Derleme
BibTex RIS Kaynak Göster

ATIKSU ARITMA TESİSLERİ İÇİN İKLİM DEĞİŞİKLİĞİNE VE SERA ETKİSİNE GENEL BİR BAKIŞ

Yıl 2017, , 235 - 250, 31.12.2017
https://doi.org/10.17482/uumfd.306858

Öz

İklim değişikliği son yıllarda atık su arıtma
tesisleri için ciddi bir tehlike oluşturmaktadır. Atıksu arıtma tesisleri iklim
değişikliğinin sonuçlarından önemli ölçüde etkilenmektedir. Aynı zamanda iklim
değişikliğinin bir bileşeni olan sera etkisini oluşturan kaynaklardan birisi
olarak görülmektedir. Atık su arıtma tesisleri küresel iklim değişikliğinden
hem etkilenen hem de çevreyi olumsuz yönde etkileyen bir tesistir. Atıksu
arıtma tesislerinde sera etkisi; uygulanan prosesten, enerji tüketiminden,
tesis içinde kullanılan kimyasallardan, çamur susuzlaştırma-stabilizasyon
işlemlerinden ve bakım-onarım faaliyetlerinden oluşmaktadır. Atıksu arıtma
tesislerinde başlıca sera gazı emisyonları; karbondioksit (CO2),
metan ( CH4) ve nitröz oksit ( N2O) emisyonlarıdır. İklim
değişikliğinin sonuçlarından olan deniz seviyesi yükselmesi, sıcaklık,
buzulların erimesi, sel ve taşkın arıtma tesislerinde olumsuz değişikliklere
sebep olmaktadır. Bu çalışmada, bütünleşik olarak iklim değişikliğinin arıtma
tesisleri üzerindeki etkileri ve arıtma tesislerinde oluşan sera etkisini
hesaplama ve indirgeme yöntemleriyle ilgili yapılan önceki çalışmalar
incelenmiştir.

