Araştırma Makalesi
BibTex RIS Kaynak Göster

Yüksek Deşarj Oranlarında İnsansız Hava Araçlarında Batarya Isıl Yönetimi İçin Sekizgen ve Bükümlü Kanatçıkların Karşılaştırılması

Yıl 2025, Cilt: 30 Sayı: 3, 957 - 976, 19.12.2025
https://doi.org/10.17482/uumfd.1767600

Öz

Kanatçıklı soğutma yöntemi, özellikle bataryalarda başarılı sonuçları nedeniyle, etkili bir yaklaşım olarak kabul edilmektedir. Batarya tepe sıcaklığını istenen aralıkta tutmak ve böylece insansız hava araçlarının (İHA) uçuş performansını iyileştirmek ve servis ömrünü uzatmak için, bu makale lityumpolimer bataryaların kanatçık ile soğutmasını ele almaktadır. Bir 6s1p lityum-polimer batarya, sekizgen ve bükülmüş kanatçıklarla ayrı ayrı modellenmiştir. Her iki model de bir rüzgar tünelinde RNG k-ε modeli kullanılarak simüle edilmiştir. Kanatçıksız batarya modelinin tepe sıcaklıkları, kanatçıklı modellerin tepe sıcaklıkları ile karşılaştırılmıştır. Bu çalışmanın motivasyonu, sekizgen ve bükülmüş kanatçıkları kullanarak yüksek deşarj oranlarında kese tipi lityum-polimer bataryaların ısıl yönetimini sağlamak suretiyle İHA’ların uçuş performansını artırmak ve servis ömrünü uzatmaktır. Sonuçlara göre, bükülmüş kanatçıkları içeren batarya modeli, aynı sınır şartları altında sekizgen kanatçıklara kıyasla yaklaşık 1 K daha düşük tepe sıcaklıklarına olanak sağlamaktadır. Sekizgen ve bükülmüş kanatçıklı batarya modelleri için 268.15 K hava giriş sıcaklığı ve 2.4 m/s hava giriş hızı, tepe sıcaklığını sırasıyla 307.44 K ve 305.97 K’de tutabilmektedir. Bu çalışma, İHA’larda batarya ısıl yönetimi için yeni kanatçıkların önemine dair bir bakış açısı sunmaktadır.

