Derleme
BibTex RIS Kaynak Göster

GÜNEŞ IŞIĞINA DAYALI YÖNTEMLERLE SULARDA MİKROORGANİZMA İNAKTİVASYONU: DERLEME

Yıl 2017, , 149 - 168, 27.04.2017
https://doi.org/10.17482/uumfd.309467

Öz

Bu
çalışma kapsamında, gelişmekte olan ülkelerin yanısıra gelişmiş ülkelerin de sorunu
olan güvenilir içme suyu teminine olanak sağlayan güneş ışığı ile dezenfeksiyon
(SODİS) sistemleri incelenmiştir. Bu kapsamda güneş ışığı ile dezenfeksiyon
sistemlerinin mikroorganizma inaktivasyonundaki verimliliklerinin
arttırılmasına yönelik günümüze kadar yapılmış uygulamalar da
değerlendirilmiştir. Bu inceleme neticesinde, dezenfekte edilecek olan suda
bulunan organik ve inorganik bileşiklerin, sudaki çözünmüş oksijen konsantrasyonunun,
ışık yoğunluğunun, ışığın kalitesinin, sıcaklığın, reaktör tiplerinin,
mikroorganizma türlerinin ve türlerin büyüme safhalarının, güneş ışığı ile
mikroorganizmaların inaktivasyonunu etkilediği tespit edilmiştir. Güneş ışığına
dayalı diğer yöntemlerin (güneş ışığı+H2O2, güneş
ışığı+TiO2, güneş ışığı+Fe+2, güneş ışığı+H2O2+Fe+2/Fe+3,
güneş ışığı+TiO2+H2O2) inaktivasyon verimini
arttırarak dirençli mikroorganizmaları inaktive etmede daha başarılı olduğu görülmüştür.
Asya, Latin Amerika ve Afrika ülkelerinde oldukça yaygın olarak kullanılan bu
yöntemlerin, ülkemizde de Güneydoğu Anadolu ve Akdeniz Bölgesi gibi güneş
enerjisinin fazla olduğu bölgelerde, sağlıklı ve güvenilir içme ve kullanma
suyu elde etmek amacıyla kullanılabileceği düşünülmektedir.

Kaynakça

  • Agulló-Barcelo, M., Polo-Lopez, M.I., Lucena, F., Jofre, J., ve Fernandez-Ibanez, P. (2013) Solar advanced oxidation processes as disinfection tertiary treatments for real wastewater: Implications for water reclamation, Applied Catalysis B: Environmental, 136-137, 341-350. http://dx.doi.org/10.1016/j.apcatb.2013.01.069
  • Acra, A., Raffoul, Z., Karahagopian, Y. (1984) Solar disinfection of drinking water andoral rehydration solutions: guidelines for household application in developing countries, UNICEF, Paris, France.
  • Acra, A., Jurdi, M., Mu, H., Karahagopian, Y., Raffoul, Z. (1990) Water disinfection by solar radiation: assessment and application, International Development Research Centre, 53- 65.
  • Ahsan, A., Imteaz, M., Thomas, U.A., Azmi, M., Rahman, A., Nik Daud, N.N. (2014) Parameters affecting the performance of a low cost solar still, Applied Energy, 114, 924–930. http://dx.doi.org/10.1016/j.apenergy.2013.08.066
  • Aksungur, K.M., Kurban, M. ve Filik, Ü.B. (2013) Türkiye’nin Farklı Bölgelerindeki Güneş Işınım Verilerinin Analizi ve Değerlendirilmesi, in 5th Conferance of Energy Efficiecny and Quality. Kocaeli, Turkey.
  • Belapurkar, A.D., Sherkhane, P. ve Kale, S.P. (2006) Disinfection of drinking water using photocatalytic technique, Current Science, 91(1), 73-76.