Kaynakça

  • Aanuoluwapoa O.O. ve Ohisb A.C., (2017) Biomimetic strategies for climate change mitigation in the built environment. Energy Procedia, 105,3868 – 3875. doi: 10.1016/j.egypro.2017.03.792
  • Ashrafi O, Yerushalmi L, Haghighat F. (2013) Greenhouse gas emission by wastewater treatment plants of the pulp and paper industry – Modeling and simulation, International Journal of Greenhouse Gas Control ,17, 462–472. doi: 10.1016/j.ijggc.2013.06.006
  • Ashrafi O. (2012) Estimation of Greenhouse Gas Emissions in Wastewater Treatment Plant of Pulp & Paper Industry, Concordia University, Doktora Tezi, Montreal, Canada.
  • Bao, Z., Sun, S. ve Sun, D. (2016) Assessment of greenhouse gas emission from A/O and SBR wastewater treatment plants in Beijing, China, International Biodeterioration & Biodegradation,108,108-114. doi: 10.1016/j.ibiod.2015.11.028.
  • Blumenau A., Brooks C., Finn E., Turner A., (2011). Effects of Sea Level Rise on Water Treatment & Wastewater Treatment Facilities. Worcester Polytechnic Institute, USA.
  • Cakir F.Y., Stenstrom M.K. ( 2005) Greenhouse gas production: A comparison between aerobic and anaerobic wastewater treatment technology, Water Research, 39, 4197–4203. doi: 10.1016/j.watres.2005.07.042.
  • Cromwell J.E. , Smith J.B., Raucher R.S. (2007) Implications of Climate Change for Urban Water Utilities, Association of Metropolitan Water Agencies (AMWA), Washington, D.C.
  • Czepiel P.M., Crill P.M. ve Harriss R.C., (1993) Methane emissions from municipal wastewater treatment processes. Environmental Science and Technology, 27, 2472–2477. doi: 10.1021/es00048a025
  • Danas K., Kurdi B., Stark M., Mutlaq A. (2012) Climate Change Effects on Waste Water Treatment. CEE Jordan Group Presentation, 18 Sep 2012, Jordan.
  • Das S. (2011) Estimation of Greenhouse Gases Emissions from Biological Wastewater Treatment Plants at Windsor, Scholarship at UWindsor,
  • EPA (2012) Watershed Academy Web, The Effect of Climate Change on Water Resources and Programs (PDF file adapted). http://www.epa.gov/watertrain. Erişim Tarihi: 14.03.2017.
  • Erdoğan M., (2015) Çevresel Tesislerden Kaynaklanan Sera Gazı Emisyonlarının Hesaplanması, İstanbul Teknik Üniversitesi, Fen Bilimleri Enstitüsü, Yüksek Lisans Tezi, 127 s, İstanbul.
  • Flores-Alsina X., Corominas L., Snip L., Vanrolleghem P.A. (2014) Including greenhouse gas emissions during benchmarking of wastewater treatment plant control strategies, Water Research, 45, 4700-4710. doi: 10.1016/j.watres.2011.04.040.
  • Gori R., Giaccherini F., Jiang L.M., Sobhani R., Rosso D., (2013). Role of primary sedimentation on plant-wide energy recovery and carbon footprint. Water Sci. Technol. 68 (4), 870–878. doi: 10.2166/wst.2013.270
  • Guisasola A., Sharma K.R., De haas D., Keller J., Yuan Z., (2009) Development of a model for assessing methane formation in rising main sewers. Water Res., 43, 2874–2884. doi: 10.1016/j.watres.2009.03.040
  • Gülhan H., (2017) Evsel Atıksu Arıtma Tesislerinden Kaynaklanan Sera Gazı Salımının Tahmini, İstanbul Teknik Üniversitesi, Fen Bilimleri Enstitüsü, Yüksek Lisans Tezi,183 s, İstanbul.
  • Hiatt W.C., Grady Jr C.P.L., (2008) An updated process model for carbon oxidation, nitrification, and denitrification. Water Environ. Res., 80 (11), 2145–2156.
  • IPCC (2007). Climate Change 2007: The Physical Science Basis, Contribution of Working Group I to the Fourth Assessment, Cambridge University Press, Cambridge, İngiltere.
  • IPCC. (2006) IPCC Guidelines for National Greenhouse Gas Inventories. IPCC Guidel Natl Greenh Gas Invent ,3,1–40.
  • İklim Değişikliği ve Türkiye (2012) T.C. Çevre ve Şehircilik Bakanlığı, Ankara.
  • Kerr Wood Leidal Associates Ltd. (KWL) (2008) Vulnerability of Vancouver Sewerage Area Infrastructure to Climate Change, File No. 251.219. Final Report, March 2008.