Kaynakça

  • Adam, N. M., Attia, O. H., Al-Sulttani, A. O., Mahmood, H. A., As’arry, A. and Md Rezali, K. A. (2020). Numerical analysis for solar panel subjected with an external force to overcome adhesive force in desert areas. CFDL, 12(9), 60–75. doi: 10.37934/ cfdl.12.9.6075
  • Akula, R., Minnikanti, A. and Balaji, C. (2024). Pin fin-PCM composite heat sink solution for thermal management of cylindrical Li-ion battery, Applied Thermal Engineering, 248 (12), 123146. doi: 10.1016/j.applthermaleng.2024.123146
  • Aljumaili, A., Alaiwi, Y. and Al-Khafaji, Z. (2024). Investigating back surface cooling system using phase change materials and heatsink on photovoltaic performance, Journal of Engineering and Sustainable Development, 28(3), 294–315. doi: 10.31272/jeasd.28.3.1
  • Alzwayi, A. and Paul, M. C. (2024). Effective battery pack cooling by controlling flow patterns with vertical and spiral fins, Thermal Science and Engineering Progress, 55(4), 102907. doi: 10.1016/j.tsep.2024.102907
  • Ansys. (2013). ANSYS Meshing User’s Guide, pp. 724–746.
  • Aslan, E., Aydın, Y. and Yaşa, Y. (2022). Consideration of graphene material in PCM with aluminum fin structure for improving the battery cooling performance, International Journal of Energy Research, 46(8), 10758–1069. doi: 10.1002/er.7878
  • Bamrah, P., Chauhan, M. K. and Sikarwar, B. S. (2022). CFD analysis of battery thermal management system, Journal of Physics: Conference Series, 2178(1), 12035. doi: 10.1088/1742-6596/2178/1/012035
  • Bernardi, D., Pawlikowski, E. and Newman, J. (1984). General energy balance for battery systems, Electrochemical Society Extended Abstracts, 84(2), 164–165.
  • Bhave, M. A. and Taherian, H. (2014). Aerodynamics of intercity bus and its impact on CO₂ reductions, Fourteenth Annual Early Career Technical Conference, The University of Alabama, Alabama, 165-172. doi: 10.13140/2.1.1252.7046
  • Bhawna., Phogat, P., Shreya, S., Jha, R. and Singh, S. (2025). Advancements and challenges in lithium-ion and lithium-polymer batteries: Towards sustainable energy storage solutions, Ionics, 31(6), 5263–5289. doi: 10.1007/s11581-025-06309-x
  • Bo, L., Mahdi, J. M., Rahbari, A., Majdi, H. S., Xin, Y., Yaïci, W. and Talebizadehsardari, P. (2022). Twisted-fin parametric study to enhance the solidification performance of phase-change material in a shell-and-tube latent heat thermal energy storage system, Journal of Computational Design and Engineering, 9(6), 2297–2313. doi: 10.1093/jcde/qwac107
  • Chen, D., Jiang, J., Kim, G. H., Yang, C. and Pesaran, A. (2016). Comparison of different cooling methods for lithium ion battery cells. Applied thermal engineering, 94, 846-854. doi: 10.1016/j.applthermaleng.2015.10.015
  • Chen, K., Chen, Y., She, Y., Song, M., Wang, S. and Chen, L. (2020). Construction of effective symmetrical air-cooled system for battery thermal management, Applied Thermal Engineering, 166, 114679. doi: 10.1016/j.applthermaleng.2019.114679
  • Chen, K., Wu, W., Yuan, F., Chen, L. and Wang, S. (2019). Cooling efficiency improvement of air-cooled battery thermal management system through designing the flow pattern, Energy, 167, 781–790. doi: 10.1016/j.energy.2018.11.011
  • Cheng, L., Garg, A., Jishnu, A. K. and Gao, L. (2020). Surrogate based multi-objective design optimization of lithium-ion battery air-cooled system in electric vehicles, Journal of Energy Storage, 31(2), 101645. doi: 10.1016/j.est.2020.101645
  • Cho, S. H., Cha, M. Y., Kim, M., Sohn, Y. J., Yang, T. H. and Lee, W. Y. (2016). A feasibility study for a stratospheric long-endurance hybrid unmanned aerial vehicle using a regenerative fuel cell system, Journal of Electrochemical Science and Technology, 7(1), 41–51. doi: 10.5229/JECST.2016.7.1.41
  • Cui, Y., Gu, X., Xi, J., Zou, Y., Wang, Y., Ding, P. and Wang, X. (2025). Performance optimization of lithium-ion battery based on CFD numerical simulation and deep learning algorithm, Journal of Energy Storage, 127(6), 117156. doi: 10.1016/j.est.2025.117156
  • Dagdevir, T. and Ding, Y. (2024). Numerical investigation of battery thermal management by using helical fin and composite phase change material, Journal of Energy Storage, 75 (9), 109674. doi: 10.1016/j.est.2023.109674
  • Domalanta, M. R. B., and Paraggua, J. A. D. (2023). A multiphysics model simulating the electrochemical, thermal, and thermal runaway behaviors of lithium polymer battery. Energies, 16(6), 2642. doi: 10.3390/en16062642
  • Dönmez, E. and Bulut, E. (2024). Investigation of the effect of different design and flow parameters on battery cooling system performance, Uludağ University Journal of Faculty of Engineering, 29(3), 819–830. doi: 10.17482/uumfd.1570344
  • Emam, M. and Ahmed, M. (2018). Cooling concentrator photovoltaic systems using various configurations of phase-change material heat sinks, Energy Conversion and Management, 158, 298–314. doi: 10.1016/j.enconman.2017.12.077
  • ERCmarket Website, (2025). Access address: https://www.ercmarket.com/gens-ace-5100mah-80c-222v-6s1p-lipo-battery-pack-with-ec5-plug/ Access date: 08.07.2025.
  • Esmaeili, Z. and Khoshvaght-Aliabadi, M. (2023). Thermal management and temperature uniformity enhancement of cylindrical lithium-ion battery pack based on liquid cooling equipped with twisted tapes, Journal of the Taiwan Institute of Chemical Engineers, 148, 104671. doi: 10.1016/j.jtice.2023.104671
  • Fan, X., Meng, C., Yang, Y., Lin, J., Li, W., Zhao, Y., Xie, S. and Jiang, C. (2023). Numerical optimization of the cooling effect of a bionic fishbone channel liquid cooling plate for a large prismatic lithium-ion battery pack with high discharge rate, Journal of Energy Storage, 72, 108239. doi: 10.1016/j.est.2023.108239
  • Fu, L., Zhang, Z., Sheng, L., Kuang, Z., Zhu, Z. and Bi, Q. (2025). Pouch lithium-ion battery thermal management by using a new liquid-cooling plate with honeycomb-like fins, Case Studies in Thermal Engineering, 69(367), 105945. doi: 10.1016/j.csite.2025.105945
  • Ghalambaz, M., Mahdi, J. M., Shafaghat, A., Eisapour, A. H., Younis, O., Sardari, P. T. and Yaïci, W. (2021). Effect of twisted fin array in a triple-tube latent heat storage system during the charging mode, Sustainability, 13(5), 2685. doi: 10.3390/su13052685
  • Hasan, H. A., Togun, H., Abed, A. M., Qasem, N. A. A., Abderrahmane, A., Guedri, K. and Eldin. S. M. (2023). Numerical investigation on cooling cylindrical lithium-ion-battery by using different types of nanofluids in an innovative cooling system, Case Studies in Thermal Engineering, 49 (January 1995), 103097. doi: 10.1016/j.csite.2023.103097
  • Incropera, F. P. and DeWitt, D. P. (1996). Introduction to Heat Transfer, John Wiley & Sons Inc, New York.
  • Ismail, M., Panter, J. R. and Landini, S. (2025). Numerical investigation of fin geometries on the effectiveness of passive, phase-change material− based thermal management systems for lithium-ion batteries. Applied Thermal Engineering, 262, 125216. doi: 10.1016/j.applthermaleng.2024.125216
  • Ji, S., Huadan, C., Qi, P., Liu, Z. and Li, P. (2025). Hydrothermal performance enhancement of heat sink using low flow-drag twisted blade-like fins. International Journal of Heat and Fluid Flow, 111, 109669. doi: 10.1016/j.ijheatfluidflow.2024.109669
  • Kim, C., Han, J. and Hong, S. (2022). Evaluation of spoiler model based on air cooling on lithium-ion battery pack temperature uniformity, Processes, 10(3), 505. doi: 10.3390/pr10030505
  • Kummitha, O. R. (2023). Thermal cooling of li-ion cylindrical cells battery module with baffles arrangement for airflow cooling numerical analysis, Journal of Energy Storage, 59 (2), 106474. doi: 10.1016/j.est.2022.106474
  • Larrañaga-Ezeiza, M.., Navarro, G. V., Garmendia, I. G., Arroiabe, P. F., Martinez-Aguirre, M. and Arostegui, J. B. (2022). Parametric optimisation of a direct liquid cooling–based prototype for electric vehicles focused on pouch-type battery cells, World Electric Vehicle Journal, 13(8), 149. doi: 10.3390/wevj13080149
  • Li, N., Liu, X., Yu, B., Li, L., Xu, J. and Tan, Q. (2021). Study on the environmental adaptability of lithium-ion battery powered UAV under extreme temperature conditions, Energy, 219(18), 119481. doi: 10.1016/j.energy.2020.119481
  • Li, X., He, F. and Ma, L. (2013). Thermal management of cylindrical batteries investigated using wind tunnel testing and computational fluid dynamics simulation, Journal of Power Sources, 238, 395–402. doi: 10.1016/j.jpowsour.2013.04.073
  • Li, Y. and Liu, M. (2022). Path planning of electric VTOL UAV considering minimum energy consumption in urban areas, Sustainability, 14(20), 13421. doi: 10.3390/su142013421