  • Benabbou, A.K., Derriche, Z., Felix, C., Lejeune, P., Guillard, C. (2007) Photocatalytic inactivation of Escherischia coli Effect of concentration of TiO2 and microorganism, nature, and intensity of UV irradiation, Applied Catalysis B: Environmental, 76, 257–263. doi:10.1016/j.apcatb.2007.05.026
  • Berney, M., Weilenmann, H.U. ve Egli., T. (2006a) Flow-cytometric study of vital cellular functions in Escherichia coli during solar disinfection (SODIS), Microbiology, 152:1719-1729. doi: 10.1099/mic.0.28617-0
  • Berney, M., Weilenmann, H.U., Simonetti, A., Egli, T. (2006) Efficacy of solar disinfection of Escherichia coli, Shigella flexneri, Salmonella Typhimurium and Vibrio cholerae, Journal of Applied Microbiology, 101(4), 828-836. doi: 10.1111/j.1365-2672.2006.02983.x
  • Bichai, F., Polo-López, M.I., Fernández Ibanez, P. (2012 ) Solar disinfection of wastewater to reduce contamination of lettuce crops by Escherichia coli in reclaimed water irrigation, Water Research, 46, 6040-6050. http://dx.doi.org/10.1016/j.watres.2012.08.024
  • Blanco, J., Malato, S., Fernández Ibanez, P., Alarcón, D., Gernjak, W., Maldonado, M.I. (2009) Review of feasible solar energy applications to water processes, Renewable and Sustainable Energy Reviews, 13, 1437–1445. doi: 10.1016/j.rser.2008.08.016
  • Bosshard, F., Bucheli, M., Meur, Y. ve Egli, T. (2010) The respiratory chain is the cell’s Achilles’ heel during UVA inactivation in Escherichia coli, Microbiology, 156, 2006–2015. Doi: 10.1099/mic.0.038471-0
  • Boyle, M., Sichel, C., Fernández-Ibánez, P., Arias-Quiroz, G.B. and Iriarte-Puná, Mercado, M.A., Ubomba-Jaswa, E. ve McGuigan, K.G. (2008) Bactericidal effect of solar water disinfection under real sunlight conditions, Applied and Environmental Microbiology, 74(10), 2997-3001. doi: 10.1128/AEM.02415-07
  • Britt, A.B. (1996) DNA damage and repair in plants, Annual Review of Plant Physiology and Plant Molecular Biology, 47, 75–100. doi: 10.1146/annurev.arplant.47.1.75
  • Byrne, J.A., Fernandez-Ibanez, P.A., Dunlop,P.S.M., Alrousan, D.M.A. ve Hamilton, J.W.J. (2011) Photocatalytic Enhancement for Solar Disinfection of Water: A Review, International Journal of Photoenergy, 1–12. doi:10.1155/2011/798051.
  • Cantwell, R.E., Hofmann, R. ve Templeton, M.R. (2008) Interactions between humic matter and bacteria when disinfecting water with UV light, Journal of Applied Microbiology, 105(1), 25-35. doi: 10.1111/j.1365-2672.2007.03714.x
  • Carratalà, A., Dionisio Calado, A., Mattle, M.J., Meierhofer, R., Luzi, S., Kohn., T. (2016) Solar disinfection of viruses in polyethylene terephthalate bottles. Applied and Environmental Microbiology, 82, 279 –288. doi:10.1128/AEM.02897-15.
  • Caslake, L.F., Connolly, D.J., Menon, V., Duncanson, C.M., Rojas, R., Tavakoli, J. (2004) Disinfection of contaminated water by using solar irradiation, Appl. Environmental Microbiology, 70, 1145–1150. doi: 10.1128/AEM.70.2.1145-1150.2004
  • Chamberlain J. ve Moss, S.H. (1987) Lipid peroxidation and other membrane damage produced in Escherichia coli K1060 by near-UV radiation and deuterium oxide, Photochemistry and Photobiology, 45(5), 625-630. doi: 10.1111/j.1751-1097.1987.tb07389.x
  • Cho, M., Lee, Y., Chung, H. ve Yoon, J. (2004) Inactivation of Escherichia coli by photochemical reaction of ferrioxalate at slightly acidic and near-neutral pHs, Applied and Environmental Microbiology, 70(2), 1129-1134. doi: 10.1128/AEM.70.2.1129-1134.2004
  • Christen, A., Pacheco, G.D., Hattendorf, J., Arnold, B.F., Cevallos, M., Indergand, S., Colford, J.M. ve Mäusezahl, D. (2011) Factors associated with compliance among users of solar water disinfection in rural Bolivia, BMC Public Health, 11, 210-223. http://www.biomedcentral.com/1471-2458/11/210
  • Çalışkan Eleren, S., Alkan, U., ve Teksoy, A. (2014) Inactivation of E. Coli and B. Subtilis by solar and solar/H2O2 processes in humic surface waters, Fresenius Environmental Bulletin, 23(6), 1397-1406.
  • Çelik, R., (2008) Diyarbakır ovasının yer altı ve yerüstü su potansiyeli, pompa verimlilik haritalarının çıkarılması, hidrojeolojik analizi, Doğu Anadolu Bölgesi araştırmaları, 154-164.
  • Davarcioglu, B. (2015) Solar water disinfection considerations: using ultraviolet light methods to make water safe to drink, International Journal of Innovative Science, Engineering & Technology, 2(8), 253-264.
  • Davies, C.M., Evison, L.M. (1991) Sunlight and the survival of enteric bacteria in natural waters, Journal of Applied Microbiology, 70(3), 265–274.doi: 10.1111/j.1365-2672.1991.tb02935.x
  • Dejung, S., Fuentes, I., Almanza, G., Jarro, R., Navarro, L., Arias, G., Urquieta, E., Torrico, A., Fenandez, W., Iriarte, M., Birrer, C., Stahel, W.A. and Wegelin, M. (2007) Effect of solar water disinfection (SODIS) on model microorganisms under improved and field SODIS conditions, Journal of Water Supply: Research and Technology-AQUA, 56(4), 245-256. doi: 10.2166/aqua.2007.058
  • Deller, S., Mascher, F., Platzer, S., Reinthaler, F.F., Marth, E. (2006) Effect of solar radiation on survival of indicator bacteria in bathing waters, Central European Journal of Public Health, 14(3), 133–137.