  • Külah S., (2013) Greenhouse Gas Inventory for an Industrial Wastewater Treatment plant, Dokuz Eylül Üniversitesi, Fen Bilimleri Enstitüsü, Yüksek Lisans Tezi, 105 s, İzmir.
  • Kyung D., Kim M., Chang J., Lee W. (2015) Estimation of greenhouse gas emissions from a hybrid wastewater treatment plan, Journal of Cleaner Production, 95, 117–123. doi: 10.1016/j.jclepro.2015.02.032.
  • Ma R., Hu Z., Zhang J., Ma H., Jiang L., Ru D. (2017) Reduction of greenhouse gases emissions during anoxic wastewater treatment by strengthening nitrite-dependent anaerobic methane oxidation process, Bioresource Technology, 235, 211-218. doi: 10.1016/j.biortech.2017.03.094
  • Mampaey K.E., Beuckels B., ve diğ. (2013.) Modelling nitrous and nitric oxide emissions by autotrophic ammonia-oxidizing bacteria. Environmental Technology, 34(12), 1555-1566. doi: 10.1080/09593330.2012.758666
  • Mannina G., Ekama G., Caniani D., Cosenza A., Esposito G., Gori R. (2016) Greenhouse gases from wastewater treatment - A review of modelling tools, Science of the Total Environment, 551-552, 254-270. doi: 10.1016/j.scitotenv.2016.01.163.
  • Masuda, S., Suzuki, S., Sano, I., Li, Y-Y. ve Nishimura, O. (2015) The seasonal variation of emission of greenhouse gases from a full-scale sewage treatment plant., Chemosphere, 140,167-173. doi: 10.1016/j.chemosphere.2014.09.042.
  • Metcalf & Eddy (2003) Wastewater Engineering: Treatment and Reuse 4ed, McGraw-Hill international Editions, Boston, USA.
  • Molinos-Senantea, M., Hernández-Sanchob, F., Mocholí-Arcea, M. ve Sala-Garridoa, R. (2014) Economic and environmental performance of wastewater treatment plants: Potential reductions in greenhouse gases emissions, Resource and Energy Economics, 38,125-140. doi: 10.1016/j.reseneeco.2014.07.001.
  • Myhre G.D.M., (2013) Anthropogenic and Natural Radiative Forcing. In: Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge: Cambridge University Press, İngiltere.
  • Ni B.J., Ruscalleda M., Pellicer-nàcher C., Smets B.F., (2011) Modeling nitrous oxide production during biological nitrogen removal via nitrification and denitrification: extensions to the General ASM Models. Environ. Sci. Technol., 45,7768–7776. doi: 10.1021/es201489n
  • Özsoy C.E. (2014) Düşük Karbon Ekonomisi ve Türkiye’nin Ayak İzi, Hak İş Uluslararası Emek ve Toplum Dergisi, 9, 199–215.
  • Pan T., Zhu X.D., Ye Y.P. (2011) Estimate of life-cycle greenhouse gas emissions from a vertical subsurface flow constructed wetland and conventional wastewater treatment plants: A casestudy in China, Ecological Engineering, 37, 248-254. doi: 10.1016/j.ecoleng.2010.11.014
  • Parravicini V., Svardal K., Krampe J. (2016) Greenhouse Gas Emissions from Wastewater Treatment Plants, Energy Procedia, 97, 246-253. doi: 10.1016/j.egypro.2016.10.067
  • Pascale R., Caivano M., Buchicchio A., Mancini I.M., Bianco G., Caniani D. (2017) Validation of an analytical method for simultaneous high-precisionmeasurements of greenhouse gas emissions from wastewatertreatment plants using a gas chromatography-barrier dischargedetector system, Journal of Chromatography A, 1480, 62-69. doi: 10.1016/j.chroma.2016.11.024.
  • Plósz B.G., Liltved H., Ratnaweera H., 2009. Climate change impacts on activated sludge wastewater treatment: a case study from Norway. Water Sci Technol.,60(2), 533-541. doi: 10.2166/wst.2009.386.
  • Prendez M., Lara-Gonzalez S. (2008) Application of strategies for sanitation management in wastewater treatment plants in order to control/reduce greenhouse gas emissions, Journal of Environmental Management, 88, 658–664. doi: 10.1016/j.jenvman.2007.03.041.
  • Qambrania N.A., Rahmana M.M., Wonc S ve diğ., (2017) Biochar properties and eco-friendly applications for climate change mitigation, waste management, and wastewater treatment: A review. Renewable and Sustainable Energy Reviews,79, 255–273. doi.org/10.1016/j.rser.2017.05.057
