Derleme
BibTex RIS Kaynak Göster

AĞAÇ İŞLEME ENDÜSTRİSİNDE ATIKSU ARITIM UYGULAMALARININ İNCELENMESİ

Yıl 2025, Cilt: 30 Sayı: 3, 1047 - 1064, 19.12.2025
https://doi.org/10.17482/uumfd.1741316

Öz

Bu çalışma, ağaç işleme endüstrisinden kaynaklanan atıksuların çevresel etkilerini azaltmak amacıyla kullanılan farklı atıksu arıtma yöntemlerini incelemektedir. Türkiye’de önemli bir yere sahip olan bu sektörde kullanılan kimyasallar ve üretim süreçlerinden kaynaklanan atıksuların özellikleri incelenmiştir. Özellikle üre-formaldehit, melamin-formaldehit ve fenol-formaldehit gibi sentetik reçineler ve ahşap koruyucu maddelerin bu endüstride yaygın kullanımı, atıksu kalitesini olumsuz yönde etkilemektedir. Ağaç işleme endüstrisinin atıksuları, yüksek organik yük, askıda katı madde, lignin ve çeşitli kimyasal/toksik bileşenler içermesi nedeniyle oldukça karmaşık bir yapıya sahiptir. Bu sebeple, bu atıksuların etkin bir şekilde arıtılabilmesi için özel arıtma yöntemlerine ihtiyaç duyulmaktadır. Literatürde ağaç işleme endüstrisi atıksularının arıtımı için farklı yöntemler yer almaktadır. Bu çalışma kapsamında, ağaç işleme endüstrisi atıksularının arıtımında yaygın olarak kullanılan koagülasyon-flokülasyon, membran filtrasyon ve ileri oksidasyon (İOP) yöntemleri incelenmiştir. Literatür taramaları, bu tür atıksuların arıtımında İOP’lerin sıklıkla tercih edildiğini göstermektedir. Ayrıca yüksek askıda katı madde içeren bu atıksularda, koagülasyon-flokülasyon yönteminin etkili bir ön arıtma aşaması olarak kullanılabileceği vurgulanmıştır. Bu çalışma, ağaç işleme endüstrisinden üretilen atıksuların arıtımı konusunda mevcut bilgileri derleyerek, bu alandaki gelecek araştırmalara ışık tutmayı amaçlamaktadır.

