Araştırma Makalesi
BibTex RIS Kaynak Göster

Ni-Co İÇERİKLİ BİMETALİK KATALİZÖRLERİN METANIN KURU REFORMLANMA REAKSİYONUNDAKİ PERFORMANSLARINA KATALİZÖR SENTEZ SÜRECİNDEKİ EMDİRME SIRASININ ETKİLERİ

Yıl 2017, , 39 - 52, 10.04.2017
https://doi.org/10.17482/uumfd.305187

Öz

Bu çalışmada,
mezogözenekli alümina destekli bimetalik Ni ve Co katalizörler sıralı emdirme
yöntemiyle hazırlanmışlardır. Hazırlanan mezogözenekli bimetalik katalizörlerin
aktiviteleri 750 oC'de metanın kuru reformlanma reaksiyonunda test
edilmiştir. Katalizörlerin reaksiyon öncesi ve/veya sonrası N2
adsorpsiyon/desorpsiyon, XRD, TPR, SEM/EDX ve TG/DT analizleri yürütülmüştür.
TPR analizleri, Ni ve Co metallerinin katalizör yapısına emdirme sırasının
katalizör yapısındaki metallerin indirgenebilirliğini etkilediğini
göstermiştir. Co-Ni içerikli bimetalik katalizörlerin hazırlanmasında emdirme
sırasının katalizör içindeki metallerin indirgenmelerini ve dolayısıyla
katalitik performanslarını önemli ölçüde etkilediği gösterilmiştir. Önce Ni
sonra Co yüklenerek hazırlanan katalizörde kobaltın daha fazla indirgenmiş
olduğu ve dolayısıyla Co@Ni@SGA katalizörünün daha kararlı ve yüksek aktivite
gösterdiği bulunmuştur. Bimetalik Ni-Co katalizörler metanın kuru reformlanma
reaksiyonuna yüksek aktivite gösterirken, karbon oluşumuna da yüksek direnç
göstermişlerdir. Metanın kuru reformlanma reaksiyonunda yüksek aktivite
gösteren Co@Ni@SGA katalizörünün üzerinde biriken karbon miktarı (kütlece
%3,6), Ni@Co@SGA katalizörüne (kütlece %2,1) göre daha yüksektir. Elde edilen
ürün dağılımındaki H2/CO oranı 0,78 olarak belirlenmiştir. 