  • Dunlop, P.S.M., Ciavola, M., Rizzo, L., Byrne, J.A. (2011) Inactivation and injury assessment of Escherichia coli during solar and photocatalytic disinfection in LDPE bags, Chemosphere, 85,1160–1166. doi:10.1016/j.chemosphere.2011.09.006
  • Dünya Enerji Konseyi Türk Milli Komitesi. (2009) Dünya’da ve Türkiye’de Güneş Enerjisi, ISBN: 978-605-89548-2-3. DEKTMK YAYIN NO: 0011/2009, EKC Form Ofset, Ankara.
  • Fernandez Ibanez, P. (2007) Solar disinfection of drinking water, Course on: Innovative Process and Practices for wastewater treatment and reuse, Ankara University, Turkey.
  • Feuerstein, O., Moreinos, D. ve Steinberg, D. (2006) Synergic antibacterial effect between visible light and hydrogen peroxide on Streptococcus mutans, Journal of Antimicrobial Chemotherapy, 57,872–876. doi: 10.1093/jac/dkl070
  • Fisher, M.B., Iriarte, M., Nelson, K.L. (2012) Solar water disinfection (SODIS) of Escherichia coli, Enterococcus spp., and MS2 coliphage: Effects of additives and alternative container materials, Water Research, 46, 1745-1754. doi:10.1016/j.watres.2011.12.048
  • Fridovich, I. (1998) Oxygen toxicity: A radical explanation, Journal of Experimental Biology, 201(8), 1203-1209.
  • Fogden, J. ve Wood, G. (2009) Access to safe drinking water and its impact on global economic growth a study, HaloSource, Inc., Bothell, WA 98021, USA.
  • Fujioka, R.S., Yoneyama, B.S. (2002) Sunlight inactivation of human enteric viruses and fecal bacteria, Water Science and Technology, 46(11-12), 291-295.
  • García-Fernández, I., Polo-López, M.I., Oller,I. ve Fernández-Ibánez, P. (2012) Bacteria and fungi inactivation using Fe3+/sunlight, H2O2/sunlight and near neutral photo-Fenton: A comparative study, Applied Catalysis B: Environmental, 121–122, 20–29.
  • Gelover, S., Gómez, L.A., Reyes, K. ve Leal, M.T. (2006) A practical demonstration of water disinfection using TiO2 films and sunlight, Water Research, 40(17), 3274-3280.doi:10.1016/j.watres.2006.07.006
  • Gomes, A.I., Santos, J.C., Vilar, V. J.P. and Boaventura, R.A.R. (2009) Inactivation of bacteria E. coli and photodegradation of humic acids using natural sunlight, Applied Catalysis B: Environmental, 88(3-4), 283-291. http://dx.doi.org/10.1016/j.apcatb.2008.11.014
  • Gomes, A.I., Vilar, V.J.P., Boaventura, R.A.R. (2009b) Synthetic and natural waters disinfection using natural solar radiation in a pilot plant with CPCs, Catalysis Today, 144(1–2),55–61.
  • Gómez-Couso, H., Fontán-Sainz, M., McGuigan, K.G., Ares-Mazás, E. (2009a) Effect of the radiation intensity, water turbidity and exposure time on the survival of Cryptosporidium during simulated solar disinfection of drinking water, Acta Tropica, 112(1), 43–48. doi:10.1016/j.actatropica.2009.06.004
  • Gómez-Couso, H., Fontán-Saínz, Sichel, M.C., Fernández-Ibanez, P. ve Ares-Mazás, E. (2009b) Efficacy of the solar water disinfection method in turbid waters experimentally contaminated with Cryptosporidium parvum oocysts under real field conditions, Tropical Medicine & International Health, 14(6), 620–627. doi: 10.1111/j.1365-3156.2009.02281.x
  • Halliwell, B. Ve Gutteridgde, J. (1999) Free radicals in biology and medicine, Oxford University Press, Oxford, U.K.
  • Hara, K., Holland, S., ve Woo J. (2004) Effects of Exogenous Reactive Oxygen Species Scavengers on the Survival of Escherichia coli B23 during Exposure to UV-A radiation, Journal of Experimental Microbiology and Immunology, 12,62-66.
  • Helali, S., Polo-López, M.I., Fernández-Ibánez, P., Ohtani, B., Amano, F., Malato, S., Guillar, C. (2014) Solar photocatalysis: A green technology for E. coli contaminatedwater disinfection. Effect of concentration and different types ofsuspended catalyst, Journal of Photochemistry and Photobiology A: Chemistry, 276, 31–40. http://dx.doi.org/10.1016/j.jphotochem.2013.11.011
  • Hernández-Ramírez, A., Medina-Ramirez, I. (Eds.) (2015) Photocatalytic Semiconductors: Synthesis, Characterization, and Environmental Applications, Springer International Publishing Switzerland. Page: 289, DOİ: 10.1007/978-3-319-10999-2.