Kaynakça

  • Adhikari, S., ve Ozarska, B. (2018) Minimizing environmental impacts of timber products through the production process “From Sawmill to Final Products”. Environmental Systems Research, 7(1), 6. https://doi.org/10.1186/s40068-018-0109-x
  • Arias, O., Ligero, P., ve Soto, M. (2020) Methane production potential and anaerobic treatability of wastewater and sludge from medium density fibreboard manufacturing. Journal of Cleaner Production, 277, 123283. https://doi.org/10.1016/j.jclepro.2020.123283
  • Ayob, S., Othman, N., ve Altowayti, W. (2022) Concentrations of Zn, Mn and Al in wood chips from wood-based manufacturing industries. IOP Conference Series: Earth and Environmental Science, 1022, 012065. https://doi.org/10.1088/1755-1315/1022/1/012065
  • Azimi, S. C., Shirini, F., ve Pendashteh, A. (2021a) Preparation and application of α-Fe2O3@TiO2@SO3H for photocatalytic degradation and COD reduction of woodchips industry wastewater. Environmental Science and Pollution Research, 28(40), 56449-56472. https://doi.org/10.1007/s11356-021-14085-0
  • Azimi, S. C., Shirini, F., ve Pendashteh, A. (2021b) Treatment of wood industry wastewater by combined coagulation-flocculation-decantation and fenton process. Water Environment Research: A Research Publication of the Water Environment Federation, 93(3), 433-444. https://doi.org/10.1002/wer.1441
  • Balcik-Canbolat, C., Sakar, H., Karagunduz, A., ve Keskinler, B. (2016) Advanced treatment of biologically treated medium density fiberboard (MDF) wastewater with Fenton and Fenton enhanced hydrodynamic cavitation process. Journal of Chemical Technology & Biotechnology, 91(12), 2935–2941. https://doi.org/10.1002/jctb.4909
  • Basem, A., Jasim, D., Majdi, H., Mohammed, R., Ahmed, M., Al-Rubaye, A., ve Kianfar, E. (2024) Adsorption of Heavy Metals from Wastewater by Chitosan: A Review. Results in Engineering, 102404. https://doi.org/10.1016/j.rineng.2024.102404
  • Bay, A., Ghorbannezhad, P., Yazdan Moghadam, J., ve Aali, R. (2021) Reuse of Wood-Based Industrial Wastewater through Optimization of Electrocoagulation Process Using Aluminum and Iron Electrodes. Journal of Renewable Energy and Environment, 8(4), 12-18. https://doi.org/10.30501/jree.2021.256108.1159
  • Bennani, Y., Kosutić, K., Drazević, E., ve Rozeć, M. (2012) Wastewater from wood and pulp industry treated by combination of coagulation, adsorption on modified clinoptilolite tuff and membrane processes. Environmental Technology, 33(10-12), 1159-1166. https://doi.org/10.1080/09593330.2011.610828
  • Bouchareb, R., Derbal, K., Özay, Y., Bilici, Z., ve Dizge, N. (2020) Combined natural/chemical coagulation and membrane filtration for wood processing wastewater treatment. Journal of Water Process Engineering, 37, 101521. https://doi.org/10.1016/j.jwpe.2020.101521
  • Brovkina, J., Shulga, G., ve Ozolins, J. (2015) Coagulation Of Wood Pollutants From Model Wastewater By Aluminium Salts. Environment. Technology. Resources. Proceedings of the International Scientific and Practical Conference, 1. https://doi.org/10.17770/etr2011vol1.886
  • Caglak, A., Kurtoglu Akkaya, G., ve Sari Erkan, H. (2025) Electrocoagulation as a stand-alone and hybrid strategy for medium-density fibreboard wastewater treatment: Performance, energy consumption and radical oxidant effects. Process Safety and Environmental Protection, 201, 107531. https://doi.org/10.1016/j.psep.2025.107531
  • Cao, S., Jiang, W., Zhao, M., Liu, A., Wang, M., Wu, Q., ve Sun, Y. (2022) Pretreatment Hydrolysis Acidification/Two-Stage AO Combination Process to Treat High-Concentration Resin Production Wastewater. Water, 14(19), Article 19. https://doi.org/10.3390/w14192949
  • Changotra, R., Rajput, H., Liu, B., Murray, G., ve He, Q. (Sophia). (2024) Occurrence, fate, and potential impacts of wood preservatives in the environment: Challenges and environmentally friendly solutions. Chemosphere, 352, 141291. https://doi.org/10.1016/j.chemosphere.2024.141291
  • Dermawan, D., Ghani, L., ve Prawidya, A. (2023) Melamine Acetate Preparation as a Urea-Formaldehyde Resin Additive for Particleboard Production. ASEAN Journal of Chemical Engineering, 23, 178. https://doi.org/10.22146/ajche.79192
  • Engür, O., ve Kartal, N. (2014) Orman ürünleri endüstrisinde çevre kirliliği ve kontrolu. Journal of the Faculty of Forestry Istanbul University, 51(2), Article 2. https://doi.org/10.17099/jffiu.14951
  • Environmental Protection Agency (EPA), (2017) Timber Products Processing Effluent Guidelines. Erişim Adresi: https://www.epa.gov/eg/timber-products-processing-effluent-guidelines. Erişim Tarihi: 03.07.2025
  • FAOSTAT, (2023) https://www.fao.org/faostat/en/#data/FO. Erişim Tarihi: 24.06.2025
  • Gonçalves, S., Paiva, N., Martins, J., Magalhães, F., ve Carvalho, L. (2024) Effect of Lignosulphonates on the Moisture Resistance of Phenol-Formaldehyde Resins for Exterior Plywood. Materials, 17, 3715. https://doi.org/10.3390/ma17153715
  • Hansson, H. (2014) Treatment of wastewater generated by wood-based dry industries: Advanced oxidation processes and electrocoagulation. https://doi.org/10.13140/2.1.3506.0166