  • Li, Y., Zhang, K. and Chang, S. M. (2024). Optimization of fin parameters in cooling systems for temperature uniformity enhancement in battery module applications with offset strip fins, Numerical Heat Transfer, Part A: Applications, 86(16), 5648–5665. doi: 10.1080/10407782.2024.2333043
  • Liu, H., Jin, C., Li, H. and Ji, Y. (2023). A numerical study of PCM battery thermal management performance enhancement with fin structures, Energy Reports, 9, 1793–1802. doi: 10.1016/j.egyr.2023.04.214
  • Liu, J., Ma, Q. and Li, X. (2022). Numerical simulation of the combination of novel spiral fin and phase change material for cylindrical lithium-ion batteries in passive thermal management, Energies, 15(23), 8847. doi: 10.3390/en15238847
  • Luo, M., Zhang, Y., Wang, Z., Niu, Y., Lu, B., Zhu, J., Zhang. J. and Wang. K. (2024). Thermal performance enhancement with snowflake fins and liquid cooling in PCM-based battery thermal management system at high ambient temperature and high discharge rate, Journal of Energy Storage, 90(2), 111754. doi: 10.1016/j.est.2024.111754
  • Lv, Z., Sun, Z., Wang, L., Liu, Q. and Zhang, J. (2025). Multi-level thermal modeling and management of battery energy storage systems, Batteries, 11(6), 219. doi: 10.3390/batteries11060219
  • Mahamud, R. and Park, C. (2011). Reciprocating air flow for Li-ion battery thermal management to improve temperature uniformity. Journal of Power Sources, 196(13), 5685-5696. doi: 10.1016/j.jpowsour.2011.02.076
  • Murthy, K. K., Podila, A., Nataraj, C., Niranjan, H., Alagirisamy, M., Lakshmanan, R. and Selvaperumal, S. (2024). Enhancement of Heat Transfer in Octagonal Fin Tube Heat Exchanger with Various Side Ratios. In International Conference on Data Engineering and Communication Technology, 465-476. Springer Nature, Singapore.
  • Pan, H., Liu, X., Yang, Q., Xu, H. and Xu, D. (2023). Three-dimensional Lattice Boltzmann study on structure optimization and heat dissipation performance of pin-fin heat sink integrated with phase change material, Journal of Energy Storage, 71(20), 108233. doi: 10.1016 /j.est.2023.108233
  • Patil, M. S., Seo, J. H., Panchal, S., Jee, S. W. and Lee, M. Y. (2020). Investigation on thermal performance of water-cooled Li-ion pouch cell and pack at high discharge rate with U-turn type microchannel cold plate, International Journal of Heat and Mass Transfer, 155 (04), 119728. doi: 10.1016/j.ijheatmasstransfer.2020.119728
  • Perini, F., Zha, K., Busch, S. and Reitz, R. (2017). Comparison of linear, non-linear and generalized RNG-based k-epsilon models for turbulent diesel engine flows, SAE International, doi: 10.4271/2017-01-0561
  • Schimpe, M., von Kuepach, M. E., Naumann, M., Hesse, H. C., Smith, K. and Jossen, A. (2018). Comprehensive modeling of temperature-dependent degradation mechanisms in lithium iron phosphate batteries, Journal of the Electrochemical Society, 165(2), A181–A193. doi: 10.1149/2.1181714jes
  • Sharma, A. R., Sai, C. S., Kumar, A., Reddy, R. V. J., Danyharsha, D. and Jilte, R. (2021). Three-dimensional CFD study on heat dissipation in cylindrical lithium-ion battery module, Materials Today: Proceedings, 46(9), 10964–10968. doi: 10.1016/j.matpr.2021.02.041
  • Shi, Q., Liu, Q., Zhang, B., Yao, X., Zhu, X., Ju, X. and Xu, C. (2025). Multi-objective optimization of an immersion cooling battery module with manifold jet impingement: Based on precision model for high-capacity batteries, International Communications in Heat and Mass Transfer, 161, 108448. doi: 10.1016/j.icheatmasstransfer.2024.108448
  • Shukla, I., Tupkari, S. S., Raman, A. K. and Mullick, A. N. (2012). Wall Y+ approach for dealing with turbulent flow through a constant area duct, The 4th Internatonal Meeting of Advances in Thermofluids, AIP Conference Proceedings, Melaka, 1395–1404. doi: 10.1063/1.4704213
  • Sissenwine, N., Wexler, H., Teweles, S. and Dubin, M. COESA. (1976). The United States Committee on Extension to the Standard Atmosphere.
  • Sklavounos, S. and Rigas, F. (2006). Simulation of Coyote series trials-Part I, Chemical Engineering Science, 61(5), 1434–1443. doi: 10.1016/j.ces.2005.08.042
  • Sun, X., Mahdi, J. M., Mohammed, H. I., Majdi, H. S., Zixiong, W. and Talebizadehsardari, P. (2021). Solidification enhancement in a triple-tube latent heat energy storage system using twisted fins, Energies, 14(21), 7179. doi: 10.3390/en14217179
  • Sutheesh, P. M., Atul, A. P. and Rohinikumar, B. (2024). Numerical and experimental investigations of thermal performance of lithium-ion battery with hybrid cooling system under dry-out condition, Journal of Energy Storage, 84, 110889. doi: 10.1016/j.est.2024.110889
  • Şefkat, G. and Özel, M. A. (2020). Elektrikli araçlarda kullanılan pil hücresinin elektriksel ve termal modeli, Uludağ University Journal of The Faculty of Engineering, 25(1), 51–64. doi: 10.17482/uumfd.541391
  • Tan, W. J., Kueh, T. C., Tan, M. K., Wang, X. and Hung, Y. M. (2025). Enhanced cooling performance of lithium polymer batteries using micro heat pipes integrated with carbon nanotubes coatings, International Journal of Heat and Mass Transfer, 247(49), 127164. doi: 10.1016/j.ijheatmasstransfer.2025.127164
  • Uzal, H., Şener, R. and Oktay, H. (2023). Elektrikli araçlarda hava giriş konumu ve hızının batarya soğutma performansına etkisinin araştırılması, International Journal of Advances in Engineering and Pure Sciences, 35(1), 116–124. doi: 10.7240/jeps.1239910
  • Vashisht, S., Rakshit, D., Panchal, S., Fowler, M. and Fraser, R. (2025). Experimental estimation of heat generating parameters for battery module using inverse prediction method, International Communications in Heat and Mass Transfer, 162 (100381), 108539. doi: 10.1016/j.icheatmasstransfer.2024.108539
  • Wang, F., Bai, L., Fletcher, J., Whiteford, J. and Cullen, D. (2008). Development of small domestic wind turbine with scoop and prediction of its annual power output, Renewable Energy, 33(7), 1637–1651. doi: 10.1016/j.renene.2007.08.008
  • Wang, H., He, F. and Ma, L. (2016). Experimental and modeling study of controller-based thermal management of battery modules under dynamic loads, International Journal of Heat and Mass Transfer, 103(9), 154–164. doi: 10.1016/j.ijheatmasstransfer.2016.07.041
  • Wang, J., Huang, W., Pei, A., Li, Y., Shi, F., Yu, X. and Cui. Y. (2019). Improving cyclability of Li metal batteries at elevated temperatures and its origin revealed by cryo-electron microscopy, Nature Energy, 4(8), 664–670. doi: 10.1038/s41560-019-0413-3
  • Wang, Z., Zou, Z., Zhou, Y., Geng, X., Sun, Y., Huang, X. and Hao, M. (2025). Performance comparison of battery cold plates designed using topology optimization across laminar and turbulent flow regime, International Journal of Heat and Mass Transfer, 238(1), 126450. doi: 10.1016/j.ijheatmasstransfer.2024.126450
  • Xiao, J., Zhang, X., Bénard, P., Yang, T., Zeng, J. and Long, X. (2023). Fin structure and liquid cooling to enhance heat transfer of composite phase change materials in battery thermal management system, Energy Storage, 5(6), doi: 10.1002/est2.453
  • Xiong, M., Wang, N., Li, W., Garg, A. and Gao, L. (2023). Study on the heat dissipation performance of a liquid cooling battery pack with different pin-fins, Batteries, 9(1), 44. doi: 10.3390/batteries9010044
  • Yakhot, V., Orszag, S. A., Thangam, S., Gatski, T. B. and Speziale, C. G. (1992). Development of turbulence models for shear flows by a double expansion technique, Physics of Fluids A: Fluid Dynamics, 4(7), 1510–1520. doi: 10.1063/1.858424
  • Yousefi, E., Ramasamy, D., Kadirgama, K., Talele, V., Najafi, H., Olyaei, M., Miljkovic, N. and Panchal, S. (2025). Electrochemical-thermal modeling of phase change material battery thermal management systems: Investigating mesh types for accurate simulations, International Journal of Heat and Mass Transfer, 247, 127107. doi: 10.1016/j.ijheatmasstransfer.2025.127107
  • Zhang, F., Wang, Y., Li, X., Tian, Z. and Xie, Y. (2025). Thermal characteristics and optimization of a novel liquid cooling plate with cavities and flow-enhancing fins, International Communications in Heat and Mass Transfer, 165(6), 109042. doi: 10.1016/j.icheatmasstransfer.2025.109042
  • Zhao, G., Wang, X., Negnevitsky, M., Li, C., Zhang, H. and Cheng, Y. (2023). A high-performance vortex adjustment design for an air-cooling battery thermal management system in electric vehicles, Batteries, 9(4), 208. doi: 10.3390/batteries9040208
  • Zolot, M., Pesaran, A. A. and Mihalic, M. (2002). Thermal evaluation of Toyota Prius battery pack, SAE International, doi: 10.4271/2002-01-1962