  • Ratkowsky D.A., Olley J., Mcmeekin T.A., Ball A., (1983) Model for bacterial culture growth rate throughout the entire biokinetic temperature range. J. Bacteriol., 154, 1222-1226. doi: 0021-9193/83/061222-05$02.00/0
  • Rodriguez-Caballero, A., Aymerich, I., Poch, M. ve Pijuana, M. (2014) Evaluation of process conditions triggering emissions of green-house gases from a biological wastewater treatment system, Science of the Total Environment, 492,384-391. doi:10.1016/j.scitotenv.2014.06.015.
  • Rodriguez-Garcia G., Hospido A., Bagley D.M., Moreira M.T., Feijoo G.A,. (2012) Methodology to Estimate Greenhouse Gases Emissions in Life Cycle Inventories of Wastewater Treatment Plants, Environmental Impact Assessment Review, 37, 37–46. doi: 10.1016/j.eiar.2012.06.010.
  • Shahabadi B.M., Yerushalmi L., Haghighat F. (2009) Impact of process design on greenhouse gas (GHG) generation by wastewater treatment plants, Water Resources,43,2679–2687. doi: 10.1016/j.watres.2009.02.040.
  • Sweetapple C., Fu G., Butler D.(2014) Identifying sensitive sources and key control handles for the reduction of greenhouse gas emissions from wastewater treatment, Water Research, 62, 249-259. doi: 10.1016/j.watres.2014.06.002.
  • T.C. ÇŞB, (2016). Türkiye İklim Değişikliği 6. Bildirimi. T.C. Çevre ve Şehircilik Bakanlığı, Çevre Yönetimi Genel Müdürlüğü, Ankara.
  • T.C. Resmi Gazete (2004) Su Kirliliği Kontrolü Yönetmeliği, Ankara.
  • Tanikawa D., Syutsubo K., Watari T., Miyaoka Y., Hatamoto M., Iijima S., Fukuda M., Nguyen N.B., Yamaguchi T. (2016) Greenhouse gas emissions from open-type anaerobic wastewater treatment system in natural rubber processing factory, Journal of Cleaner Production, 119, 32-37. doi: 10.1016/j.jclepro.2016.02.001
  • Tolkou A.K., Zouboulis A.I. (2015) Effect of Climate Change in WWTPs and especially in MBR Infrastructures used for Wastewater Treatment, Journal of Desalination and Water Treatment, 57, 2344-2354. doi: 10.1080/19443994.2015.1049403
  • Toyoda S., Suzuki Y., Hattori S. ve Yamada K., Fujii A., Yoshida N., Kouno R., Murayama K. ve Shiomi H., (2011) Isotopomer analysis of production and consumption mechanisms of N2O and CH4 in an advanced wastewater treatment system. Environmental Science and Technology, 45, 917–922. doi: 10.1021/es102985u
  • Trenberth K. E. (1999) Conceptual framework for changes of extremes of the hydrological cycle with climate change, Climatic Change, 42, 327-339.
  • Von Sperling M., de Lemos Chernicharo C.A. (2005) Biological Wastewater Treatment in Warm Climate Regions, IWA Publishing, Padstow, UK.
  • Yamanoğlu Ç.G. (2006) Türkiye’de Küresel Isınmaya Yol Açan Sera Gazı Emisyonlarındaki Artış ile Mücadelede İktisadi Araçların Rolü, Ankara Üniversitesi, Sosyal Bilimleri Enstitüsü, Yüksek Lisans tezi, 151s, Ankara.
  • Yan X., Li L., Liu (2014) Characteristics of greenhouse gas emission in three full-scale wastewater treatment processes, Journal of Environmental Sciences, 26, 256-263. doi: 10.1016/S1001-0742(13)60429-5.
  • Yapıcıoğlu P. ve Demir Ö. (2016) Atıksu Arıtma Tesislerinin Sera Gazı Emisyonlarının Minimizasyonu,International Symposium of Water and Wastewater Management(ISWWM), October 26-28, Proceeding Book,Malatya, 547-583.
  • Yapıcıoğlu P. ve Demir Ö. (2017 Microalgae culture utilization for greenhouse gases emissions mitigation and prevention in wastewater treatment plants: an overview, IV. Uluslararası Su Kongresi-Akıllı Şehirlerde Su Yönetimi, Kasım 2-4, Proceeding Book,İzmir, 80.
  • Yoshida H., Monster J., Scheutz C. (2014) Plant-integrated measurement of greenhouse gas emissions from a municipal wastewater treatment plant, Water Research, 61, 108-118. doi: 10.1016/j.watres.2014.05.014.
  • Zouboulis A.I., Tolkou A.K. (2014) Effect of Climate Change in Wastewater Treatment Plants: Reviewing the Problems and Solutions, Managing Water Resources under Climate Uncertainty, 197-220 . doi.org: 10.1007/978-3-319-10467-6_10

