-Hamdeh, N. H. and Alimoradi, A. (2021) Surface modification of transversely twisted-turbulator using perforations and winglets: An extended study, International Communications in Heat and Mass Transfer, 120, 105020. doi:10.1016/J.ICHEATMASSTRANSFER.2020.105020
  • Kongkaitpaiboon, V., Nanan, K. and Eiamsa-ard, S. (2010) Experimental investigation of heat transfer and turbulent flow friction in a tube fitted with perforated conical-rings, International Communications in Heat and Mass Transfer, 37(5), 560-567. doi:10.1016/j.icheatmasstransfer.2009.12.015
  • Kumar, A., Singh, S., Chamoli, S. and Kumar, M. (2019) Experimental Investigation on Thermo-Hydraulic Performance of Heat Exchanger Tube with Solid and Perforated Circular Disk Along with Twisted Tape Insert, Heat Transfer Engineering, 40(8), 616-626. doi:10.1080/01457632.2018.1436618
  • Lin, Z. M., Wang, L. B. and Zhang, Y. H. (2014) Numerical study on heat transfer enhancement of circular tube bank fin heat exchanger with interrupted annular groove fin, Applied Thermal Engineering, 73(2), 1465-1476. doi:10.1016/J.APPLTHERMALENG.2014.05.073
  • Liu, J., Jiang, Y., Wang, B. and He, S. (2019) Assessment and optimization assistance of entropy generation to air-side comprehensive performance of fin-and-flat tube heat exchanger, International Journal of Thermal Sciences, 138, 61-74. doi:10.1016/J.IJTHERMALSCI.2018.12.022
  • Mahdavi, M., Saffar-Avval, M., Tiari, S. and Mansoori, Z. (2014) Entropy generation and heat transfer numerical analysis in pipes partially filled with porous medium, International Journal of Heat and Mass Transfer, 79, 496-506. doi:10.1016/J.IJHEATMASSTRANSFER.2014.08.037
  • Mertaslan, O. M. and Keklikcioglu, O. (2024) Investigating heat exchanger tube performance: second law efficiency analysis of a novel combination of two heat transfer enhancement techniques, Journal of Thermal Analysis and Calorimetry, 149, 11155-11169. doi:10.1007/s10973-023-12842-6
  • Mousa, M. H., Miljkovic, N. and Nawaz, K. (2021) Review of heat transfer enhancement techniques for single phase flows, Renewable and Sustainable Energy Reviews, 137, 110566. doi:10.1016/J.RSER.2020.110566
  • Nakhchi, M. E. and Esfahani, J. A. (2019) Numerical investigation of different geometrical parameters of perforated conical rings on flow structure and heat transfer in heat exchangers, Applied Thermal Engineering, 156, 494-505. doi:10.1016/J.APPLTHERMALENG.2019.04.067
  • Nakhchi, M. E., Hatami, M. and Rahmati, M. (2021) Effects of CuO nano powder on performance improvement and entropy production of double-pipe heat exchanger with innovative perforated turbulators, Advanced Powder Technology, 32(8), 3063-3074. doi:10.1016/J.APT.2021.06.020
  • Oliet, C., Oliva, A., Castro, J. and Pérez-Segarra, C. D. (2007) Parametric studies on automotive radiators, Applied Thermal Engineering, 27(11-12), 2033-2043. doi:10.1016/J.APPLTHERMALENG.2006.12.006