COMPARISON OF OCTAGONAL AND TWISTED FINS FOR BATTERY THERMAL MANAGEMENT IN UNMANNED AERIAL VEHICLES AT HIGH DISCHARGE RATES

Yıl 2025, Cilt: 30 Sayı: 3, 957 - 976, 19.12.2025
https://doi.org/10.17482/uumfd.1767600

Öz

Cooling strategy including fins is considered as an effective approach due to its successful results, especially in batteries. To maintain the battery peak temperature within a desired range and thereby improve flight performance and extend service life of unmanned aerial vehicles (UAVs), this paper deals with fin cooling of lithium-polymer batteries. A 6s1p lithium-polymer battery is modeled with octagonal and twisted fins separately. Both models are simulated in a wind tunnel by using RNG k-ε model. Peak temperatures of finless battery model are compared with those of finned models. The motivation of this study is to improve flight performance and extend service life of UAVs by ensuring thermal management of pouch-type lithium-polymer batteries under high discharge rates using octagonal and twisted fins. According to the results, battery model including twisted fins enables lower peak temperatures approximately by 1 K compared to those of octagonal fins under the same boundary conditions. Inlet air temperature of 268.15 K and inlet air velocity of 2.4 m/s for battery models with octagonal and twisted fins can keep peak temperature at 307.44 K and 305.97 K, respectively. This paper provides an insight into the significance of novel fins for battery thermal management in UAVs.