An Overview of Climate Change and Greenhouse Effects for Wastewater Treatment Plants

Yıl 2017, , 235 - 250, 31.12.2017
https://doi.org/10.17482/uumfd.306858

Öz

Climate change has been a serious threat to
wastewater treatment plants in recent years. Waste water treatment plants are
significantly affected by the consequences of climate change. It is also seen
as one of the sources of the greenhouse effect, which is a component of climate
change. Wastewater treatment plants are both a source of global climate change
and facilities that fascinate the environment negatively. Greenhouse effect in
wastewater treatment plants consists of process implemented, energy
consumption, chemicals used in the plant, sludge dewatering-stabilization
processes and maintenance-repair activities. Major greenhouse gas emissions are
carbon dioxide (CO2), methane (CH4) and nitrous oxide (N2O)
emissions in the wastewater treatment plants. Sea level rise, temperature,
melting of glaciers, stream and flood that are the results of climate change
cause negative changes for wastewater treatment plants. In this study, the impacts
of the climate change on the treatment plants and the previous studies on the
calculation and reduction methods of the greenhouse effect for the treatment
plants have been examined in an integrated form.

Kaynakça

  • Aanuoluwapoa O.O. ve Ohisb A.C., (2017) Biomimetic strategies for climate change mitigation in the built environment. Energy Procedia, 105,3868 – 3875. doi: 10.1016/j.egypro.2017.03.792
  • Ashrafi O, Yerushalmi L, Haghighat F. (2013) Greenhouse gas emission by wastewater treatment plants of the pulp and paper industry – Modeling and simulation, International Journal of Greenhouse Gas Control ,17, 462–472. doi: 10.1016/j.ijggc.2013.06.006
  • Ashrafi O. (2012) Estimation of Greenhouse Gas Emissions in Wastewater Treatment Plant of Pulp & Paper Industry, Concordia University, Doktora Tezi, Montreal, Canada.
  • Bao, Z., Sun, S. ve Sun, D. (2016) Assessment of greenhouse gas emission from A/O and SBR wastewater treatment plants in Beijing, China, International Biodeterioration & Biodegradation,108,108-114. doi: 10.1016/j.ibiod.2015.11.028.
  • Blumenau A., Brooks C., Finn E., Turner A., (2011). Effects of Sea Level Rise on Water Treatment & Wastewater Treatment Facilities. Worcester Polytechnic Institute, USA.
  • Cakir F.Y., Stenstrom M.K. ( 2005) Greenhouse gas production: A comparison between aerobic and anaerobic wastewater treatment technology, Water Research, 39, 4197–4203. doi: 10.1016/j.watres.2005.07.042.
  • Cromwell J.E. , Smith J.B., Raucher R.S. (2007) Implications of Climate Change for Urban Water Utilities, Association of Metropolitan Water Agencies (AMWA), Washington, D.C.
  • Czepiel P.M., Crill P.M. ve Harriss R.C., (1993) Methane emissions from municipal wastewater treatment processes. Environmental Science and Technology, 27, 2472–2477. doi: 10.1021/es00048a025
  • Danas K., Kurdi B., Stark M., Mutlaq A. (2012) Climate Change Effects on Waste Water Treatment. CEE Jordan Group Presentation, 18 Sep 2012, Jordan.
  • Das S. (2011) Estimation of Greenhouse Gases Emissions from Biological Wastewater Treatment Plants at Windsor, Scholarship at UWindsor,
  • EPA (2012) Watershed Academy Web, The Effect of Climate Change on Water Resources and Programs (PDF file adapted). http://www.epa.gov/watertrain. Erişim Tarihi: 14.03.2017.
  • Erdoğan M., (2015) Çevresel Tesislerden Kaynaklanan Sera Gazı Emisyonlarının Hesaplanması, İstanbul Teknik Üniversitesi, Fen Bilimleri Enstitüsü, Yüksek Lisans Tezi, 127 s, İstanbul.
  • Flores-Alsina X., Corominas L., Snip L., Vanrolleghem P.A. (2014) Including greenhouse gas emissions during benchmarking of wastewater treatment plant control strategies, Water Research, 45, 4700-4710. doi: 10.1016/j.watres.2011.04.040.
  • Gori R., Giaccherini F., Jiang L.M., Sobhani R., Rosso D., (2013). Role of primary sedimentation on plant-wide energy recovery and carbon footprint. Water Sci. Technol. 68 (4), 870–878. doi: 10.2166/wst.2013.270
  • Guisasola A., Sharma K.R., De haas D., Keller J., Yuan Z., (2009) Development of a model for assessing methane formation in rising main sewers. Water Res., 43, 2874–2884. doi: 10.1016/j.watres.2009.03.040