Kaynakça

  • Alipour, Z., Rezaei, M., Meshkani, F. (2014) Effect of Alkaline Earth Promoters (MgO, CaO, and BaO) on the Activity and Coke Formation of Ni Catalysts Supported on Nanocrystalline Al2O3 in Dry Reforming of Methane, Journal of Industrial and Engineering Chemistry, 20, 2858–2863. doi:10.1016/j.jiec.2013.11.018
  • Arbağ, H., Yasyerli, S., Yasyerli, N., Dogu, G. (2010) Activity And Stability Enhancement of Ni-MCM-41 Catalysts by Rh Incorporation for Hydrogen from Dry Reforming of Methane, International Journal of Hydrogen Energy, 35 (6), 2296-2304. doi:10.1016/j.ijhydene.2009.12.109
  • Arbağ, H., Yasyerli, S., Yasyerli, N., Dogu, T., Dogu, G. (2013) Coke Minimization in Dry Reforming of Methane by Ni Based Mesoporous Alumina Catalysts Synthesized Following Different Routes: Effects of W and Mg, Topics in Catalysis, 56, 1695-1707. doi: 10.1007/s11244-013-0105-3
  • Arbağ, H., Yasyerli, S. ,Yasyerli, N., Dogu, G., Dogu, T., Črnivec, I.G.O., Pintar, A. (2015) Coke Minimization During Conversion of Biogas to Syngas by Bimetallic Tungsten−Nickel Incorporated Mesoporous Alumina Synthesized by the One-Pot Route, Industrial & Engineering Chemistry Research, 54, 2290-2301. doi: 10.1021/ie504477t
  • Arbağ, H., Yasyerli, S., Yasyerli, N., Dogu, G., Dogu, T. (2016) Enhancement of catalytic performance of Ni based mesoporous alumina by Co incorporation in conversion of biogas to synthesis gas, Applied Catalysis B: Environmental, 198, 254–265. doi:10.1016/j.apcatb.2016.05.064
  • Bezemer G.L., Radstake P.B., Koot V., van Dillen A.J., Geus J.W., de Jong K.P. (2006) Preparation of Fischer–Tropsch cobalt catalysts supported on carbon nanofibers and silica using homogeneous deposition-precipitation, Journal of Catalysis, 237, 291–302. doi:10.1016/j.jcat.2005.11.015
  • Chu, W., Chernavskii, P.A., Gengembre, L., Pankina, G.A., Fongarland, P., Khodakov, A.Y. (2007) Cobalt species in promoted cobalt alumina-supported Fischer–Tropsch catalysts, Journal of Catalysis, 252, 215–230. doi:10.1016/j.jcat.2007.09.018
  • Djinovic, P., Crnivec, I.G., Erjavec, B., Pintar, A. (2012) Influence of Active Metal Loading and Oxygen Mobility on Coke-Free Dry Reforming of Ni-Co Bimetallic Catalysts, Applied Catalysis B: Environmental, 125, 259-270. doi:10.1016/j.apcatb.2012.05.049
  • Fan, M.S., Abdullah, A.Z., Bhatia, S. (2010) Utilization of Greenhouse Gases Through Carbon Dioxide Reforming of Methane over Ni–Co/MgO–ZrO2: Preparation, Characterization and Activity Studies, Applied Catalysis B: Environmental, 100, 365-377. doi:10.1016/j.apcatb.2010.08.013
  • Gündüz, S., Dogu, T. (2015) Hydrogen by steam reforming of ethanol over Co–Mg incorporated novel mesoporous alumina catalysts in tubular and microwave reactors, Applied Catalysis B: Environmental, 168, 497–508. doi:10.1016/j.apcatb.2015.01.006
  • Hou, Z., Chen, P., Fang, H., Zheng, X., Yashima, T. (2006) Production of Synthesis Gas via Methane Reforming with CO2 on Noble Metals and Small Amount of Noble-(Rh-) Promoted Ni Catalysts, International Journal of Hydrogen Energy, 31, 555-561. doi:10.1016/j.ijhydene.2005.06.010
  • Jafarbegloo, M., Tarlani, A., Mesbah, A.W., Sahebdelfar, S. (2015) Thermodynamic Analysis of Carbon Dioxide Reforming of Methane and Its Practical Relevance, International Journal of Hydrogen Energy, 40, 2445-2451. doi:10.1016/j.ijhydene.2014.12.103
  • Joo, O., Jung, K. (2002) CH4 Dry Reforming on Alumina-Supported Nickel Catalyst, Bulletin of the Korean Chemical Society, 23-8, 1149-1153. doi:10.5012/bkcs.2002.23.8.1149
  • Kim, P., Kim, Y., Kim, H., Song, I.K., Yi, J. (2004) Synthesis and Characterization of Mesoporous Alumina with Nickel Incorporated for Use in The Partial Oxidation of Methane into Synthesis Gas, Applied Catalysis A: General, 272, 157–166. doi:10.1016/j.apcata.2004.05.055
  • Lapp, H.M., Schulte, D.D., Sparling, A.B., Buchanan, L.C. (1975) Methane Production from Animal Wastes. I. Fundamental Considerations, Canadian Agricultural Engineering, 17(2), 97-102.
  • Liu, D., Lau, R., Borgna, B., Yang, Y. (2009) Carbon Dioxide Reforming of Methane to Synthesis Gas over Ni-MCM-41 Catalysts, Applied Catalysis A: General, 358, 110–118. doi:10.1016/j.apcata.2008.12.044
  • Luisetto, I., Tuti, S., Bartolomeo, E.D. (2012) Co and Ni Supported on CeO2 as Selective Bimetallic Catalyst for Dry Reforming of Methane, International Journal of Hydrogen Energy, 37, 15992-15999. doi:10.1016/j.ijhydene.2012.08.006
  • Luyben, W.L. (2016) Control of Parallel Dry Methane and Steam Methane Reforming Processes For Fischer–Tropsch Syngas, Journal of Process Control, 39, 77–87. doi:10.1016/j.jprocont.2015.11.007
  • Niesz, K., Yang, P., Somorjai, G.A. (2005) Sol-gel Synthesis of Ordered Mesoporous Alumina, Chemical Communications, 15, 1986-1987. doi: 10.1039/b419249d
  • Shimura, K., Miyazawa, T., Hanaoka, T., Hirata, S. (2015) Fischer–Tropsch synthesis over alumina supported bimetallic Co–Ni catalyst: Effect of impregnation sequence and solution, Journal of Molecular Catalysis A: Chemical, 407, 15–24. doi:10.1016/j.molcata.2015.06.013
  • Sokolov, S., Kondrotenko, V.E., Pohl, M., Barkschat, A., Rodemerck, U. (2012) Stable Low-Temperature Dry Reforming of Methane over Mesoporous La2O3-ZrO2 Supported Ni Catalyst, Applied Catalysis B: Environmental, 113-114, 19-30. doi:10.1016/j.apcatb.2011.09.035
  • Yasyerli, S., Filizgok, S., Arbağ, H., Yasyerli, N., Dogu, G. (2011) Ru Incorporated Ni-MCM-41 Mesoporous Catalysts for Dry Reforming of Methane: Effects of Mg Addition, Feed Composition and Temperature, International Journal of Hydrogen Energy, 36, 4863-4874. doi:10.1016/j.ijhydene.2011.01.120
  • Yuan, Q., Yin, A., Luo, C., Sun, L., Zhang, Y., Duan, W., Liu, H., Yan, C. (2008) Facile Synthesis for Ordered Mesoporous -Aluminas with High Thermal Stability, Journal of American Chemical Society, 130, 3465-3472. doi:10.1021/ja0764308
  • Zonetti, P.C., Gaspar, A.B., Mendes, F.M.T., Sobrinho, E.V., Sousa-Aguiar, E.F., Appel, L.G. (2010) Fischer–Tropsch Synthesis and the Generation of DME in Situ, Fuel Processing Technology, 91, 469–475. doi:10.1016/j.fuproc.2009.12.006