  • Pazarlıoğlu, H. K., Gürsoy, E., Gürdal, M., Tekir, M., Gedik, E., Arslan, K. and Taşkesen, E. (2023) The first and second law analyses of thermodynamics for CoFe2O4/H2O flow in a sudden expansion tube inserted elliptical dimpled fins, International Journal of Mechanical Sciences, 246(November 2022). doi:10.1016/j.ijmecsci.2023.108144
  • Petinrin, M. O., Bello-Ochende, T., Dare, A. A. and Oyewola, M. O. (2018) Entropy generation minimisation of shell-and-tube heat exchanger in crude oil preheat train using firefly algorithm, Applied Thermal Engineering, 145, 264-276. doi:10.1016/J.APPLTHERMALENG.2018.09.045
  • Rahman, M. A., Hasnain, S. M. M. and Zairov, R. (2024) Assessment of improving heat exchanger thermal performance through implementation of swirling flow technology, International Journal of Thermofluids, 22, 100689. doi:10.1016/J.IJFT.2024.100689
  • Šalić, A., Tušek, A. and Zelić, B. (2012) Application of microreactors in medicine and biomedicine. Journal of Applied Biomedicine, 10(3), 137-153. doi:10.2478/V10136-012-0011-1
  • Saysroy, A. and Eiamsa-ard, S. (2017) Enhancing convective heat transfer in laminar and turbulent flow regions using multi-channel twisted tape inserts, International Journal of Thermal Sciences,. 121 (2017) 55–74. doi:10.1016/J.IJTHERMALSCI.2017.07.002
  • Sharma, A., Tyagi, V. V., Chen, C. R. and Buddhi, D. (2009) Review on thermal energy storage with phase change materials and applications, Renewable and Sustainable Energy Reviews, 13(2), 318-345. doi:10.1016/J.RSER.2007.10.005
  • Shinde, P. V., Kalos, P. S., and Kore, S. S. (2021) Thermal performance of plus shape divider type turbulator with different inclination angles, materialstoday:PROCEEDINGS, 47(16), 5726-5732. doi:10.1016/j.matpr.2021.05.409
  • Sundar, L. S., Shaik, F., Sharma, K. V., Punnaiah, V. and Sousa, A. C. M. (2022) The second law of thermodynamic analysis for longitudinal strip inserted nanodiamond-Fe3O4/water hybrid nanofluids, International Journal of Thermal Sciences, 181, 107721. doi:10.1016/j.ijthermalsci.2022.107721
  • Wang, C., Liu, M., Zhao, Y., Qiao, Y. and Yan, J. (2018) Entropy generation analysis on a heat exchanger with different design and operation factors during transient processes, Energy, 158, 330-342. doi:10.1016/J.ENERGY.2018.06.016
  • Wick, C., Benedict, J. T., Veilleux, R. F., Bakerjian, R. (1984) Tool and Manufacturing Engineers Handbook : A Reference Book for Manufacturing Engineers, Managers, and Technicians, Society of Manufacturing Engineers, Michigan.
  • Wu, X., Zhang, W., Gou, Q., Luo, Z. and Lu, Y. (2014) Numerical simulation of heat transfer and fluid flow characteristics of composite fin, International Journal of Heat and Mass Transfer, 75, 414-424. doi:10.1016/J.IJHEATMASSTRANSFER.2014.03.087
  • Zheng, N., Liu, P., Shan, F., Liu, Z. and Liu, W. (2016) Numerical investigations of the thermal-hydraulic performance in a rib-grooved heat exchanger tube based on entropy generation analysis, Applied Thermal Engineering, 99, 1071-1085. doi:10.1016/J.APPLTHERMALENG.2016.02.008