  • Hoerter, J.D., Arnold, A.A., Kuczynska, D.A., Shibuya, A., Ward, C.S., Sauer, M.G., Gizachew, A., Hotchkiss, T.M., Fleming, T.J. , Johnson, S. (2005) Effects of sublethal UVA irradiation on activity levels of oxidative defense enzymes and protein oxidation in Escherichia coli, Journal of Photochemistry and Photobiology B: Biology, 81(3),171-180.
  • Huang, Z., Maness P.C., Blake, D.M., Wolfrum, E.J., Smolinski, S.L., Jacoby, W.A. (2000) Bactericidal mode of titanium dioxide photocatalysis, Journal of Photochemistry and Photobiology A: Chemistry, 130, 163–170. doi:S1010- 6030(99)00205-1
  • Hug, S. ve Leupin, O. (2003) Iron-catalyzed oxidation of arsenic(III) by oxygen and by hydrogen peroxide: pH-dependent formation of oxidants in the Fenton reaction, Environmental Science and Technology, 37(12), 2734-2742. doi: 10.1021/es026208x
  • Imlay, J.A. (2008) Cellular defenses against superoxide and hydrogen peroxide, Annual Review of Biochemistry, 77, 755–776. doi: 10.1146/annurev.biochem.77.061606.161055.
  • Jang, S., Imlay, J.A. (2010) Hydrogen peroxide inactivates the Escherichia coli Isc iron-sulphur assembly system, and OxyR induces the Suf system to compensate, Molecular Microbiology, 78(6), 1448–1467. doi:10.1111/j.1365-2958.2010.07418.x
  • Joyce, T.M., McGuigan, K.G., Elmore-Meegan, M., Conroy, R.M. (1996) Inactivation of fecal bacteria in drinking water by solar heating, Applied and Environmental Microbiology, 62 399–402.
  • Kalt, P., Birzer, C., Evans, H., Liew, A., Padovan, M., ve Watchman, M. (2014) A Solar Disinfection Water Treatment System for Remote Communities, Procedia Engineering, 78, 205-258. doi: 10.1016/j.proeng.2014.07.064
  • Kehoe, S.C., Joyce, T.M., Ibrahim, P., Gillespie, J.B., Shahar, R.A., ve McGuigan, K.G. (2001) Effect of agitation, turbidity, aluminium foil reflectors and container volume on the inactivation efficiency of batch-process solar disinfectors, Water Research, 35(4), 1061-1065. http://dx.doi.org/10.1016/S0043-1354(00)00353-5
  • Khaengraeng, R., ve Reed, R. H. (2005) Oxygen and photoinactivation of Escherichia coli in UVA and sunlight, Journal of Applied Microbiology, 99(1), 39-50. doi: 10.1111/j.1365-2672.2005.02606.x
  • Kılıç, F.Ç. (2015) Güneş Enerjisi, Türkiye’deki Son Durumu ve Üretim Teknolojileri, Mühendis ve Makina, 56(671), 28-40.
  • Kiwi, J. ve Nadtochenko, V. (2005) Evidence for the Mechanism of Photocatalytic Degradation of the Bacterial Wall Membrane at the TiO2 Interface by ATR-FTIR and Laser Kinetic Spectroscopy, Langmuir, 21, 4631-4641. doi: 10.1021/la046983l
  • Lee, E., Lee, H., Jung, W., Park, S., Yang, D., ve Lee K. (2009) Influences of humic acids and photoreactivation on the disinfection of Escherichia coli by a high-power pulsed UV irradiation, Korean Journal of Chemical Engineering, 26(5), 1301-1307. doi: 10.1007/s11814-009-0208-5
  • Lonnen, J., Kilvington, S., Kehoe, S.C., Al-Touati, F. ve McGuigan, K.G. (2005) Solar and photocatalytic disinfection of protozoan, fungal and bacterial microbes in drinking water, Water Research, 39(5), 877–883. http://dx.doi.org/10.1016/j.watres.2004.11.023
  • Mahvi, A.H. (2007) Feasibility of Solar Energy in Disinfection of Drinking Water in Iran, American-Eurasian Journal of Agricultural & Environmental Sciences, 2(4), 407-410.