  • Hansson, H., Kaczala, F., Amaro, A., Marques, M., ve Hogland, W. (2015) Advanced Oxidation Treatment of Recalcitrant Wastewater from a Wood-Based Industry: A Comparative Study of O3 and O3/UV. Water, Air, & Soil Pollution, 226(7), 229. https://doi.org/10.1007/s11270-015-2468-5
  • Hübner, U., Spahr, S., Lutze, H., Wieland, A., Rüting, S., Gernjak, W., ve Wenk, J. (2024) Advanced oxidation processes for water and wastewater treatment – Guidance for systematic future research. Heliyon, 10(9), e30402. https://doi.org/10.1016/j.heliyon.2024.e30402
  • Jia, L., Chu, J., Ma, L., Qi, X., ve Kumar, A. (2019) Life Cycle Assessment of Plywood Manufacturing Process in China. International Journal of Environmental Research and Public Health, 16(11), 2037. https://doi.org/10.3390/ijerph16112037
  • Klauson, D., Klein, K., Kivi, A., Kattel, E., Viisimaa, M., Dulova, N., Velling, S., Trapido, M., ve Tenno, T. (2015) Combined methods for the treatment of a typical hardwood soaking basin wastewater from plywood industry. International Journal of Environmental Science and Technology, 12(11), 3575-3586. https://doi.org/10.1007/s13762-015-0777-2
  • Lao, W.-L., ve Chang, L. (2023) Comparative life cycle assessment of medium density fiberboard and particleboard: A case study in China. Industrial Crops and Products, 205, 117443. https://doi.org/10.1016/j.indcrop.2023.117443
  • Nisa, T. ul, Khokhar, W. A., Imran, U., Khokhar, S. A., ve Soomro, N. (2023) Electrochemical treatment of wastewater containing urea-formaldehyde and melamine-formaldehyde. Chemosphere, 338, 139587. https://doi.org/10.1016/j.chemosphere.2023.139587
  • Prasad, H., Lohchab, R. K., Singh, B., Nain, A., ve Kumari, M. (2019) Lime treatment of wastewater in a plywood industry to achieve the zero liquid discharge. Journal of Cleaner Production, 240, 118176. https://doi.org/10.1016/j.jclepro.2019.118176
  • Qiu, Z. (2022) Application of Colloid Theory in Urea Formaldehyde Resin. American Journal of Polymer Science and Technology, 8(1), Article 1. https://doi.org/10.11648/j.ajpst.20220801.12
  • Ray, D., Ammayappan, L., Nayak, L., ve Ghosh, R. (2016) Synthetic resins and their properties in respect of development of jute based composite boards. International Journal of Agriculture, Environment and Biotechnology, 9, 443. https://doi.org/10.5958/2230-732X.2016.00057.7
  • Shafeeyan, M. S. (2024) Application of photocatalytic and fenton processes for the degradation of toxic pollutants from pulp and paper industry effluents. Water Resources and Industry, 32, 100260. https://doi.org/10.1016/j.wri.2024.100260
  • Solak, M. (2023) Application of Classical Fenton Process and Advanced Photo Electro Fenton Process for the Degradation of COD from Wood Processing Wastewater: A Comparative Study. Sakarya University Journal of Science, 27(3), Article 3. https://doi.org/10.16984/saufenbilder.1173306
  • Su Kirliliği Kontrolü Yöntemliği (SKKY), (2004) Resmi Gazete, 25687. Erişim Adresi: https://www.mevzuat.gov.tr/mevzuat?. Erişim Tarihi: 12.07.2025
  • Süzen, Y., ve Günay, A. (2024) Yonga levha endüstrisi atık sularının kimyasal ön arıtımı ve yanıt yüzey yöntemi ile optimizasyonu. Balıkesir Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 26(1), 41-52. https://doi.org/10.25092/baunfbed.1328496
  • Toczyłowska-Mamińska, R. (2020) Wood-Based Panel Industry Wastewater Meets Microbial Fuel Cell Technology. International Journal of Environmental Research and Public Health, 17(7), Article 7. https://doi.org/10.3390/ijerph17072369
  • Trapido, M., Tenno, T., Goi, A., Dulova, N., Kattel, E., Klauson, D., Klein, K., Tenno, T., ve Viisimaa, M. (2017) Bio-recalcitrant pollutants removal from wastewater with combination of the Fenton treatment and biological oxidation. Journal of Water Process Engineering, 16, 277-282. https://doi.org/10.1016/j.jwpe.2017.02.007
  • Wang, L. K., Hung, Y.-T., Lo, H. H., ve Yapijakis, C. (Eds.). (2004) Handbook of Industrial and Hazardous Wastes Treatment (0 ed.). CRC Press. https://doi.org/10.1201/9780203026519
  • Yeşilkaya, M., Daş, G., ve Yaşin, M. (2023) Türkiye orman ürünleri sektörünün döngüsel ekonomi ve endüstriyel simbiyoz bağlamında değerlendirilmesi Evaluation of the Turkish forest products industry in the context of circular economy and industrial symbiosis. Journal of Turkish Operations Management, 7, 1701-1723. https://doi.org/10.56554/jtom.1169240
  • Yılmaz, E. (2024) Environmental impact assessment of melamine coated medium density fiberboard (MDF-LAM) production and cumulative energy demand: A case study in Türkiye. Case Studies in Construction Materials, 20, e02733. https://doi.org/10.1016/j.cscm.2023.e02733
  • Zhu, J., Dong, Y., Wang, Q., Han, J., Li, Z., Xu, D., Fischer, L., Ulbricht, M., ve Ren, Z. (2024) Advancements in magnetic catalysts: Preparation, modification, and applications in photocatalytic and environmental remediation. Science of The Total Environment, 957, 177595. https://doi.org/10.1016/j.scitotenv.2024.177595