Dikdörtgen Şekilli Türbülatörlerin Isı Transferi, Sürtünme Faktörü ve Entropi Üzerindeki Etkileri

Yıl 2025, Cilt: 30 Sayı: 3, 903 - 922, 19.12.2025
https://doi.org/10.17482/uumfd.1676540

Öz

Bu çalışmada, çalışma akışkanı olarak su kullanılan, türbülanslı akış şartlarında dairesel kesitli bir test borusuna yerleştirilen farklı P oranlarına sahip türbülatörlerin ısı transferi, sürtünme faktörü (f) ve entropi üretimi üzerindeki etkileri Ansys-Fluent 2021 kullanılarak incelenmiştir. En düşük Nu, P=6 için Re=11825'te 111 olarak hesaplanırken, en yüksek Nu, P=1 için Re=19133'te 219 olarak hesaplanmıştır. P=6, 3, 2, 1,5, 1,2 ve 1 için Nu değerlerindeki artış düz boruya göre sırasıyla %10,34-%11,64; %17,39-%18,78; %25,31-%26,56; %34,42-%35,88; %43,53-%44,87; ve %50,36-%51,47 olarak gerçekleşmiştir. Türbülanslı durumlarda, en yüksek entropi üretim oranının P=6 için Re=11825'te 0,3631 W/mK olduğu, en düşük entropi üretim oranının ise P=1 için Re=19133'te 0,2215 W/mK olduğu bulunmuştur. Boş boruya kıyasla minimum ve maksimum Ns azaltımı, P=6'da Re=19133 için %7,13 ve P=1'de Re=11825 için %46,62 olarak hesaplanmıştır. Türbülanslı durumlarda, en yüksek Bejan sayısı, P=6 için Re=11825'te 0,9931 olarak bulunmuştur. Sonuç olarak, P=1 oranının ısı transferi açısından maksimum fayda sağladığı, P=6 oranının ise toplam entropi üretimi açısından ideal olduğu sonucuna varılmıştır.