Kaynakça

  • Adam, N. M., Attia, O. H., Al-Sulttani, A. O., Mahmood, H. A., As’arry, A. and Md Rezali, K. A. (2020). Numerical analysis for solar panel subjected with an external force to overcome adhesive force in desert areas. CFDL, 12(9), 60–75. doi: 10.37934/ cfdl.12.9.6075
  • Akula, R., Minnikanti, A. and Balaji, C. (2024). Pin fin-PCM composite heat sink solution for thermal management of cylindrical Li-ion battery, Applied Thermal Engineering, 248 (12), 123146. doi: 10.1016/j.applthermaleng.2024.123146
  • Aljumaili, A., Alaiwi, Y. and Al-Khafaji, Z. (2024). Investigating back surface cooling system using phase change materials and heatsink on photovoltaic performance, Journal of Engineering and Sustainable Development, 28(3), 294–315. doi: 10.31272/jeasd.28.3.1
  • Alzwayi, A. and Paul, M. C. (2024). Effective battery pack cooling by controlling flow patterns with vertical and spiral fins, Thermal Science and Engineering Progress, 55(4), 102907. doi: 10.1016/j.tsep.2024.102907
  • Ansys. (2013). ANSYS Meshing User’s Guide, pp. 724–746.
  • Aslan, E., Aydın, Y. and Yaşa, Y. (2022). Consideration of graphene material in PCM with aluminum fin structure for improving the battery cooling performance, International Journal of Energy Research, 46(8), 10758–1069. doi: 10.1002/er.7878
  • Bamrah, P., Chauhan, M. K. and Sikarwar, B. S. (2022). CFD analysis of battery thermal management system, Journal of Physics: Conference Series, 2178(1), 12035. doi: 10.1088/1742-6596/2178/1/012035
  • Bernardi, D., Pawlikowski, E. and Newman, J. (1984). General energy balance for battery systems, Electrochemical Society Extended Abstracts, 84(2), 164–165.
  • Bhave, M. A. and Taherian, H. (2014). Aerodynamics of intercity bus and its impact on CO₂ reductions, Fourteenth Annual Early Career Technical Conference, The University of Alabama, Alabama, 165-172. doi: 10.13140/2.1.1252.7046
  • Bhawna., Phogat, P., Shreya, S., Jha, R. and Singh, S. (2025). Advancements and challenges in lithium-ion and lithium-polymer batteries: Towards sustainable energy storage solutions, Ionics, 31(6), 5263–5289. doi: 10.1007/s11581-025-06309-x
  • Bo, L., Mahdi, J. M., Rahbari, A., Majdi, H. S., Xin, Y., Yaïci, W. and Talebizadehsardari, P. (2022). Twisted-fin parametric study to enhance the solidification performance of phase-change material in a shell-and-tube latent heat thermal energy storage system, Journal of Computational Design and Engineering, 9(6), 2297–2313. doi: 10.1093/jcde/qwac107
  • Chen, D., Jiang, J., Kim, G. H., Yang, C. and Pesaran, A. (2016). Comparison of different cooling methods for lithium ion battery cells. Applied thermal engineering, 94, 846-854. doi: 10.1016/j.applthermaleng.2015.10.015
  • Chen, K., Chen, Y., She, Y., Song, M., Wang, S. and Chen, L. (2020). Construction of effective symmetrical air-cooled system for battery thermal management, Applied Thermal Engineering, 166, 114679. doi: 10.1016/j.applthermaleng.2019.114679
  • Chen, K., Wu, W., Yuan, F., Chen, L. and Wang, S. (2019). Cooling efficiency improvement of air-cooled battery thermal management system through designing the flow pattern, Energy, 167, 781–790. doi: 10.1016/j.energy.2018.11.011
  • Cheng, L., Garg, A., Jishnu, A. K. and Gao, L. (2020). Surrogate based multi-objective design optimization of lithium-ion battery air-cooled system in electric vehicles, Journal of Energy Storage, 31(2), 101645. doi: 10.1016/j.est.2020.101645
  • Cho, S. H., Cha, M. Y., Kim, M., Sohn, Y. J., Yang, T. H. and Lee, W. Y. (2016). A feasibility study for a stratospheric long-endurance hybrid unmanned aerial vehicle using a regenerative fuel cell system, Journal of Electrochemical Science and Technology, 7(1), 41–51. doi: 10.5229/JECST.2016.7.1.41
  • Cui, Y., Gu, X., Xi, J., Zou, Y., Wang, Y., Ding, P. and Wang, X. (2025). Performance optimization of lithium-ion battery based on CFD numerical simulation and deep learning algorithm, Journal of Energy Storage, 127(6), 117156. doi: 10.1016/j.est.2025.117156
  • Dagdevir, T. and Ding, Y. (2024). Numerical investigation of battery thermal management by using helical fin and composite phase change material, Journal of Energy Storage, 75 (9), 109674. doi: 10.1016/j.est.2023.109674
  • Domalanta, M. R. B., and Paraggua, J. A. D. (2023). A multiphysics model simulating the electrochemical, thermal, and thermal runaway behaviors of lithium polymer battery. Energies, 16(6), 2642. doi: 10.3390/en16062642
  • Dönmez, E. and Bulut, E. (2024). Investigation of the effect of different design and flow parameters on battery cooling system performance, Uludağ University Journal of Faculty of Engineering, 29(3), 819–830. doi: 10.17482/uumfd.1570344
  • Emam, M. and Ahmed, M. (2018). Cooling concentrator photovoltaic systems using various configurations of phase-change material heat sinks, Energy Conversion and Management, 158, 298–314. doi: 10.1016/j.enconman.2017.12.077
  • ERCmarket Website, (2025). Access address: https://www.ercmarket.com/gens-ace-5100mah-80c-222v-6s1p-lipo-battery-pack-with-ec5-plug/ Access date: 08.07.2025.
  • Esmaeili, Z. and Khoshvaght-Aliabadi, M. (2023). Thermal management and temperature uniformity enhancement of cylindrical lithium-ion battery pack based on liquid cooling equipped with twisted tapes, Journal of the Taiwan Institute of Chemical Engineers, 148, 104671. doi: 10.1016/j.jtice.2023.104671
  • Fan, X., Meng, C., Yang, Y., Lin, J., Li, W., Zhao, Y., Xie, S. and Jiang, C. (2023). Numerical optimization of the cooling effect of a bionic fishbone channel liquid cooling plate for a large prismatic lithium-ion battery pack with high discharge rate, Journal of Energy Storage, 72, 108239. doi: 10.1016/j.est.2023.108239