Effect of Impregnation Sequence during Synthesis Procedure on Performances of Bimetallic Ni-Co Catalysts in Dry Reforming of Methane

Yıl 2017, , 39 - 52, 10.04.2017
https://doi.org/10.17482/uumfd.305187

Öz

In this study,
mesoporous alumina supported bimetallic Ni-Co catalysts were synthesized using
sequential impregnation method. The synthesized catalysts were tested in dry
reforming of methane at 750 oC. Before and/or after activity test, N2
adsorption/desorption, XRD, TPR, SEM/EDX, and TG/DT analyses were performed for
the catalysts. TPR analysis showed that impregnation sequence of Ni and Co
metals effects reducibility of the metal in the structure of the catalysts. It
was shown that impregnation sequence of Ni-Co bimetallic catalysts significantly
effects the reducibility of metals in the structure and accordingly the
catalytic performance of these catalysts. It was found that cobalt was more
reducible in the catalyst which was prepared by impregnation of Ni first
followed by impregnation of Co. Co@Ni@SGA catalyst prepared this way showed
more stable and high catalytic activity. Bimetallic Ni-Co catalysts showed high
activity with a high resistance to coke formation, in dry reforming of methane.
Amount of coke formation (3.6% by wt) over Co@Ni@SGA catalyst (which showed
higher activity in dry reforming of methane) was higher than the amount of coke
(2.1% by wt) over Ni@Co@SGA catalyst. H2/CO ratio in product stream
was obtained as 0.78.