Review of Wastewater Treatment Applications in the Wood Processing Industry

Yıl 2025, Cilt: 30 Sayı: 3, 1047 - 1064, 19.12.2025
https://doi.org/10.17482/uumfd.1741316

Öz

This study examines various wastewater treatment methods used to reduce the environmental impacts of wastewater originating from the wood processing industry. The characteristics of wastewater resulting from the chemicals and production processes used in this sector, which holds a significant position in Türkiye, have been investigated. In particular, the widespread use of synthetic resins, such as urea-formaldehyde, melamine-formaldehyde, and phenol-formaldehyde, as well as wood preservatives in this industry, negatively affects wastewater quality. Wood processing industry’s wastewater has a very complex structure, due to its high organic load, suspended solids, lignin, and various chemical/toxic components. Therefore, special treatment methods are required to effectively treat these wastewaters. Different methods are reported in the literature tackling the treatment of wastewater originating from the wood processing industry. Within the scope of this study, coagulation-flocculation, membrane filtration, and advanced oxidation processes (AOPs), commonly used in the treatment of wood processing industry wastewater, have been examined. Literature reviews show that AOPs are frequently preferred for the treatment of such wastewaters. Additionally, it has been emphasized that the coagulation-flocculation method can be used as an effective pre-treatment stage in those wastewaters with high suspended solids content. This study aims to compile the existing information on the treatment of wastewaters produced by the wood processing industry and shed light on future research in this field.