Kaynakça

  • Alam, T., and Kim, M. H. (2018) A comprehensive review on single phase heat transfer enhancement techniques in heat exchanger applications, Renewable and Sustainable Energy Reviews, 81, 813-839. doi:10.1016/J.RSER.2017.08.060
  • Ameen, A. (2006) Refrigeration and Air conditioning, Prentice-Hall of India, New Delhi.
  • Ary, B. K. P., Lee, M. S., Ahn, S. W., and Lee, D. H. (2012) The effect of the inclined perforated baffle on heat transfer and flow patterns in the channel, International Communications in Heat and Mass Transfer, 39(10), 1578-1583. doi:10.1016/J.ICHEATMASSTRANSFER.2012.10.010
  • Bajpai, P. (1999) Application of enzymes in the pulp and paper industry. Biotechnology Progress, 15(2), 147-157. doi:10.1021/bp990013k
  • Bas, H., and Ozceyhan, V. (2012) Heat transfer enhancement in a tube with twisted tape inserts placed separately from the tube wall, Experimental Thermal and Fluid Science, 41, 51-58. doi:10.1016/J.EXPTHERMFLUSCI.2012.03.008
  • Bassols, J., Kuckelkorn, B., Langreck, J., Schneider, R., and Veelken, H. (2002) Trigeneration in the food industry, Applied Thermal Engineering, 22(6), 595-602. doi:10.1016/S1359-4311(01)00111-9
  • Berber, A., Bagirsakci, K., and Gurdal, M. (2018) Investigation of effects on heat transfer and flow characteristics of Cr-Ni alloy and aluminum pins placed in AISI 304 tube, Thermal Science, 1999-2011. doi:10.2298/TSCI180421306B
  • Bhuiya, M. M. K., Sayem, A. S. M., Islam, M., Chowdhury, M. S. U., and Shahabuddin, M. (2014) Performance assessment in a heat exchanger tube fitted with double counter twisted tape inserts, International Communications in Heat and Mass Transfer, 50, 25-33. doi:10.1016/J.ICHEATMASSTRANSFER.2013.11.005
  • Biswal, G., and Kumar Dash, S. (2024) Numerical investigation of unsteady heat transfer from a vertical helical coil, Applied Thermal Engineering, 245, 122872. doi:10.1016/J.APPLTHERMALENG.2024.122872
  • Chowdhury, T. S., Mohsin, F. T., Tonni, M. M., Mita, M. N. H., and Ehsan, M. M. (2023) A critical review on gas turbine cooling performance and failure analysis of turbine blades, International Journal of Thermofluids, 18, 100329. doi:10.1016/J.IJFT.2023.100329
  • Coker, A. K. (2018) Petroleum Refining Design and Applications Handbook, Publisher: Wiley-Scrivener-ISBN:978-1-118-23369-6, https://www.researchgate.net/publication/376397910
  • Eiamsa-Ard, S., Somkleang, P., Nuntadusit, C., and Thianpong, C. (2013) Heat transfer enhancement in tube by inserting uniform/non-uniform twisted-tapes with alternate axes: effect of rotated-axis length, Applied Thermal Engineering, 54(1), 289-309. doi:10.1016/J.APPLTHERMALENG.2013.01.041
  • Firat, I., Karagoz, S., Yildirim, O., and Sonmez, F. (2023) Experimental investigation of the thermal performance effects of turbulators with different fin angles in a circular pipe, International Journal of Thermal Sciences, 184, 107969. doi:10.1016/j.ijthermalsci.2022.107969
  • Firat, I., Karagoz, S., Yildirim, O., and Yilmaz, M. (2023) Performance and entropy production analysis of angle blade turbulators used to increase heat transfer, Journal of Thermal Analysis and Calorimetry, 148, 7811-7828. doi:10.1007/s10973-023-12253-7
  • Heldman, D. R., and Moraru, C. I. (2010) Encyclopedia of Agricultural, Food, and Biological Engineering, Second Edition, CRC Press, Boca Raton. doi:10.1201/9780429257599
  • Fan, Z., Wang, L., Liu, C., and Abdollahi, S. A. (2024) Thermal performance augmentation in a pipe employing hybrid nanofluid and a plate as turbulator with V-shaped double-winglet ribs, Scientific Reports, 14(1). doi:10.1038/s41598-024-57374-7
  • Ganapathy, V. (2014) Steam Generators and Waste Heat Boilers, Crc Press, Boca Raton.
  • Goh, L. H. K., Hung, Y. M., Chen, G. M., and Tso, C. P. (2021) Entropy generation analysis of turbulent convection in a heat exchanger with self-rotating turbulator inserts, International Journal of Thermal Sciences, 160, 106652. doi:10.1016/J.IJTHERMALSCI.2020.106652
  • Guo, J., Cheng, L., and Xu, M. (2009) Optimization design of shell-and-tube heat exchanger by entropy generation minimization and genetic algorithm, Applied Thermal Engineering, 29(14-15), 2954-2960. doi:10.1016/J.APPLTHERMALENG.2009.03.011