  • Fu, L., Zhang, Z., Sheng, L., Kuang, Z., Zhu, Z. and Bi, Q. (2025). Pouch lithium-ion battery thermal management by using a new liquid-cooling plate with honeycomb-like fins, Case Studies in Thermal Engineering, 69(367), 105945. doi: 10.1016/j.csite.2025.105945
  • Ghalambaz, M., Mahdi, J. M., Shafaghat, A., Eisapour, A. H., Younis, O., Sardari, P. T. and Yaïci, W. (2021). Effect of twisted fin array in a triple-tube latent heat storage system during the charging mode, Sustainability, 13(5), 2685. doi: 10.3390/su13052685
  • Hasan, H. A., Togun, H., Abed, A. M., Qasem, N. A. A., Abderrahmane, A., Guedri, K. and Eldin. S. M. (2023). Numerical investigation on cooling cylindrical lithium-ion-battery by using different types of nanofluids in an innovative cooling system, Case Studies in Thermal Engineering, 49 (January 1995), 103097. doi: 10.1016/j.csite.2023.103097
  • Incropera, F. P. and DeWitt, D. P. (1996). Introduction to Heat Transfer, John Wiley & Sons Inc, New York.
  • Ismail, M., Panter, J. R. and Landini, S. (2025). Numerical investigation of fin geometries on the effectiveness of passive, phase-change material− based thermal management systems for lithium-ion batteries. Applied Thermal Engineering, 262, 125216. doi: 10.1016/j.applthermaleng.2024.125216
  • Ji, S., Huadan, C., Qi, P., Liu, Z. and Li, P. (2025). Hydrothermal performance enhancement of heat sink using low flow-drag twisted blade-like fins. International Journal of Heat and Fluid Flow, 111, 109669. doi: 10.1016/j.ijheatfluidflow.2024.109669
  • Kim, C., Han, J. and Hong, S. (2022). Evaluation of spoiler model based on air cooling on lithium-ion battery pack temperature uniformity, Processes, 10(3), 505. doi: 10.3390/pr10030505
  • Kummitha, O. R. (2023). Thermal cooling of li-ion cylindrical cells battery module with baffles arrangement for airflow cooling numerical analysis, Journal of Energy Storage, 59 (2), 106474. doi: 10.1016/j.est.2022.106474
  • Larrañaga-Ezeiza, M.., Navarro, G. V., Garmendia, I. G., Arroiabe, P. F., Martinez-Aguirre, M. and Arostegui, J. B. (2022). Parametric optimisation of a direct liquid cooling–based prototype for electric vehicles focused on pouch-type battery cells, World Electric Vehicle Journal, 13(8), 149. doi: 10.3390/wevj13080149
  • Li, N., Liu, X., Yu, B., Li, L., Xu, J. and Tan, Q. (2021). Study on the environmental adaptability of lithium-ion battery powered UAV under extreme temperature conditions, Energy, 219(18), 119481. doi: 10.1016/j.energy.2020.119481
  • Li, X., He, F. and Ma, L. (2013). Thermal management of cylindrical batteries investigated using wind tunnel testing and computational fluid dynamics simulation, Journal of Power Sources, 238, 395–402. doi: 10.1016/j.jpowsour.2013.04.073
  • Li, Y. and Liu, M. (2022). Path planning of electric VTOL UAV considering minimum energy consumption in urban areas, Sustainability, 14(20), 13421. doi: 10.3390/su142013421
  • Li, Y., Zhang, K. and Chang, S. M. (2024). Optimization of fin parameters in cooling systems for temperature uniformity enhancement in battery module applications with offset strip fins, Numerical Heat Transfer, Part A: Applications, 86(16), 5648–5665. doi: 10.1080/10407782.2024.2333043
  • Liu, H., Jin, C., Li, H. and Ji, Y. (2023). A numerical study of PCM battery thermal management performance enhancement with fin structures, Energy Reports, 9, 1793–1802. doi: 10.1016/j.egyr.2023.04.214
  • Liu, J., Ma, Q. and Li, X. (2022). Numerical simulation of the combination of novel spiral fin and phase change material for cylindrical lithium-ion batteries in passive thermal management, Energies, 15(23), 8847. doi: 10.3390/en15238847
  • Luo, M., Zhang, Y., Wang, Z., Niu, Y., Lu, B., Zhu, J., Zhang. J. and Wang. K. (2024). Thermal performance enhancement with snowflake fins and liquid cooling in PCM-based battery thermal management system at high ambient temperature and high discharge rate, Journal of Energy Storage, 90(2), 111754. doi: 10.1016/j.est.2024.111754
  • Lv, Z., Sun, Z., Wang, L., Liu, Q. and Zhang, J. (2025). Multi-level thermal modeling and management of battery energy storage systems, Batteries, 11(6), 219. doi: 10.3390/batteries11060219
  • Mahamud, R. and Park, C. (2011). Reciprocating air flow for Li-ion battery thermal management to improve temperature uniformity. Journal of Power Sources, 196(13), 5685-5696. doi: 10.1016/j.jpowsour.2011.02.076
  • Murthy, K. K., Podila, A., Nataraj, C., Niranjan, H., Alagirisamy, M., Lakshmanan, R. and Selvaperumal, S. (2024). Enhancement of Heat Transfer in Octagonal Fin Tube Heat Exchanger with Various Side Ratios. In International Conference on Data Engineering and Communication Technology, 465-476. Springer Nature, Singapore.
  • Pan, H., Liu, X., Yang, Q., Xu, H. and Xu, D. (2023). Three-dimensional Lattice Boltzmann study on structure optimization and heat dissipation performance of pin-fin heat sink integrated with phase change material, Journal of Energy Storage, 71(20), 108233. doi: 10.1016 /j.est.2023.108233
  • Patil, M. S., Seo, J. H., Panchal, S., Jee, S. W. and Lee, M. Y. (2020). Investigation on thermal performance of water-cooled Li-ion pouch cell and pack at high discharge rate with U-turn type microchannel cold plate, International Journal of Heat and Mass Transfer, 155 (04), 119728. doi: 10.1016/j.ijheatmasstransfer.2020.119728
  • Perini, F., Zha, K., Busch, S. and Reitz, R. (2017). Comparison of linear, non-linear and generalized RNG-based k-epsilon models for turbulent diesel engine flows, SAE International, doi: 10.4271/2017-01-0561
  • Schimpe, M., von Kuepach, M. E., Naumann, M., Hesse, H. C., Smith, K. and Jossen, A. (2018). Comprehensive modeling of temperature-dependent degradation mechanisms in lithium iron phosphate batteries, Journal of the Electrochemical Society, 165(2), A181–A193. doi: 10.1149/2.1181714jes