  • Gülhan H., (2017) Evsel Atıksu Arıtma Tesislerinden Kaynaklanan Sera Gazı Salımının Tahmini, İstanbul Teknik Üniversitesi, Fen Bilimleri Enstitüsü, Yüksek Lisans Tezi,183 s, İstanbul.
  • Hiatt W.C., Grady Jr C.P.L., (2008) An updated process model for carbon oxidation, nitrification, and denitrification. Water Environ. Res., 80 (11), 2145–2156.
  • IPCC (2007). Climate Change 2007: The Physical Science Basis, Contribution of Working Group I to the Fourth Assessment, Cambridge University Press, Cambridge, İngiltere.
  • IPCC. (2006) IPCC Guidelines for National Greenhouse Gas Inventories. IPCC Guidel Natl Greenh Gas Invent ,3,1–40.
  • İklim Değişikliği ve Türkiye (2012) T.C. Çevre ve Şehircilik Bakanlığı, Ankara.
  • Kerr Wood Leidal Associates Ltd. (KWL) (2008) Vulnerability of Vancouver Sewerage Area Infrastructure to Climate Change, File No. 251.219. Final Report, March 2008.
  • Külah S., (2013) Greenhouse Gas Inventory for an Industrial Wastewater Treatment plant, Dokuz Eylül Üniversitesi, Fen Bilimleri Enstitüsü, Yüksek Lisans Tezi, 105 s, İzmir.
  • Kyung D., Kim M., Chang J., Lee W. (2015) Estimation of greenhouse gas emissions from a hybrid wastewater treatment plan, Journal of Cleaner Production, 95, 117–123. doi: 10.1016/j.jclepro.2015.02.032.
  • Ma R., Hu Z., Zhang J., Ma H., Jiang L., Ru D. (2017) Reduction of greenhouse gases emissions during anoxic wastewater treatment by strengthening nitrite-dependent anaerobic methane oxidation process, Bioresource Technology, 235, 211-218. doi: 10.1016/j.biortech.2017.03.094
  • Mampaey K.E., Beuckels B., ve diğ. (2013.) Modelling nitrous and nitric oxide emissions by autotrophic ammonia-oxidizing bacteria. Environmental Technology, 34(12), 1555-1566. doi: 10.1080/09593330.2012.758666
  • Mannina G., Ekama G., Caniani D., Cosenza A., Esposito G., Gori R. (2016) Greenhouse gases from wastewater treatment - A review of modelling tools, Science of the Total Environment, 551-552, 254-270. doi: 10.1016/j.scitotenv.2016.01.163.
  • Masuda, S., Suzuki, S., Sano, I., Li, Y-Y. ve Nishimura, O. (2015) The seasonal variation of emission of greenhouse gases from a full-scale sewage treatment plant., Chemosphere, 140,167-173. doi: 10.1016/j.chemosphere.2014.09.042.
  • Metcalf & Eddy (2003) Wastewater Engineering: Treatment and Reuse 4ed, McGraw-Hill international Editions, Boston, USA.
  • Molinos-Senantea, M., Hernández-Sanchob, F., Mocholí-Arcea, M. ve Sala-Garridoa, R. (2014) Economic and environmental performance of wastewater treatment plants: Potential reductions in greenhouse gases emissions, Resource and Energy Economics, 38,125-140. doi: 10.1016/j.reseneeco.2014.07.001.
  • Myhre G.D.M., (2013) Anthropogenic and Natural Radiative Forcing. In: Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge: Cambridge University Press, İngiltere.
  • Ni B.J., Ruscalleda M., Pellicer-nàcher C., Smets B.F., (2011) Modeling nitrous oxide production during biological nitrogen removal via nitrification and denitrification: extensions to the General ASM Models. Environ. Sci. Technol., 45,7768–7776. doi: 10.1021/es201489n
  • Özsoy C.E. (2014) Düşük Karbon Ekonomisi ve Türkiye’nin Ayak İzi, Hak İş Uluslararası Emek ve Toplum Dergisi, 9, 199–215.
  • Pan T., Zhu X.D., Ye Y.P. (2011) Estimate of life-cycle greenhouse gas emissions from a vertical subsurface flow constructed wetland and conventional wastewater treatment plants: A casestudy in China, Ecological Engineering, 37, 248-254. doi: 10.1016/j.ecoleng.2010.11.014
  • Parravicini V., Svardal K., Krampe J. (2016) Greenhouse Gas Emissions from Wastewater Treatment Plants, Energy Procedia, 97, 246-253. doi: 10.1016/j.egypro.2016.10.067
  • Pascale R., Caivano M., Buchicchio A., Mancini I.M., Bianco G., Caniani D. (2017) Validation of an analytical method for simultaneous high-precisionmeasurements of greenhouse gas emissions from wastewatertreatment plants using a gas chromatography-barrier dischargedetector system, Journal of Chromatography A, 1480, 62-69. doi: 10.1016/j.chroma.2016.11.024.
  • Plósz B.G., Liltved H., Ratnaweera H., 2009. Climate change impacts on activated sludge wastewater treatment: a case study from Norway. Water Sci Technol.,60(2), 533-541. doi: 10.2166/wst.2009.386.
  • Prendez M., Lara-Gonzalez S. (2008) Application of strategies for sanitation management in wastewater treatment plants in order to control/reduce greenhouse gas emissions, Journal of Environmental Management, 88, 658–664. doi: 10.1016/j.jenvman.2007.03.041.