  • Mamane, H., Shemer, H., Linden, K.G. (2007) Inactivation of E. coli, B. subtilis spores, and MS2, T4, and T7 phage using UV/H2O2 advanced oxidation, Journal of Hazardous Materials, 146, 479–486. doi:10.1016/j.jhazmat.2007.04.050
  • Mani, S.K., Kanjur, R., Bright Singh, I.S., Reed, R.H. (2006) Comparative effectiveness of solar disinfection using small-scale batch reactors with reflective, absorptive and transmissive rear surfaces, Water Research, 40, 721–727. doi:10.1016/j.watres.2005.11.039
  • Manjón, F., Villén, L., García-Fresnadillo, D., ve Orellana, G. (2008) On the factors ınfluencing the performance of solar reactors for water disinfection with photosensitized singlet oxygen, Environmental Science&Technology, 42(1), 301–307. doi: 10.1021/es071762y
  • Maraccini, P.A., M. Mattioli C.M., Sassoubre, L.M., Cao, Y., Griffith, J.F., Ervin, J.S., Werfhorst, L.C.V. D., ve Boehm, A.B. (2016) Solar inactivation of Enterococci and Escherichia coli in natural waters: effects of water absorbance and depth, Environmental Science&Technology, 50, 5068−5076. doi: 10.1021/acs.est.6b00505
  • McGuigan, K.M., Joyce, T.M., Conroy, R.M., Gillespie, J.B. ve Elmore-Meegan, M. (1998) Solar disinfection of drinking water contained in transparent plastic bottles: characterizing the bacterial inactivation process, Journal of Applied Microbiology, 84(6), 1138-1148. doi: 10.1046/j.1365-2672.1998.00455.x
  • McGuigan, K.G., Conroy, R.M., Mosler, H.J., du Preez, M., Ubomba-Jaswa, E., Fernandez-Ibanez, P. (2012) Solar water disinfection (SODIS): A review from bench-top to roof-top, Journal of Hazardous Materials, 235–236, 29– 46. http://dx.doi.org/10.1016/j.jhazmat.2012.07.053
  • Méndez-Hermida, F., Castro-Hermida, J.A., Ares-Mazás, E., Kehoe, S.C., McGuigan, K.G. (2005) Effect of batch-process solar disinfection on survival of Cryptosporidium parvum oocysts in drinking water, Applied and Environmental Microbiology, 71(3), 1653-1654. doi: 10.1128/AEM.71.3.1653-1654.2005
  • Méndez-Hermida, F., Ares-Mazás, E., McGuigan, K.G., Boyle, M., Sichel, C., Fernández-Ibáñez, P. (2007) Disinfection of drinking water contaminated with Cryptosporidium parvum oocysts under natural sunlight and using the photocatalyst TiO2, Journal of Photochemistry and Photobiology B: Biology, 88(2–3), 105–111. doi:10.1016/j.jphotobiol.2007.05.004
  • Meierhofer R., ve Wegelin M. (2002) Solar Water Disinfection: A Guide for the application of SODİS, SANDEC-EAWAG, Report No: 06/02, Switzerland.
  • Méndez-Hermida, F., Castro-Hermida, J.A., Ares-Mazás, E., Kehoe, S.C. ve McGuigan, K. G. (2005) Effect of Batch-Process Solar Disinfection on Survival of Cryptosporidium parvum Oocysts in Drinking Water, Applied and Environmental Microbiology, 71(3), 1653–1654. doi:10.1128/AEM.71.3.1653–1654.2005
  • Mohamed, A.H., Galal, M., Osman, G.Y. ve Aboamer, M. (2014) Influence of solar energy on encysted parasitic protozoa Giardia and Entamoeba spp in water-treatment plants, Egypt, Journal of Materials Science and Engineering B,4(10), 284-292. doi: 10.17265/2161-6221/2014.10.003
  • Moncayo-Lasso, A., Sanabria, J., Pulgarin, C., Benítez, N. (2009) Simultaneous E. coli inactivation and NOM degradation in river water via photo-Fenton process at natural pH in solar CPC reactor. A new way for enhancing solar disinfection of natural water, Chemosphere, 77, 296–300. doi:10.1016/j.chemosphere.2009.07.007
  • Mtapuri-Zinyowera, S., Midzi, N., Muchaneta-Kubara, C.E., Simbini, T. ve Mduluza T. (2009) Impact of solar radiation in disinfecting drinking water contaminated with Giardia duodenalis and Entamoeba histolytica ⁄dispar at a point-of-use water treatment, Journal of Applied Microbiology, 106(3), 847–852. doi: 10.1111/j.1365-2672.2008.04054.x
  • Muela, A., Garcia-Bringas, J.M., Arana, I., Barcina, I. (2000) Humic Materials Offer Photoprotective Effect to Escherichia coli Exposed to Damaging Luminous Radiation, Microbial Ecology, 40, 336-344. doi: 10.1007/s002480000064
  • Nalwanga, R., Quilty, B., Muyanja, C., Fernandez-Ibanez, P., McGuigan, K.G. (2014) Evaluation of solar disinfection of E. coli under Sub-Saharan field conditions using a 25L borosilicate glass batch reactor fitted with a compound parabolic collector, Solar Energy, 100, 195–202. http://dx.doi.org/10.1016/j.solener.2013.12.011
  • Nararom, M., Thepa, S., Kongkiattikajorn, J., Songprakorp, R. (2015) Disinfection of water containing Escherichia coli by use of a compound parabolic concentrator: effect of global solar radiation and reactor surface treatment, Research on Chemical Intermediates, 41(9), 6543–6558. doi: 10.1007/s11164-014-1760-0
  • Navntoft, C., Ubomba-Jaswa, E., McGuigan, K.G., Fernández-Ibáñez, P. (2008) Effectiveness of solar disinfection using batch reactors with non-imaging aluminium reflectors under real conditions: Natural well-water and solar light, Journal of Photochemistry and Photobiology B: Biology, 93, 155–161. doi:10.1016/j.jphotobiol.2008.08.002
  • Ndounlaa, J., Spuhler, D., Kenfack, S., Wéthé, J., Pulgarin C. (2013) Inactivation by solar photo-Fenton in pet bottles of wild enteric bacteria of natural well water: Absence of re-growth after one week of subsequent storage, Applied Catalysis B: Environmental, 129, 309–317. http://dx.doi.org/10.1016/j.apcatb.2012.09.016
  • Ndounlaa, J., Kenfack, S., Wéthé, J., Pulgarin C. J. (2014) Relevant impact of irradiance (vs. dose) and evolution of pH andmineral nitrogen compounds during natural water disinfection byphoto-Fenton in a solar CPC reactor, Applied Catalysis B: Environmental, 148–149, 144–153. http://dx.doi.org/10.1016/j.apcatb.2013.10.048
  • Oates, P.M., Shanahan, P., Polz, M.F. (2003) Solar disinfection (SODIS): simulation of solar radiation for global assessment and application for point-of-use water treatment in Haiti, Water Research, 37, 47–54. doi: 10.1016/S0043-1354(02)00241-5.