Kaynakça

  • Alipour, Z., Rezaei, M., Meshkani, F. (2014) Effect of Alkaline Earth Promoters (MgO, CaO, and BaO) on the Activity and Coke Formation of Ni Catalysts Supported on Nanocrystalline Al2O3 in Dry Reforming of Methane, Journal of Industrial and Engineering Chemistry, 20, 2858–2863. doi:10.1016/j.jiec.2013.11.018
  • Arbağ, H., Yasyerli, S., Yasyerli, N., Dogu, G. (2010) Activity And Stability Enhancement of Ni-MCM-41 Catalysts by Rh Incorporation for Hydrogen from Dry Reforming of Methane, International Journal of Hydrogen Energy, 35 (6), 2296-2304. doi:10.1016/j.ijhydene.2009.12.109
  • Arbağ, H., Yasyerli, S., Yasyerli, N., Dogu, T., Dogu, G. (2013) Coke Minimization in Dry Reforming of Methane by Ni Based Mesoporous Alumina Catalysts Synthesized Following Different Routes: Effects of W and Mg, Topics in Catalysis, 56, 1695-1707. doi: 10.1007/s11244-013-0105-3
  • Arbağ, H., Yasyerli, S. ,Yasyerli, N., Dogu, G., Dogu, T., Črnivec, I.G.O., Pintar, A. (2015) Coke Minimization During Conversion of Biogas to Syngas by Bimetallic Tungsten−Nickel Incorporated Mesoporous Alumina Synthesized by the One-Pot Route, Industrial & Engineering Chemistry Research, 54, 2290-2301. doi: 10.1021/ie504477t
  • Arbağ, H., Yasyerli, S., Yasyerli, N., Dogu, G., Dogu, T. (2016) Enhancement of catalytic performance of Ni based mesoporous alumina by Co incorporation in conversion of biogas to synthesis gas, Applied Catalysis B: Environmental, 198, 254–265. doi:10.1016/j.apcatb.2016.05.064
  • Bezemer G.L., Radstake P.B., Koot V., van Dillen A.J., Geus J.W., de Jong K.P. (2006) Preparation of Fischer–Tropsch cobalt catalysts supported on carbon nanofibers and silica using homogeneous deposition-precipitation, Journal of Catalysis, 237, 291–302. doi:10.1016/j.jcat.2005.11.015
  • Chu, W., Chernavskii, P.A., Gengembre, L., Pankina, G.A., Fongarland, P., Khodakov, A.Y. (2007) Cobalt species in promoted cobalt alumina-supported Fischer–Tropsch catalysts, Journal of Catalysis, 252, 215–230. doi:10.1016/j.jcat.2007.09.018
  • Djinovic, P., Crnivec, I.G., Erjavec, B., Pintar, A. (2012) Influence of Active Metal Loading and Oxygen Mobility on Coke-Free Dry Reforming of Ni-Co Bimetallic Catalysts, Applied Catalysis B: Environmental, 125, 259-270. doi:10.1016/j.apcatb.2012.05.049
  • Fan, M.S., Abdullah, A.Z., Bhatia, S. (2010) Utilization of Greenhouse Gases Through Carbon Dioxide Reforming of Methane over Ni–Co/MgO–ZrO2: Preparation, Characterization and Activity Studies, Applied Catalysis B: Environmental, 100, 365-377. doi:10.1016/j.apcatb.2010.08.013
  • Gündüz, S., Dogu, T. (2015) Hydrogen by steam reforming of ethanol over Co–Mg incorporated novel mesoporous alumina catalysts in tubular and microwave reactors, Applied Catalysis B: Environmental, 168, 497–508. doi:10.1016/j.apcatb.2015.01.006
  • Hou, Z., Chen, P., Fang, H., Zheng, X., Yashima, T. (2006) Production of Synthesis Gas via Methane Reforming with CO2 on Noble Metals and Small Amount of Noble-(Rh-) Promoted Ni Catalysts, International Journal of Hydrogen Energy, 31, 555-561. doi:10.1016/j.ijhydene.2005.06.010