Kaynakça

  • Adhikari, S., ve Ozarska, B. (2018) Minimizing environmental impacts of timber products through the production process “From Sawmill to Final Products”. Environmental Systems Research, 7(1), 6. https://doi.org/10.1186/s40068-018-0109-x
  • Arias, O., Ligero, P., ve Soto, M. (2020) Methane production potential and anaerobic treatability of wastewater and sludge from medium density fibreboard manufacturing. Journal of Cleaner Production, 277, 123283. https://doi.org/10.1016/j.jclepro.2020.123283
  • Ayob, S., Othman, N., ve Altowayti, W. (2022) Concentrations of Zn, Mn and Al in wood chips from wood-based manufacturing industries. IOP Conference Series: Earth and Environmental Science, 1022, 012065. https://doi.org/10.1088/1755-1315/1022/1/012065
  • Azimi, S. C., Shirini, F., ve Pendashteh, A. (2021a) Preparation and application of α-Fe2O3@TiO2@SO3H for photocatalytic degradation and COD reduction of woodchips industry wastewater. Environmental Science and Pollution Research, 28(40), 56449-56472. https://doi.org/10.1007/s11356-021-14085-0
  • Azimi, S. C., Shirini, F., ve Pendashteh, A. (2021b) Treatment of wood industry wastewater by combined coagulation-flocculation-decantation and fenton process. Water Environment Research: A Research Publication of the Water Environment Federation, 93(3), 433-444. https://doi.org/10.1002/wer.1441
  • Balcik-Canbolat, C., Sakar, H., Karagunduz, A., ve Keskinler, B. (2016) Advanced treatment of biologically treated medium density fiberboard (MDF) wastewater with Fenton and Fenton enhanced hydrodynamic cavitation process. Journal of Chemical Technology & Biotechnology, 91(12), 2935–2941. https://doi.org/10.1002/jctb.4909
  • Basem, A., Jasim, D., Majdi, H., Mohammed, R., Ahmed, M., Al-Rubaye, A., ve Kianfar, E. (2024) Adsorption of Heavy Metals from Wastewater by Chitosan: A Review. Results in Engineering, 102404. https://doi.org/10.1016/j.rineng.2024.102404
  • Bay, A., Ghorbannezhad, P., Yazdan Moghadam, J., ve Aali, R. (2021) Reuse of Wood-Based Industrial Wastewater through Optimization of Electrocoagulation Process Using Aluminum and Iron Electrodes. Journal of Renewable Energy and Environment, 8(4), 12-18. https://doi.org/10.30501/jree.2021.256108.1159
  • Bennani, Y., Kosutić, K., Drazević, E., ve Rozeć, M. (2012) Wastewater from wood and pulp industry treated by combination of coagulation, adsorption on modified clinoptilolite tuff and membrane processes. Environmental Technology, 33(10-12), 1159-1166. https://doi.org/10.1080/09593330.2011.610828
  • Bouchareb, R., Derbal, K., Özay, Y., Bilici, Z., ve Dizge, N. (2020) Combined natural/chemical coagulation and membrane filtration for wood processing wastewater treatment. Journal of Water Process Engineering, 37, 101521. https://doi.org/10.1016/j.jwpe.2020.101521
  • Brovkina, J., Shulga, G., ve Ozolins, J. (2015) Coagulation Of Wood Pollutants From Model Wastewater By Aluminium Salts. Environment. Technology. Resources. Proceedings of the International Scientific and Practical Conference, 1. https://doi.org/10.17770/etr2011vol1.886
  • Caglak, A., Kurtoglu Akkaya, G., ve Sari Erkan, H. (2025) Electrocoagulation as a stand-alone and hybrid strategy for medium-density fibreboard wastewater treatment: Performance, energy consumption and radical oxidant effects. Process Safety and Environmental Protection, 201, 107531. https://doi.org/10.1016/j.psep.2025.107531