  • Pharabod, F. ve Philibert, C. (1991) LUZ solar power plants : Success in California and worldwide prospects, Deutsche Forshungsanstalt fûr Luft- und Raumfahrt e.V. for IEA-SSPS (SolarPACES), Köln.
  • Polo-López, M.I ., Fernández-Ibáñez, P., García-Fernández, I., Oller, I., Salgado-Tránsito, I., ve Sichel, C., (2010) Resistance of Fusarium sp spores to solar TiO2 photocatalysis: influence of spore type and water (scaling-up results), Journal of Chemical Technology and Biotechnology, 85(8), 1038–1048. doi: 10.1002/jctb.2397
  • Polo-López, M.I., García-Fernández, I., Oller, I. ve Fernández-Ibáñez, P. (2011) Solar disinfection of fungal spores in water aided by low concentrations of hydrogen peroxide, Photochemical & Photobiological Sciences, 10, 381-388. doi: 10.1039/C0PP00174K
  • Pulgarin, C., Kiwia, J., Nadtochenko, V. (2012) Mechanism of photocatalytic bacterial inactivation on TiO2 films involving cell-wall damage ve lysis, Applied Catalysis B: Environmental, 128(30), 179–183. doi:10.1016/j.apcatb.2012.01.036
  • Reed, R.H., Mani, S.K. ve Meyer, V. (2000) Solar photo-oxidative disinfection of drinking water: preliminary field observations, Letters in Applied Microbiology, 30, 432-436. doi: 10.1046/j.1472-765x.2000.00741.x
  • Riesenman, P.J., Nicholson, W.L. (2000) Role of the spore coat layers in Bacillus subtilis spore resistance to hydrogen peroxide, artificial UV-C, UV-B, and solar UV radiation, Applied and Environmental Microbiology, 66(2), 620-626. doi: 10.1128/AEM.66.2.620-626.2000
  • Rincón, A.G. ve Pulgarin, C. (2003) Photocatalytical inactivation of E. coli: effect of (continuous–intermittent) light intensity and of (suspended–fixed) TiO2 concentration, Applied Catalysis B: Environmental, 44, 263–284. doi:10.1016/S0926-3373(03)00076-6
  • Rincón, A.G. ve Pulgarin, C. (2004a) Bactericidal action of illuminated TiO2 on pure Escherichia coli and natural bacterial consortia: post-irradiation events in the dark and assessment of the effective disinfection time, Applied Catalysis B: Environmental, 49(2), 99-112. doi:10.1016/j.apcatb.2003.11.013
  • Rincón, A.G. ve Pulgarin, C. (2004b) Field solar E. coli inactivation in the absence and presence of TiO2: is UV solar dose an appropriate parameter for standardization of water solar disinfection?, Solar Energy, 77, 635–648. doi:10.1016/j.solener.2004.08.002
  • Rincón, A.G. ve Pulgarin, C. (2004c) Effect of pH, inorganic ions, organic matter and H2O2 on E. coli K12 photocatalytic inactivation by TiO2 implications in solar water disinfection, Applied Catalysis B: Environmental, 51(4), 283-302. doi:10.1016/j.apcatb.2004.03.007
  • Rincón, A.G. ve Pulgarin, C. (2006) Comparative evaluation of Fe3+ and TiO2 photoassisted processes in solar photocatalytic disinfection of water, Applied Catalysis B: Environmental, 63(3-4), 222-231. doi:10.1016/j.apcatb.2005.10.009
  • Rincón, A.G. ve Pulgarin, C. (2007a) Fe3+ and TiO2 solar-light-assisted inactivation of E. coli at field scale: Implications in solar disinfection at low temperature of large quantities of water, Catalysis Today, 122(1–2), 128–136. doi:10.1016/j.cattod.2007.01.028
  • Rincón, A.G. ve Pulgarin, C. (2007b) Absence of E. coli regrowth after Fe3+ and TiO2 solar photoassisted disinfection of water in CPC solar photoreactor, Catalysis Today, 124, 204–214. doi:10.1016/j.cattod.2007.03.039
  • Sciacca, F., Rengifo-Herrera, J.A., Wéthé, J., Pulgarin, C. (2010) Dramatic enhancement of solar disinfection (SODIS) of wild Salmonella sp. in PET bottles by H2O2 addition on natural water of Burkina Faso containing dissolved iron, Chemosphere, 78(9), 1186–1191. doi:10.1016/j.chemosphere.2009.12.001.