  • Han, Y., Wang, X. -sheng, Zhang, H. -nan, Chen, Q. -zhu, and Zhang, Z. (2020) Multi-objective optimization of helically coiled tube heat exchanger based on entropy generation theory, International Journal of Thermal Sciences, 147, 106150. doi:10.1016/J.IJTHERMALSCI.2019.106150
  • Hong, Y., Du, J., and Wang, S. (2017) Turbulent thermal, fluid flow and thermodynamic characteristics in a plain tube fitted with overlapped multiple twisted tapes, International Journal of Heat and Mass Transfer, 115(Part B), 551-565. doi:10.1016/j.ijheatmasstransfer.2017.08.017
  • Ifraj, N. F., Fahad, M. K., Tahsin, S. H., Haque, M. R., and Haque, M. M. (2023) Numerical investigation of the thermal performance optimization inside a heat exchanger tube using different novel combination of perforations on Y-shaped insert, International Journal of Thermal Sciences, 194. doi:10.1016/j.ijthermalsci.2023.108583
  • Jalili, P., and Jalili, B. (2025) Case Studies in Thermal Engineering Computational fluid dynamics simulation of enhanced heat transfer in ground-air heat exchangers using turbulators in PVC pipe systems, Case Studies in Thermal Engineering, 68(February), 105949. doi:10.1016/j.csite.2025.105949
  • Kakaç, S. and Liu, H. (2002) Heat Exchangers Selection, Rating, and Thermal Design, Second Edition, Crc Press, New York.
  • Khanmohammadi, S., and Mazaheri, N. (2019) Second law analysis and multi-criteria optimization of turbulent heat transfer in a tube with inserted single and double twisted tape, International Journal of Thermal Sciences, 145. doi:10.1016/j.ijthermalsci.2019.105998
  • Khfagi, A. M., Hunt, G., Paul, M. C., and Karimi, N. (2022) Computational analysis of heat transfer augmentation and thermodynamic irreversibility of hybrid nanofluids in a tube fitted with classical and elliptical cut twisted tape inserts, Journal of Thermal Analysis and Calorimetry, 147(21), 12093-12110. doi:10.1007/s10973-022-11418-0
  • Khoshvaght-Aliabadi, M., Farsi, M., Hassani, S. M., Abu-Hamdeh, N. H. and Alimoradi, A. (2021) Surface modification of transversely twisted-turbulator using perforations and winglets: An extended study, International Communications in Heat and Mass Transfer, 120, 105020. doi:10.1016/J.ICHEATMASSTRANSFER.2020.105020
  • Kongkaitpaiboon, V., Nanan, K. and Eiamsa-ard, S. (2010) Experimental investigation of heat transfer and turbulent flow friction in a tube fitted with perforated conical-rings, International Communications in Heat and Mass Transfer, 37(5), 560-567. doi:10.1016/j.icheatmasstransfer.2009.12.015
  • Kumar, A., Singh, S., Chamoli, S. and Kumar, M. (2019) Experimental Investigation on Thermo-Hydraulic Performance of Heat Exchanger Tube with Solid and Perforated Circular Disk Along with Twisted Tape Insert, Heat Transfer Engineering, 40(8), 616-626. doi:10.1080/01457632.2018.1436618
  • Lin, Z. M., Wang, L. B. and Zhang, Y. H. (2014) Numerical study on heat transfer enhancement of circular tube bank fin heat exchanger with interrupted annular groove fin, Applied Thermal Engineering, 73(2), 1465-1476. doi:10.1016/J.APPLTHERMALENG.2014.05.073
  • Liu, J., Jiang, Y., Wang, B. and He, S. (2019) Assessment and optimization assistance of entropy generation to air-side comprehensive performance of fin-and-flat tube heat exchanger, International Journal of Thermal Sciences, 138, 61-74. doi:10.1016/J.IJTHERMALSCI.2018.12.022
  • Mahdavi, M., Saffar-Avval, M., Tiari, S. and Mansoori, Z. (2014) Entropy generation and heat transfer numerical analysis in pipes partially filled with porous medium, International Journal of Heat and Mass Transfer, 79, 496-506. doi:10.1016/J.IJHEATMASSTRANSFER.2014.08.037
  • Mertaslan, O. M. and Keklikcioglu, O. (2024) Investigating heat exchanger tube performance: second law efficiency analysis of a novel combination of two heat transfer enhancement techniques, Journal of Thermal Analysis and Calorimetry, 149, 11155-11169. doi:10.1007/s10973-023-12842-6