  • Cao, S., Jiang, W., Zhao, M., Liu, A., Wang, M., Wu, Q., ve Sun, Y. (2022) Pretreatment Hydrolysis Acidification/Two-Stage AO Combination Process to Treat High-Concentration Resin Production Wastewater. Water, 14(19), Article 19. https://doi.org/10.3390/w14192949
  • Changotra, R., Rajput, H., Liu, B., Murray, G., ve He, Q. (Sophia). (2024) Occurrence, fate, and potential impacts of wood preservatives in the environment: Challenges and environmentally friendly solutions. Chemosphere, 352, 141291. https://doi.org/10.1016/j.chemosphere.2024.141291
  • Dermawan, D., Ghani, L., ve Prawidya, A. (2023) Melamine Acetate Preparation as a Urea-Formaldehyde Resin Additive for Particleboard Production. ASEAN Journal of Chemical Engineering, 23, 178. https://doi.org/10.22146/ajche.79192
  • Engür, O., ve Kartal, N. (2014) Orman ürünleri endüstrisinde çevre kirliliği ve kontrolu. Journal of the Faculty of Forestry Istanbul University, 51(2), Article 2. https://doi.org/10.17099/jffiu.14951
  • Environmental Protection Agency (EPA), (2017) Timber Products Processing Effluent Guidelines. Erişim Adresi: https://www.epa.gov/eg/timber-products-processing-effluent-guidelines. Erişim Tarihi: 03.07.2025
  • FAOSTAT, (2023) https://www.fao.org/faostat/en/#data/FO. Erişim Tarihi: 24.06.2025
  • Gonçalves, S., Paiva, N., Martins, J., Magalhães, F., ve Carvalho, L. (2024) Effect of Lignosulphonates on the Moisture Resistance of Phenol-Formaldehyde Resins for Exterior Plywood. Materials, 17, 3715. https://doi.org/10.3390/ma17153715
  • Hansson, H. (2014) Treatment of wastewater generated by wood-based dry industries: Advanced oxidation processes and electrocoagulation. https://doi.org/10.13140/2.1.3506.0166
  • Hansson, H., Kaczala, F., Amaro, A., Marques, M., ve Hogland, W. (2015) Advanced Oxidation Treatment of Recalcitrant Wastewater from a Wood-Based Industry: A Comparative Study of O3 and O3/UV. Water, Air, & Soil Pollution, 226(7), 229. https://doi.org/10.1007/s11270-015-2468-5
  • Hübner, U., Spahr, S., Lutze, H., Wieland, A., Rüting, S., Gernjak, W., ve Wenk, J. (2024) Advanced oxidation processes for water and wastewater treatment – Guidance for systematic future research. Heliyon, 10(9), e30402. https://doi.org/10.1016/j.heliyon.2024.e30402
  • Jia, L., Chu, J., Ma, L., Qi, X., ve Kumar, A. (2019) Life Cycle Assessment of Plywood Manufacturing Process in China. International Journal of Environmental Research and Public Health, 16(11), 2037. https://doi.org/10.3390/ijerph16112037
  • Klauson, D., Klein, K., Kivi, A., Kattel, E., Viisimaa, M., Dulova, N., Velling, S., Trapido, M., ve Tenno, T. (2015) Combined methods for the treatment of a typical hardwood soaking basin wastewater from plywood industry. International Journal of Environmental Science and Technology, 12(11), 3575-3586. https://doi.org/10.1007/s13762-015-0777-2
  • Lao, W.-L., ve Chang, L. (2023) Comparative life cycle assessment of medium density fiberboard and particleboard: A case study in China. Industrial Crops and Products, 205, 117443. https://doi.org/10.1016/j.indcrop.2023.117443
  • Nisa, T. ul, Khokhar, W. A., Imran, U., Khokhar, S. A., ve Soomro, N. (2023) Electrochemical treatment of wastewater containing urea-formaldehyde and melamine-formaldehyde. Chemosphere, 338, 139587. https://doi.org/10.1016/j.chemosphere.2023.139587