  • Sharpe, M., Robb, S. ve Clark, J. (2003) Nitric oxide and Fenton/Haber–Weiss chemistry: Nitric oxide is a potent antioxidant at physiological concentrations, Journal of Neurochemistry, 87, 386-394. doi: 10.1046/j.1471-4159.2003.02001.x
  • Sichel, C., Blanco, J., Malato, S. and Fernández-Ibánez, P. (2007) Effects of experimental conditions on E. coli survival during solar photocatalytic water disinfection, Journal of Photochemistry and Photobiology A: Chemistry, 189(2-3), 239-246. http://dx.doi.org/10.1016/j.jphotochem.2007.02.004
  • Sichel, C., Fernández-Ibánez, P., de Carac, M., Telloc, J. (2009) Lethal synergy of solar UV-radiation and H2O2 on wild Fusarium solani spores in distilled and natural well water, Water Research, 43, 1841–1850. http://dx.doi.org/10.1016/j.watres.2009.01.017
  • Silkin, H. (2014). İklim değişikliğine uyum özelinde bazı uygulamaların Türkiye açısından değerlendirilmesi, Orman ve Su İşleri Uzmanlık Tezi, T.C.Orman ve Su İşleri Bakanlığı, Su Yönetimi Genel Müdürlüğü, Ankara.
  • Sinton, L.W., Hall, C.H., Lynch, P.A., Davies-Colley, R.J. (2002) Sunlight inactivation of fecal indicator bacteria and bacteriophages from waste stabilization pond effluent in fresh and saline waters, Applied and Environmental Microbiology, 68(3), 1122–1131. doi: 10.1128/AEM.68.3.1122-1131.2002
  • Sommer, B., Marino, A., Solarte, Y., Salas, M.L., Dierolf, C., Valiente, C., Mora, D., Rechsteiner, R., Setter, P., Wirojanagud, W., Ajarmeh, H.A., AlHassan, Wegelin, M. (1997) SODIS – an emerging water treatment process, Journal of Water Supply: Research and Technology – AQUA, 46, 127–137.
  • Spuhler, D., Rengifo-Herrera, J.A. ved Pulgarin, C. (2010) The effect of Fe2+, Fe3+, H2O2 and the photo-Fenton reagent at near neutral pH on the solar disinfection (SODIS) at low temperatures of water containing Escherichia coli K12. Applied Catalysis B: Environmental, 96(1-2), 126-141. doi:10.1016/j.apcatb.2010.02.010
  • Tchobanoglous, G., Burton, F.L., Stensel, H.D. (2004) Wastewater Engineering: Treatment and Reuse, 4. Edition, Mc Graw- Hill, Singapore.
  • Tsydenova, O., Batoev, V., ve Batoeva, A. (2015) Solar-Enhanced Advanced Oxidation Processes for Water Treatment: Simultaneous Removal of Pathogens and Chemical Pollutants, International Journal of Environmental Research and Public Health, 12, 9542-9561. doi:10.3390/ijerph120809542
  • Ubomba-Jaswa, E., Navntoft, C., Polo-Lopez, M.I., Fernandez-Ibanez, P., McGuigan, K.G. (2009) Solar disinfection of drinking water (SODIS): an investigation of the effect of UV-A dose on inactivation efficiency, Photochemical and Photobiological Sciences, 8, 587–595. DOI: 10.1039/B816593A.
  • Wegelin, M., Canonica, S., Mechsner, K., Pesaro, F. ve Metzler, A. (1994) Solar water disinfection: scope of the process and analysis of radiation experiments, Journal of Water Supply: Research and Technology – AQUA, 43(3), 154-169.
  • Wegelin M., Del, X., Torres, R., Gremion, B., Mercado, A., Mausezahl, D., Hobbins, M., Indergand-Echeverria, S., Grimm, B. ve Aristanti, C. (2002). EAWAG and SANDEC. Solar Water Disinfection, A Guide for The Application of SODİS
  • Wilson, S.A. (2010). Impact of water quality on solar disinfection (SODIS): Investigating a natural coagulant pretreatment on the photoinactivation of Escherichia Coli, McS Thesis, University of Toronto.
  • World Water Council; Ministry of Foreign Affairs, Department of Regional and Transboundary Waters, General Directorate of State Hydraulic Works; Southeastern Anatolia Project Regional Development ,Administration,(2003) Republic of Turkey.
  • Varınca, K.B. ve Gönüllü, M. T. (2007) Türkiye’de Güneş Enerjisi Potansiyeli ve Bu Potansiyelin Kullanım Derecesi, Yöntemi ve Yaygınlığı Üzerine Bir Araştırma, Kaynak Elektrik Dergisi, 217, 127-130.