  • Qambrania N.A., Rahmana M.M., Wonc S ve diğ., (2017) Biochar properties and eco-friendly applications for climate change mitigation, waste management, and wastewater treatment: A review. Renewable and Sustainable Energy Reviews,79, 255–273. doi.org/10.1016/j.rser.2017.05.057
  • Ratkowsky D.A., Olley J., Mcmeekin T.A., Ball A., (1983) Model for bacterial culture growth rate throughout the entire biokinetic temperature range. J. Bacteriol., 154, 1222-1226. doi: 0021-9193/83/061222-05$02.00/0
  • Rodriguez-Caballero, A., Aymerich, I., Poch, M. ve Pijuana, M. (2014) Evaluation of process conditions triggering emissions of green-house gases from a biological wastewater treatment system, Science of the Total Environment, 492,384-391. doi:10.1016/j.scitotenv.2014.06.015.
  • Rodriguez-Garcia G., Hospido A., Bagley D.M., Moreira M.T., Feijoo G.A,. (2012) Methodology to Estimate Greenhouse Gases Emissions in Life Cycle Inventories of Wastewater Treatment Plants, Environmental Impact Assessment Review, 37, 37–46. doi: 10.1016/j.eiar.2012.06.010.
  • Shahabadi B.M., Yerushalmi L., Haghighat F. (2009) Impact of process design on greenhouse gas (GHG) generation by wastewater treatment plants, Water Resources,43,2679–2687. doi: 10.1016/j.watres.2009.02.040.
  • Sweetapple C., Fu G., Butler D.(2014) Identifying sensitive sources and key control handles for the reduction of greenhouse gas emissions from wastewater treatment, Water Research, 62, 249-259. doi: 10.1016/j.watres.2014.06.002.
  • T.C. ÇŞB, (2016). Türkiye İklim Değişikliği 6. Bildirimi. T.C. Çevre ve Şehircilik Bakanlığı, Çevre Yönetimi Genel Müdürlüğü, Ankara.
  • T.C. Resmi Gazete (2004) Su Kirliliği Kontrolü Yönetmeliği, Ankara.
  • Tanikawa D., Syutsubo K., Watari T., Miyaoka Y., Hatamoto M., Iijima S., Fukuda M., Nguyen N.B., Yamaguchi T. (2016) Greenhouse gas emissions from open-type anaerobic wastewater treatment system in natural rubber processing factory, Journal of Cleaner Production, 119, 32-37. doi: 10.1016/j.jclepro.2016.02.001
  • Tolkou A.K., Zouboulis A.I. (2015) Effect of Climate Change in WWTPs and especially in MBR Infrastructures used for Wastewater Treatment, Journal of Desalination and Water Treatment, 57, 2344-2354. doi: 10.1080/19443994.2015.1049403
  • Toyoda S., Suzuki Y., Hattori S. ve Yamada K., Fujii A., Yoshida N., Kouno R., Murayama K. ve Shiomi H., (2011) Isotopomer analysis of production and consumption mechanisms of N2O and CH4 in an advanced wastewater treatment system. Environmental Science and Technology, 45, 917–922. doi: 10.1021/es102985u
  • Trenberth K. E. (1999) Conceptual framework for changes of extremes of the hydrological cycle with climate change, Climatic Change, 42, 327-339.
  • Von Sperling M., de Lemos Chernicharo C.A. (2005) Biological Wastewater Treatment in Warm Climate Regions, IWA Publishing, Padstow, UK.
  • Yamanoğlu Ç.G. (2006) Türkiye’de Küresel Isınmaya Yol Açan Sera Gazı Emisyonlarındaki Artış ile Mücadelede İktisadi Araçların Rolü, Ankara Üniversitesi, Sosyal Bilimleri Enstitüsü, Yüksek Lisans tezi, 151s, Ankara.
  • Yan X., Li L., Liu (2014) Characteristics of greenhouse gas emission in three full-scale wastewater treatment processes, Journal of Environmental Sciences, 26, 256-263. doi: 10.1016/S1001-0742(13)60429-5.
  • Yapıcıoğlu P. ve Demir Ö. (2016) Atıksu Arıtma Tesislerinin Sera Gazı Emisyonlarının Minimizasyonu,International Symposium of Water and Wastewater Management(ISWWM), October 26-28, Proceeding Book,Malatya, 547-583.
  • Yapıcıoğlu P. ve Demir Ö. (2017 Microalgae culture utilization for greenhouse gases emissions mitigation and prevention in wastewater treatment plants: an overview, IV. Uluslararası Su Kongresi-Akıllı Şehirlerde Su Yönetimi, Kasım 2-4, Proceeding Book,İzmir, 80.
  • Yoshida H., Monster J., Scheutz C. (2014) Plant-integrated measurement of greenhouse gas emissions from a municipal wastewater treatment plant, Water Research, 61, 108-118. doi: 10.1016/j.watres.2014.05.014.
  • Zouboulis A.I., Tolkou A.K. (2014) Effect of Climate Change in Wastewater Treatment Plants: Reviewing the Problems and Solutions, Managing Water Resources under Climate Uncertainty, 197-220 . doi.org: 10.1007/978-3-319-10467-6_10
Toplam 56 adet kaynakça vardır.