  • Jafarbegloo, M., Tarlani, A., Mesbah, A.W., Sahebdelfar, S. (2015) Thermodynamic Analysis of Carbon Dioxide Reforming of Methane and Its Practical Relevance, International Journal of Hydrogen Energy, 40, 2445-2451. doi:10.1016/j.ijhydene.2014.12.103
  • Joo, O., Jung, K. (2002) CH4 Dry Reforming on Alumina-Supported Nickel Catalyst, Bulletin of the Korean Chemical Society, 23-8, 1149-1153. doi:10.5012/bkcs.2002.23.8.1149
  • Kim, P., Kim, Y., Kim, H., Song, I.K., Yi, J. (2004) Synthesis and Characterization of Mesoporous Alumina with Nickel Incorporated for Use in The Partial Oxidation of Methane into Synthesis Gas, Applied Catalysis A: General, 272, 157–166. doi:10.1016/j.apcata.2004.05.055
  • Lapp, H.M., Schulte, D.D., Sparling, A.B., Buchanan, L.C. (1975) Methane Production from Animal Wastes. I. Fundamental Considerations, Canadian Agricultural Engineering, 17(2), 97-102.
  • Liu, D., Lau, R., Borgna, B., Yang, Y. (2009) Carbon Dioxide Reforming of Methane to Synthesis Gas over Ni-MCM-41 Catalysts, Applied Catalysis A: General, 358, 110–118. doi:10.1016/j.apcata.2008.12.044
  • Luisetto, I., Tuti, S., Bartolomeo, E.D. (2012) Co and Ni Supported on CeO2 as Selective Bimetallic Catalyst for Dry Reforming of Methane, International Journal of Hydrogen Energy, 37, 15992-15999. doi:10.1016/j.ijhydene.2012.08.006
  • Luyben, W.L. (2016) Control of Parallel Dry Methane and Steam Methane Reforming Processes For Fischer–Tropsch Syngas, Journal of Process Control, 39, 77–87. doi:10.1016/j.jprocont.2015.11.007
  • Niesz, K., Yang, P., Somorjai, G.A. (2005) Sol-gel Synthesis of Ordered Mesoporous Alumina, Chemical Communications, 15, 1986-1987. doi: 10.1039/b419249d
  • Shimura, K., Miyazawa, T., Hanaoka, T., Hirata, S. (2015) Fischer–Tropsch synthesis over alumina supported bimetallic Co–Ni catalyst: Effect of impregnation sequence and solution, Journal of Molecular Catalysis A: Chemical, 407, 15–24. doi:10.1016/j.molcata.2015.06.013
  • Sokolov, S., Kondrotenko, V.E., Pohl, M., Barkschat, A., Rodemerck, U. (2012) Stable Low-Temperature Dry Reforming of Methane over Mesoporous La2O3-ZrO2 Supported Ni Catalyst, Applied Catalysis B: Environmental, 113-114, 19-30. doi:10.1016/j.apcatb.2011.09.035
  • Yasyerli, S., Filizgok, S., Arbağ, H., Yasyerli, N., Dogu, G. (2011) Ru Incorporated Ni-MCM-41 Mesoporous Catalysts for Dry Reforming of Methane: Effects of Mg Addition, Feed Composition and Temperature, International Journal of Hydrogen Energy, 36, 4863-4874. doi:10.1016/j.ijhydene.2011.01.120
  • Yuan, Q., Yin, A., Luo, C., Sun, L., Zhang, Y., Duan, W., Liu, H., Yan, C. (2008) Facile Synthesis for Ordered Mesoporous -Aluminas with High Thermal Stability, Journal of American Chemical Society, 130, 3465-3472. doi:10.1021/ja0764308
  • Zonetti, P.C., Gaspar, A.B., Mendes, F.M.T., Sobrinho, E.V., Sousa-Aguiar, E.F., Appel, L.G. (2010) Fischer–Tropsch Synthesis and the Generation of DME in Situ, Fuel Processing Technology, 91, 469–475. doi:10.1016/j.fuproc.2009.12.006
Toplam 24 adet kaynakça vardır.