  • Mousa, M. H., Miljkovic, N. and Nawaz, K. (2021) Review of heat transfer enhancement techniques for single phase flows, Renewable and Sustainable Energy Reviews, 137, 110566. doi:10.1016/J.RSER.2020.110566
  • Nakhchi, M. E. and Esfahani, J. A. (2019) Numerical investigation of different geometrical parameters of perforated conical rings on flow structure and heat transfer in heat exchangers, Applied Thermal Engineering, 156, 494-505. doi:10.1016/J.APPLTHERMALENG.2019.04.067
  • Nakhchi, M. E., Hatami, M. and Rahmati, M. (2021) Effects of CuO nano powder on performance improvement and entropy production of double-pipe heat exchanger with innovative perforated turbulators, Advanced Powder Technology, 32(8), 3063-3074. doi:10.1016/J.APT.2021.06.020
  • Oliet, C., Oliva, A., Castro, J. and Pérez-Segarra, C. D. (2007) Parametric studies on automotive radiators, Applied Thermal Engineering, 27(11-12), 2033-2043. doi:10.1016/J.APPLTHERMALENG.2006.12.006
  • Pazarlıoğlu, H. K., Gürsoy, E., Gürdal, M., Tekir, M., Gedik, E., Arslan, K. and Taşkesen, E. (2023) The first and second law analyses of thermodynamics for CoFe2O4/H2O flow in a sudden expansion tube inserted elliptical dimpled fins, International Journal of Mechanical Sciences, 246(November 2022). doi:10.1016/j.ijmecsci.2023.108144
  • Petinrin, M. O., Bello-Ochende, T., Dare, A. A. and Oyewola, M. O. (2018) Entropy generation minimisation of shell-and-tube heat exchanger in crude oil preheat train using firefly algorithm, Applied Thermal Engineering, 145, 264-276. doi:10.1016/J.APPLTHERMALENG.2018.09.045
  • Rahman, M. A., Hasnain, S. M. M. and Zairov, R. (2024) Assessment of improving heat exchanger thermal performance through implementation of swirling flow technology, International Journal of Thermofluids, 22, 100689. doi:10.1016/J.IJFT.2024.100689
  • Šalić, A., Tušek, A. and Zelić, B. (2012) Application of microreactors in medicine and biomedicine. Journal of Applied Biomedicine, 10(3), 137-153. doi:10.2478/V10136-012-0011-1
  • Saysroy, A. and Eiamsa-ard, S. (2017) Enhancing convective heat transfer in laminar and turbulent flow regions using multi-channel twisted tape inserts, International Journal of Thermal Sciences,. 121 (2017) 55–74. doi:10.1016/J.IJTHERMALSCI.2017.07.002
  • Sharma, A., Tyagi, V. V., Chen, C. R. and Buddhi, D. (2009) Review on thermal energy storage with phase change materials and applications, Renewable and Sustainable Energy Reviews, 13(2), 318-345. doi:10.1016/J.RSER.2007.10.005
  • Shinde, P. V., Kalos, P. S., and Kore, S. S. (2021) Thermal performance of plus shape divider type turbulator with different inclination angles, materialstoday:PROCEEDINGS, 47(16), 5726-5732. doi:10.1016/j.matpr.2021.05.409
  • Sundar, L. S., Shaik, F., Sharma, K. V., Punnaiah, V. and Sousa, A. C. M. (2022) The second law of thermodynamic analysis for longitudinal strip inserted nanodiamond-Fe3O4/water hybrid nanofluids, International Journal of Thermal Sciences, 181, 107721. doi:10.1016/j.ijthermalsci.2022.107721
  • Wang, C., Liu, M., Zhao, Y., Qiao, Y. and Yan, J. (2018) Entropy generation analysis on a heat exchanger with different design and operation factors during transient processes, Energy, 158, 330-342. doi:10.1016/J.ENERGY.2018.06.016
  • Wick, C., Benedict, J. T., Veilleux, R. F., Bakerjian, R. (1984) Tool and Manufacturing Engineers Handbook : A Reference Book for Manufacturing Engineers, Managers, and Technicians, Society of Manufacturing Engineers, Michigan.
  • Wu, X., Zhang, W., Gou, Q., Luo, Z. and Lu, Y. (2014) Numerical simulation of heat transfer and fluid flow characteristics of composite fin, International Journal of Heat and Mass Transfer, 75, 414-424. doi:10.1016/J.IJHEATMASSTRANSFER.2014.03.087
  • Zheng, N., Liu, P., Shan, F., Liu, Z. and Liu, W. (2016) Numerical investigations of the thermal-hydraulic performance in a rib-grooved heat exchanger tube based on entropy generation analysis, Applied Thermal Engineering, 99, 1071-1085. doi:10.1016/J.APPLTHERMALENG.2016.02.008
Toplam 49 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Makine Mühendisliği (Diğer)
Bölüm Araştırma Makalesi
Yazarlar