  • Sharma, A. R., Sai, C. S., Kumar, A., Reddy, R. V. J., Danyharsha, D. and Jilte, R. (2021). Three-dimensional CFD study on heat dissipation in cylindrical lithium-ion battery module, Materials Today: Proceedings, 46(9), 10964–10968. doi: 10.1016/j.matpr.2021.02.041
  • Shi, Q., Liu, Q., Zhang, B., Yao, X., Zhu, X., Ju, X. and Xu, C. (2025). Multi-objective optimization of an immersion cooling battery module with manifold jet impingement: Based on precision model for high-capacity batteries, International Communications in Heat and Mass Transfer, 161, 108448. doi: 10.1016/j.icheatmasstransfer.2024.108448
  • Shukla, I., Tupkari, S. S., Raman, A. K. and Mullick, A. N. (2012). Wall Y+ approach for dealing with turbulent flow through a constant area duct, The 4th Internatonal Meeting of Advances in Thermofluids, AIP Conference Proceedings, Melaka, 1395–1404. doi: 10.1063/1.4704213
  • Sissenwine, N., Wexler, H., Teweles, S. and Dubin, M. COESA. (1976). The United States Committee on Extension to the Standard Atmosphere.
  • Sklavounos, S. and Rigas, F. (2006). Simulation of Coyote series trials-Part I, Chemical Engineering Science, 61(5), 1434–1443. doi: 10.1016/j.ces.2005.08.042
  • Sun, X., Mahdi, J. M., Mohammed, H. I., Majdi, H. S., Zixiong, W. and Talebizadehsardari, P. (2021). Solidification enhancement in a triple-tube latent heat energy storage system using twisted fins, Energies, 14(21), 7179. doi: 10.3390/en14217179
  • Sutheesh, P. M., Atul, A. P. and Rohinikumar, B. (2024). Numerical and experimental investigations of thermal performance of lithium-ion battery with hybrid cooling system under dry-out condition, Journal of Energy Storage, 84, 110889. doi: 10.1016/j.est.2024.110889
  • Şefkat, G. and Özel, M. A. (2020). Elektrikli araçlarda kullanılan pil hücresinin elektriksel ve termal modeli, Uludağ University Journal of The Faculty of Engineering, 25(1), 51–64. doi: 10.17482/uumfd.541391
  • Tan, W. J., Kueh, T. C., Tan, M. K., Wang, X. and Hung, Y. M. (2025). Enhanced cooling performance of lithium polymer batteries using micro heat pipes integrated with carbon nanotubes coatings, International Journal of Heat and Mass Transfer, 247(49), 127164. doi: 10.1016/j.ijheatmasstransfer.2025.127164
  • Uzal, H., Şener, R. and Oktay, H. (2023). Elektrikli araçlarda hava giriş konumu ve hızının batarya soğutma performansına etkisinin araştırılması, International Journal of Advances in Engineering and Pure Sciences, 35(1), 116–124. doi: 10.7240/jeps.1239910
  • Vashisht, S., Rakshit, D., Panchal, S., Fowler, M. and Fraser, R. (2025). Experimental estimation of heat generating parameters for battery module using inverse prediction method, International Communications in Heat and Mass Transfer, 162 (100381), 108539. doi: 10.1016/j.icheatmasstransfer.2024.108539
  • Wang, F., Bai, L., Fletcher, J., Whiteford, J. and Cullen, D. (2008). Development of small domestic wind turbine with scoop and prediction of its annual power output, Renewable Energy, 33(7), 1637–1651. doi: 10.1016/j.renene.2007.08.008
  • Wang, H., He, F. and Ma, L. (2016). Experimental and modeling study of controller-based thermal management of battery modules under dynamic loads, International Journal of Heat and Mass Transfer, 103(9), 154–164. doi: 10.1016/j.ijheatmasstransfer.2016.07.041
  • Wang, J., Huang, W., Pei, A., Li, Y., Shi, F., Yu, X. and Cui. Y. (2019). Improving cyclability of Li metal batteries at elevated temperatures and its origin revealed by cryo-electron microscopy, Nature Energy, 4(8), 664–670. doi: 10.1038/s41560-019-0413-3
  • Wang, Z., Zou, Z., Zhou, Y., Geng, X., Sun, Y., Huang, X. and Hao, M. (2025). Performance comparison of battery cold plates designed using topology optimization across laminar and turbulent flow regime, International Journal of Heat and Mass Transfer, 238(1), 126450. doi: 10.1016/j.ijheatmasstransfer.2024.126450
  • Xiao, J., Zhang, X., Bénard, P., Yang, T., Zeng, J. and Long, X. (2023). Fin structure and liquid cooling to enhance heat transfer of composite phase change materials in battery thermal management system, Energy Storage, 5(6), doi: 10.1002/est2.453
  • Xiong, M., Wang, N., Li, W., Garg, A. and Gao, L. (2023). Study on the heat dissipation performance of a liquid cooling battery pack with different pin-fins, Batteries, 9(1), 44. doi: 10.3390/batteries9010044
  • Yakhot, V., Orszag, S. A., Thangam, S., Gatski, T. B. and Speziale, C. G. (1992). Development of turbulence models for shear flows by a double expansion technique, Physics of Fluids A: Fluid Dynamics, 4(7), 1510–1520. doi: 10.1063/1.858424
  • Yousefi, E., Ramasamy, D., Kadirgama, K., Talele, V., Najafi, H., Olyaei, M., Miljkovic, N. and Panchal, S. (2025). Electrochemical-thermal modeling of phase change material battery thermal management systems: Investigating mesh types for accurate simulations, International Journal of Heat and Mass Transfer, 247, 127107. doi: 10.1016/j.ijheatmasstransfer.2025.127107
  • Zhang, F., Wang, Y., Li, X., Tian, Z. and Xie, Y. (2025). Thermal characteristics and optimization of a novel liquid cooling plate with cavities and flow-enhancing fins, International Communications in Heat and Mass Transfer, 165(6), 109042. doi: 10.1016/j.icheatmasstransfer.2025.109042
  • Zhao, G., Wang, X., Negnevitsky, M., Li, C., Zhang, H. and Cheng, Y. (2023). A high-performance vortex adjustment design for an air-cooling battery thermal management system in electric vehicles, Batteries, 9(4), 208. doi: 10.3390/batteries9040208
  • Zolot, M., Pesaran, A. A. and Mihalic, M. (2002). Thermal evaluation of Toyota Prius battery pack, SAE International, doi: 10.4271/2002-01-1962
Toplam 69 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Makine Mühendisliği (Diğer)
Bölüm Araştırma Makalesi
Yazarlar