Ayrıntılar

Konular Mühendislik
Bölüm Araştırma Makaleleri
Yazarlar

Hüseyin Arbağ

Yayımlanma Tarihi 10 Nisan 2017
Gönderilme Tarihi 7 Ekim 2016
Kabul Tarihi 20 Şubat 2017
Yayımlandığı Sayı Yıl 2017

Kaynak Göster

APA Arbağ, H. (2017). Ni-Co İÇERİKLİ BİMETALİK KATALİZÖRLERİN METANIN KURU REFORMLANMA REAKSİYONUNDAKİ PERFORMANSLARINA KATALİZÖR SENTEZ SÜRECİNDEKİ EMDİRME SIRASININ ETKİLERİ. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi, 22(1), 39-52. https://doi.org/10.17482/uumfd.305187
AMA Arbağ H. Ni-Co İÇERİKLİ BİMETALİK KATALİZÖRLERİN METANIN KURU REFORMLANMA REAKSİYONUNDAKİ PERFORMANSLARINA KATALİZÖR SENTEZ SÜRECİNDEKİ EMDİRME SIRASININ ETKİLERİ. UUJFE. Nisan 2017;22(1):39-52. doi:10.17482/uumfd.305187
Chicago Arbağ, Hüseyin. “Ni-Co İÇERİKLİ BİMETALİK KATALİZÖRLERİN METANIN KURU REFORMLANMA REAKSİYONUNDAKİ PERFORMANSLARINA KATALİZÖR SENTEZ SÜRECİNDEKİ EMDİRME SIRASININ ETKİLERİ”. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi 22, sy. 1 (Nisan 2017): 39-52. https://doi.org/10.17482/uumfd.305187.
EndNote Arbağ H (01 Nisan 2017) Ni-Co İÇERİKLİ BİMETALİK KATALİZÖRLERİN METANIN KURU REFORMLANMA REAKSİYONUNDAKİ PERFORMANSLARINA KATALİZÖR SENTEZ SÜRECİNDEKİ EMDİRME SIRASININ ETKİLERİ. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi 22 1 39–52.
IEEE H. Arbağ, “Ni-Co İÇERİKLİ BİMETALİK KATALİZÖRLERİN METANIN KURU REFORMLANMA REAKSİYONUNDAKİ PERFORMANSLARINA KATALİZÖR SENTEZ SÜRECİNDEKİ EMDİRME SIRASININ ETKİLERİ”, UUJFE, c. 22, sy. 1, ss. 39–52, 2017, doi: 10.17482/uumfd.305187.
ISNAD Arbağ, Hüseyin. “Ni-Co İÇERİKLİ BİMETALİK KATALİZÖRLERİN METANIN KURU REFORMLANMA REAKSİYONUNDAKİ PERFORMANSLARINA KATALİZÖR SENTEZ SÜRECİNDEKİ EMDİRME SIRASININ ETKİLERİ”. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi 22/1 (Nisan 2017), 39-52. https://doi.org/10.17482/uumfd.305187.
JAMA Arbağ H. Ni-Co İÇERİKLİ BİMETALİK KATALİZÖRLERİN METANIN KURU REFORMLANMA REAKSİYONUNDAKİ PERFORMANSLARINA KATALİZÖR SENTEZ SÜRECİNDEKİ EMDİRME SIRASININ ETKİLERİ. UUJFE. 2017;22:39–52.
MLA Arbağ, Hüseyin. “Ni-Co İÇERİKLİ BİMETALİK KATALİZÖRLERİN METANIN KURU REFORMLANMA REAKSİYONUNDAKİ PERFORMANSLARINA KATALİZÖR SENTEZ SÜRECİNDEKİ EMDİRME SIRASININ ETKİLERİ”. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi, c. 22, sy. 1, 2017, ss. 39-52, doi:10.17482/uumfd.305187.
Vancouver Arbağ H. Ni-Co İÇERİKLİ BİMETALİK KATALİZÖRLERİN METANIN KURU REFORMLANMA REAKSİYONUNDAKİ PERFORMANSLARINA KATALİZÖR SENTEZ SÜRECİNDEKİ EMDİRME SIRASININ ETKİLERİ. UUJFE. 2017;22(1):39-52.

DUYURU:

30.03.2021- Nisan 2021 (26/1) sayımızdan itibaren TR-Dizin yeni kuralları gereği, dergimizde basılacak makalelerde, ilk gönderim aşamasında Telif Hakkı Formu yanısıra, Çıkar Çatışması Bildirim Formu ve Yazar Katkısı Bildirim Formu da tüm yazarlarca imzalanarak gönderilmelidir. Yayınlanacak makalelerde de makale metni içinde "Çıkar Çatışması" ve "Yazar Katkısı" bölümleri yer alacaktır. İlk gönderim aşamasında doldurulması gereken yeni formlara "Yazım Kuralları" ve "Makale Gönderim Süreci" sayfalarımızdan ulaşılabilir. (Değerlendirme süreci bu tarihten önce tamamlanıp basımı bekleyen makalelerin yanısıra değerlendirme süreci devam eden makaleler için, yazarlar tarafından ilgili formlar doldurularak sisteme yüklenmelidir).  Makale şablonları da, bu değişiklik doğrultusunda güncellenmiştir. Tüm yazarlarımıza önemle duyurulur.

Bursa Uludağ Üniversitesi, Mühendislik Fakültesi Dekanlığı, Görükle Kampüsü, Nilüfer, 16059 Bursa. Tel: (224) 294 1907, Faks: (224) 294 1903, e-posta: mmfd@uludag.edu.tr