Ayrıntılar

Konular Mühendislik
Bölüm Derleme Makaleler
Yazarlar

Pelin Yapıcıoğlu

Özlem Demir

Yayımlanma Tarihi 31 Aralık 2017
Gönderilme Tarihi 18 Nisan 2017
Kabul Tarihi 25 Aralık 2017
Yayımlandığı Sayı Yıl 2017

Kaynak Göster

APA Yapıcıoğlu, P., & Demir, Ö. (2017). ATIKSU ARITMA TESİSLERİ İÇİN İKLİM DEĞİŞİKLİĞİNE VE SERA ETKİSİNE GENEL BİR BAKIŞ. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi, 22(3), 235-250. https://doi.org/10.17482/uumfd.306858
AMA Yapıcıoğlu P, Demir Ö. ATIKSU ARITMA TESİSLERİ İÇİN İKLİM DEĞİŞİKLİĞİNE VE SERA ETKİSİNE GENEL BİR BAKIŞ. UUJFE. Aralık 2017;22(3):235-250. doi:10.17482/uumfd.306858
Chicago Yapıcıoğlu, Pelin, ve Özlem Demir. “ATIKSU ARITMA TESİSLERİ İÇİN İKLİM DEĞİŞİKLİĞİNE VE SERA ETKİSİNE GENEL BİR BAKIŞ”. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi 22, sy. 3 (Aralık 2017): 235-50. https://doi.org/10.17482/uumfd.306858.
EndNote Yapıcıoğlu P, Demir Ö (01 Aralık 2017) ATIKSU ARITMA TESİSLERİ İÇİN İKLİM DEĞİŞİKLİĞİNE VE SERA ETKİSİNE GENEL BİR BAKIŞ. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi 22 3 235–250.
IEEE P. Yapıcıoğlu ve Ö. Demir, “ATIKSU ARITMA TESİSLERİ İÇİN İKLİM DEĞİŞİKLİĞİNE VE SERA ETKİSİNE GENEL BİR BAKIŞ”, UUJFE, c. 22, sy. 3, ss. 235–250, 2017, doi: 10.17482/uumfd.306858.
ISNAD Yapıcıoğlu, Pelin - Demir, Özlem. “ATIKSU ARITMA TESİSLERİ İÇİN İKLİM DEĞİŞİKLİĞİNE VE SERA ETKİSİNE GENEL BİR BAKIŞ”. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi 22/3 (Aralık 2017), 235-250. https://doi.org/10.17482/uumfd.306858.
JAMA Yapıcıoğlu P, Demir Ö. ATIKSU ARITMA TESİSLERİ İÇİN İKLİM DEĞİŞİKLİĞİNE VE SERA ETKİSİNE GENEL BİR BAKIŞ. UUJFE. 2017;22:235–250.
MLA Yapıcıoğlu, Pelin ve Özlem Demir. “ATIKSU ARITMA TESİSLERİ İÇİN İKLİM DEĞİŞİKLİĞİNE VE SERA ETKİSİNE GENEL BİR BAKIŞ”. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi, c. 22, sy. 3, 2017, ss. 235-50, doi:10.17482/uumfd.306858.
Vancouver Yapıcıoğlu P, Demir Ö. ATIKSU ARITMA TESİSLERİ İÇİN İKLİM DEĞİŞİKLİĞİNE VE SERA ETKİSİNE GENEL BİR BAKIŞ. UUJFE. 2017;22(3):235-50.

DUYURU:

30.03.2021- Nisan 2021 (26/1) sayımızdan itibaren TR-Dizin yeni kuralları gereği, dergimizde basılacak makalelerde, ilk gönderim aşamasında Telif Hakkı Formu yanısıra, Çıkar Çatışması Bildirim Formu ve Yazar Katkısı Bildirim Formu da tüm yazarlarca imzalanarak gönderilmelidir. Yayınlanacak makalelerde de makale metni içinde "Çıkar Çatışması" ve "Yazar Katkısı" bölümleri yer alacaktır. İlk gönderim aşamasında doldurulması gereken yeni formlara "Yazım Kuralları" ve "Makale Gönderim Süreci" sayfalarımızdan ulaşılabilir. (Değerlendirme süreci bu tarihten önce tamamlanıp basımı bekleyen makalelerin yanısıra değerlendirme süreci devam eden makaleler için, yazarlar tarafından ilgili formlar doldurularak sisteme yüklenmelidir).  Makale şablonları da, bu değişiklik doğrultusunda güncellenmiştir. Tüm yazarlarımıza önemle duyurulur.

Bursa Uludağ Üniversitesi, Mühendislik Fakültesi Dekanlığı, Görükle Kampüsü, Nilüfer, 16059 Bursa. Tel: (224) 294 1907, Faks: (224) 294 1903, e-posta: mmfd@uludag.edu.tr