  • Prasad, H., Lohchab, R. K., Singh, B., Nain, A., ve Kumari, M. (2019) Lime treatment of wastewater in a plywood industry to achieve the zero liquid discharge. Journal of Cleaner Production, 240, 118176. https://doi.org/10.1016/j.jclepro.2019.118176
  • Qiu, Z. (2022) Application of Colloid Theory in Urea Formaldehyde Resin. American Journal of Polymer Science and Technology, 8(1), Article 1. https://doi.org/10.11648/j.ajpst.20220801.12
  • Ray, D., Ammayappan, L., Nayak, L., ve Ghosh, R. (2016) Synthetic resins and their properties in respect of development of jute based composite boards. International Journal of Agriculture, Environment and Biotechnology, 9, 443. https://doi.org/10.5958/2230-732X.2016.00057.7
  • Shafeeyan, M. S. (2024) Application of photocatalytic and fenton processes for the degradation of toxic pollutants from pulp and paper industry effluents. Water Resources and Industry, 32, 100260. https://doi.org/10.1016/j.wri.2024.100260
  • Solak, M. (2023) Application of Classical Fenton Process and Advanced Photo Electro Fenton Process for the Degradation of COD from Wood Processing Wastewater: A Comparative Study. Sakarya University Journal of Science, 27(3), Article 3. https://doi.org/10.16984/saufenbilder.1173306
  • Su Kirliliği Kontrolü Yöntemliği (SKKY), (2004) Resmi Gazete, 25687. Erişim Adresi: https://www.mevzuat.gov.tr/mevzuat?. Erişim Tarihi: 12.07.2025
  • Süzen, Y., ve Günay, A. (2024) Yonga levha endüstrisi atık sularının kimyasal ön arıtımı ve yanıt yüzey yöntemi ile optimizasyonu. Balıkesir Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 26(1), 41-52. https://doi.org/10.25092/baunfbed.1328496
  • Toczyłowska-Mamińska, R. (2020) Wood-Based Panel Industry Wastewater Meets Microbial Fuel Cell Technology. International Journal of Environmental Research and Public Health, 17(7), Article 7. https://doi.org/10.3390/ijerph17072369
  • Trapido, M., Tenno, T., Goi, A., Dulova, N., Kattel, E., Klauson, D., Klein, K., Tenno, T., ve Viisimaa, M. (2017) Bio-recalcitrant pollutants removal from wastewater with combination of the Fenton treatment and biological oxidation. Journal of Water Process Engineering, 16, 277-282. https://doi.org/10.1016/j.jwpe.2017.02.007
  • Wang, L. K., Hung, Y.-T., Lo, H. H., ve Yapijakis, C. (Eds.). (2004) Handbook of Industrial and Hazardous Wastes Treatment (0 ed.). CRC Press. https://doi.org/10.1201/9780203026519
  • Yeşilkaya, M., Daş, G., ve Yaşin, M. (2023) Türkiye orman ürünleri sektörünün döngüsel ekonomi ve endüstriyel simbiyoz bağlamında değerlendirilmesi Evaluation of the Turkish forest products industry in the context of circular economy and industrial symbiosis. Journal of Turkish Operations Management, 7, 1701-1723. https://doi.org/10.56554/jtom.1169240
  • Yılmaz, E. (2024) Environmental impact assessment of melamine coated medium density fiberboard (MDF-LAM) production and cumulative energy demand: A case study in Türkiye. Case Studies in Construction Materials, 20, e02733. https://doi.org/10.1016/j.cscm.2023.e02733
  • Zhu, J., Dong, Y., Wang, Q., Han, J., Li, Z., Xu, D., Fischer, L., Ulbricht, M., ve Ren, Z. (2024) Advancements in magnetic catalysts: Preparation, modification, and applications in photocatalytic and environmental remediation. Science of The Total Environment, 957, 177595. https://doi.org/10.1016/j.scitotenv.2024.177595
Toplam 39 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Çevre Mühendisliği (Diğer)
Bölüm Derleme
Yazarlar