İlker Fırat 0000-0003-1835-2285

Gönderilme Tarihi 15 Nisan 2025
Kabul Tarihi 4 Ağustos 2025
Erken Görünüm Tarihi 11 Aralık 2025
Yayımlanma Tarihi 19 Aralık 2025
Yayımlandığı Sayı Yıl 2025 Cilt: 30 Sayı: 3

Kaynak Göster

APA Fırat, İ. (2025). EFFECTS OF RECTANGULAR-SHAPED TURBULATORS ON HEAT TRANSFER, FRICTION FACTORS, AND ENTROPY. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi, 30(3), 903-922. https://doi.org/10.17482/uumfd.1676540
AMA Fırat İ. EFFECTS OF RECTANGULAR-SHAPED TURBULATORS ON HEAT TRANSFER, FRICTION FACTORS, AND ENTROPY. UUJFE. Aralık 2025;30(3):903-922. doi:10.17482/uumfd.1676540
Chicago Fırat, İlker. “EFFECTS OF RECTANGULAR-SHAPED TURBULATORS ON HEAT TRANSFER, FRICTION FACTORS, AND ENTROPY”. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi 30, sy. 3 (Aralık 2025): 903-22. https://doi.org/10.17482/uumfd.1676540.
EndNote Fırat İ (01 Aralık 2025) EFFECTS OF RECTANGULAR-SHAPED TURBULATORS ON HEAT TRANSFER, FRICTION FACTORS, AND ENTROPY. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi 30 3 903–922.
IEEE İ. Fırat, “EFFECTS OF RECTANGULAR-SHAPED TURBULATORS ON HEAT TRANSFER, FRICTION FACTORS, AND ENTROPY”, UUJFE, c. 30, sy. 3, ss. 903–922, 2025, doi: 10.17482/uumfd.1676540.
ISNAD Fırat, İlker. “EFFECTS OF RECTANGULAR-SHAPED TURBULATORS ON HEAT TRANSFER, FRICTION FACTORS, AND ENTROPY”. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi 30/3 (Aralık2025), 903-922. https://doi.org/10.17482/uumfd.1676540.
JAMA Fırat İ. EFFECTS OF RECTANGULAR-SHAPED TURBULATORS ON HEAT TRANSFER, FRICTION FACTORS, AND ENTROPY. UUJFE. 2025;30:903–922.
MLA Fırat, İlker. “EFFECTS OF RECTANGULAR-SHAPED TURBULATORS ON HEAT TRANSFER, FRICTION FACTORS, AND ENTROPY”. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi, c. 30, sy. 3, 2025, ss. 903-22, doi:10.17482/uumfd.1676540.
Vancouver Fırat İ. EFFECTS OF RECTANGULAR-SHAPED TURBULATORS ON HEAT TRANSFER, FRICTION FACTORS, AND ENTROPY. UUJFE. 2025;30(3):903-22.

DUYURU:

30.03.2021- Nisan 2021 (26/1) sayımızdan itibaren TR-Dizin yeni kuralları gereği, dergimizde basılacak makalelerde, ilk gönderim aşamasında Telif Hakkı Formu yanısıra, Çıkar Çatışması Bildirim Formu ve Yazar Katkısı Bildirim Formu da tüm yazarlarca imzalanarak gönderilmelidir. Yayınlanacak makalelerde de makale metni içinde "Çıkar Çatışması" ve "Yazar Katkısı" bölümleri yer alacaktır. İlk gönderim aşamasında doldurulması gereken yeni formlara "Yazım Kuralları" ve "Makale Gönderim Süreci" sayfalarımızdan ulaşılabilir. (Değerlendirme süreci bu tarihten önce tamamlanıp basımı bekleyen makalelerin yanısıra değerlendirme süreci devam eden makaleler için, yazarlar tarafından ilgili formlar doldurularak sisteme yüklenmelidir).  Makale şablonları da, bu değişiklik doğrultusunda güncellenmiştir. Tüm yazarlarımıza önemle duyurulur.

Bursa Uludağ Üniversitesi, Mühendislik Fakültesi Dekanlığı, Görükle Kampüsü, Nilüfer, 16059 Bursa. Tel: (224) 294 1907, Faks: (224) 294 1903, e-posta: mmfd@uludag.edu.tr