Onur Yaşar 0000-0002-3324-7996

Gönderilme Tarihi 20 Ağustos 2025
Kabul Tarihi 29 Ekim 2025
Erken Görünüm Tarihi 11 Aralık 2025
Yayımlanma Tarihi 19 Aralık 2025
Yayımlandığı Sayı Yıl 2025 Cilt: 30 Sayı: 3

Kaynak Göster

APA Yaşar, O. (2025). COMPARISON OF OCTAGONAL AND TWISTED FINS FOR BATTERY THERMAL MANAGEMENT IN UNMANNED AERIAL VEHICLES AT HIGH DISCHARGE RATES. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi, 30(3), 957-976. https://doi.org/10.17482/uumfd.1767600
AMA Yaşar O. COMPARISON OF OCTAGONAL AND TWISTED FINS FOR BATTERY THERMAL MANAGEMENT IN UNMANNED AERIAL VEHICLES AT HIGH DISCHARGE RATES. UUJFE. Aralık 2025;30(3):957-976. doi:10.17482/uumfd.1767600
Chicago Yaşar, Onur. “COMPARISON OF OCTAGONAL AND TWISTED FINS FOR BATTERY THERMAL MANAGEMENT IN UNMANNED AERIAL VEHICLES AT HIGH DISCHARGE RATES”. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi 30, sy. 3 (Aralık 2025): 957-76. https://doi.org/10.17482/uumfd.1767600.
EndNote Yaşar O (01 Aralık 2025) COMPARISON OF OCTAGONAL AND TWISTED FINS FOR BATTERY THERMAL MANAGEMENT IN UNMANNED AERIAL VEHICLES AT HIGH DISCHARGE RATES. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi 30 3 957–976.
IEEE O. Yaşar, “COMPARISON OF OCTAGONAL AND TWISTED FINS FOR BATTERY THERMAL MANAGEMENT IN UNMANNED AERIAL VEHICLES AT HIGH DISCHARGE RATES”, UUJFE, c. 30, sy. 3, ss. 957–976, 2025, doi: 10.17482/uumfd.1767600.
ISNAD Yaşar, Onur. “COMPARISON OF OCTAGONAL AND TWISTED FINS FOR BATTERY THERMAL MANAGEMENT IN UNMANNED AERIAL VEHICLES AT HIGH DISCHARGE RATES”. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi 30/3 (Aralık2025), 957-976. https://doi.org/10.17482/uumfd.1767600.
JAMA Yaşar O. COMPARISON OF OCTAGONAL AND TWISTED FINS FOR BATTERY THERMAL MANAGEMENT IN UNMANNED AERIAL VEHICLES AT HIGH DISCHARGE RATES. UUJFE. 2025;30:957–976.
MLA Yaşar, Onur. “COMPARISON OF OCTAGONAL AND TWISTED FINS FOR BATTERY THERMAL MANAGEMENT IN UNMANNED AERIAL VEHICLES AT HIGH DISCHARGE RATES”. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi, c. 30, sy. 3, 2025, ss. 957-76, doi:10.17482/uumfd.1767600.
Vancouver Yaşar O. COMPARISON OF OCTAGONAL AND TWISTED FINS FOR BATTERY THERMAL MANAGEMENT IN UNMANNED AERIAL VEHICLES AT HIGH DISCHARGE RATES. UUJFE. 2025;30(3):957-76.

DUYURU:

30.03.2021- Nisan 2021 (26/1) sayımızdan itibaren TR-Dizin yeni kuralları gereği, dergimizde basılacak makalelerde, ilk gönderim aşamasında Telif Hakkı Formu yanısıra, Çıkar Çatışması Bildirim Formu ve Yazar Katkısı Bildirim Formu da tüm yazarlarca imzalanarak gönderilmelidir. Yayınlanacak makalelerde de makale metni içinde "Çıkar Çatışması" ve "Yazar Katkısı" bölümleri yer alacaktır. İlk gönderim aşamasında doldurulması gereken yeni formlara "Yazım Kuralları" ve "Makale Gönderim Süreci" sayfalarımızdan ulaşılabilir. (Değerlendirme süreci bu tarihten önce tamamlanıp basımı bekleyen makalelerin yanısıra değerlendirme süreci devam eden makaleler için, yazarlar tarafından ilgili formlar doldurularak sisteme yüklenmelidir).  Makale şablonları da, bu değişiklik doğrultusunda güncellenmiştir. Tüm yazarlarımıza önemle duyurulur.

Bursa Uludağ Üniversitesi, Mühendislik Fakültesi Dekanlığı, Görükle Kampüsü, Nilüfer, 16059 Bursa. Tel: (224) 294 1907, Faks: (224) 294 1903, e-posta: mmfd@uludag.edu.tr