Rehap Elorabi 0009-0009-5265-822X

Feryal Akbal 0000-0001-6871-928X

Gönderilme Tarihi 13 Temmuz 2025
Kabul Tarihi 5 Eylül 2025
Erken Görünüm Tarihi 11 Aralık 2025
Yayımlanma Tarihi 19 Aralık 2025
Yayımlandığı Sayı Yıl 2025 Cilt: 30 Sayı: 3

Kaynak Göster

APA Elorabi, R., & Akbal, F. (2025). AĞAÇ İŞLEME ENDÜSTRİSİNDE ATIKSU ARITIM UYGULAMALARININ İNCELENMESİ. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi, 30(3), 1047-1064. https://doi.org/10.17482/uumfd.1741316
AMA Elorabi R, Akbal F. AĞAÇ İŞLEME ENDÜSTRİSİNDE ATIKSU ARITIM UYGULAMALARININ İNCELENMESİ. UUJFE. Aralık 2025;30(3):1047-1064. doi:10.17482/uumfd.1741316
Chicago Elorabi, Rehap, ve Feryal Akbal. “AĞAÇ İŞLEME ENDÜSTRİSİNDE ATIKSU ARITIM UYGULAMALARININ İNCELENMESİ”. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi 30, sy. 3 (Aralık 2025): 1047-64. https://doi.org/10.17482/uumfd.1741316.
EndNote Elorabi R, Akbal F (01 Aralık 2025) AĞAÇ İŞLEME ENDÜSTRİSİNDE ATIKSU ARITIM UYGULAMALARININ İNCELENMESİ. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi 30 3 1047–1064.
IEEE R. Elorabi ve F. Akbal, “AĞAÇ İŞLEME ENDÜSTRİSİNDE ATIKSU ARITIM UYGULAMALARININ İNCELENMESİ”, UUJFE, c. 30, sy. 3, ss. 1047–1064, 2025, doi: 10.17482/uumfd.1741316.
ISNAD Elorabi, Rehap - Akbal, Feryal. “AĞAÇ İŞLEME ENDÜSTRİSİNDE ATIKSU ARITIM UYGULAMALARININ İNCELENMESİ”. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi 30/3 (Aralık2025), 1047-1064. https://doi.org/10.17482/uumfd.1741316.
JAMA Elorabi R, Akbal F. AĞAÇ İŞLEME ENDÜSTRİSİNDE ATIKSU ARITIM UYGULAMALARININ İNCELENMESİ. UUJFE. 2025;30:1047–1064.
MLA Elorabi, Rehap ve Feryal Akbal. “AĞAÇ İŞLEME ENDÜSTRİSİNDE ATIKSU ARITIM UYGULAMALARININ İNCELENMESİ”. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi, c. 30, sy. 3, 2025, ss. 1047-64, doi:10.17482/uumfd.1741316.
Vancouver Elorabi R, Akbal F. AĞAÇ İŞLEME ENDÜSTRİSİNDE ATIKSU ARITIM UYGULAMALARININ İNCELENMESİ. UUJFE. 2025;30(3):1047-64.

DUYURU:

30.03.2021- Nisan 2021 (26/1) sayımızdan itibaren TR-Dizin yeni kuralları gereği, dergimizde basılacak makalelerde, ilk gönderim aşamasında Telif Hakkı Formu yanısıra, Çıkar Çatışması Bildirim Formu ve Yazar Katkısı Bildirim Formu da tüm yazarlarca imzalanarak gönderilmelidir. Yayınlanacak makalelerde de makale metni içinde "Çıkar Çatışması" ve "Yazar Katkısı" bölümleri yer alacaktır. İlk gönderim aşamasında doldurulması gereken yeni formlara "Yazım Kuralları" ve "Makale Gönderim Süreci" sayfalarımızdan ulaşılabilir. (Değerlendirme süreci bu tarihten önce tamamlanıp basımı bekleyen makalelerin yanısıra değerlendirme süreci devam eden makaleler için, yazarlar tarafından ilgili formlar doldurularak sisteme yüklenmelidir).  Makale şablonları da, bu değişiklik doğrultusunda güncellenmiştir. Tüm yazarlarımıza önemle duyurulur.

Bursa Uludağ Üniversitesi, Mühendislik Fakültesi Dekanlığı, Görükle Kampüsü, Nilüfer, 16059 Bursa. Tel: (224) 294 1907, Faks: (224) 294 1903, e-posta: mmfd@uludag.edu.tr