  • Vicars, S. (1999). Factors affecting the survival of enteric bacteria in saline waters. PhD Thesis. Northumbria University, Newcastle upon Tyne.
  • Vohra, A., Goswami, D.Y., Deshpande, D.A., Block, S.S (2005) Enhanced photocatalytic inactivation of bacterial spores on surfaces in air, Journal of Industrial Microbiology and Biotechnology, 32, 364–370. doi: 10.1007/s10295-005-0006-y
  • Yıldırım, S., Algan, M., Alkaranlı, T.F. (2004) Köy Hizmetleri Genel Müdürlüğü Havza Islahı Ve Göletler Daire Başkanlığı Yeraltı Sulamaları I.Yeraltısuları Ulusal, Sempozyomu Konya.
  • Yoriya, S., Chumphu, A., Pookmanee, P., Laithong, W., Thepa, S., ve Songprakorp, R. (2016) Multi-Layered TiO2 films towards enhancement of Escherichia coli inactivation, Materials, 9(10), 808-820. doi:10.3390/ma9100808
  • Zhang, P., Scrudato, R.J., Germano, G. (1994) Solar catalytic inactivation of Escherichia coli in aqueous solutions using TiO2 as catalyst, Chemosphere, 28(3), 607-611. doi:10.1016/0045-6535(94)90302-6

Microorganism Inactivation by Solar Based Processes In Water: A Review Study

Yıl 2017, , 149 - 168, 27.04.2017
https://doi.org/10.17482/uumfd.309467

Öz

 This paper reviews  the  researches carried out until today related
to  solar disinfection systems (SODİS)
and applications to increase the efficiency of microorganism inactivation,
which allows developing countries, as well as developed countries, to supply
reliable drinking water to a large extent. The paper summarizes the factors
affecting the solar inactivation of microorganisms such as organic and
inorganic compounds, dissolved oxygen concentration, light intensity, light
quality, temperature, reactor types, microorganism types and growth phases of
species in the water to be desenfected. 
As a result of investigation of the literature, it has been determined
that other solar based methods (solar light+H2O2, solar
light+TiO2, solar light+Fe+2, solar light+H2O2+Fe+2/Fe+3,
solar light+TiO2+H2O2) have been shown to be
more successful for disinfection of the resistant microorganisms by increasing
the efficiency of inactivation. As a result of this study, it can be
recommended that solar based processes which are widely used in Asia, Latin
America and Africa countries can be used to obtain healthy and reliable drinking
and domestic water in Turkey, especially in the regions where solar energy is
much higher such as Southeastern Anatolia and Mediterranean Region.

Kaynakça

  • Agulló-Barcelo, M., Polo-Lopez, M.I., Lucena, F., Jofre, J., ve Fernandez-Ibanez, P. (2013) Solar advanced oxidation processes as disinfection tertiary treatments for real wastewater: Implications for water reclamation, Applied Catalysis B: Environmental, 136-137, 341-350. http://dx.doi.org/10.1016/j.apcatb.2013.01.069
  • Acra, A., Raffoul, Z., Karahagopian, Y. (1984) Solar disinfection of drinking water andoral rehydration solutions: guidelines for household application in developing countries, UNICEF, Paris, France.
  • Acra, A., Jurdi, M., Mu, H., Karahagopian, Y., Raffoul, Z. (1990) Water disinfection by solar radiation: assessment and application, International Development Research Centre, 53- 65.
  • Ahsan, A., Imteaz, M., Thomas, U.A., Azmi, M., Rahman, A., Nik Daud, N.N. (2014) Parameters affecting the performance of a low cost solar still, Applied Energy, 114, 924–930. http://dx.doi.org/10.1016/j.apenergy.2013.08.066
  • Aksungur, K.M., Kurban, M. ve Filik, Ü.B. (2013) Türkiye’nin Farklı Bölgelerindeki Güneş Işınım Verilerinin Analizi ve Değerlendirilmesi, in 5th Conferance of Energy Efficiecny and Quality. Kocaeli, Turkey.
  • Belapurkar, A.D., Sherkhane, P. ve Kale, S.P. (2006) Disinfection of drinking water using photocatalytic technique, Current Science, 91(1), 73-76.
  • Benabbou, A.K., Derriche, Z., Felix, C., Lejeune, P., Guillard, C. (2007) Photocatalytic inactivation of Escherischia coli Effect of concentration of TiO2 and microorganism, nature, and intensity of UV irradiation, Applied Catalysis B: Environmental, 76, 257–263. doi:10.1016/j.apcatb.2007.05.026
  • Berney, M., Weilenmann, H.U. ve Egli., T. (2006a) Flow-cytometric study of vital cellular functions in Escherichia coli during solar disinfection (SODIS), Microbiology, 152:1719-1729. doi: 10.1099/mic.0.28617-0
  • Berney, M., Weilenmann, H.U., Simonetti, A., Egli, T. (2006) Efficacy of solar disinfection of Escherichia coli, Shigella flexneri, Salmonella Typhimurium and Vibrio cholerae, Journal of Applied Microbiology, 101(4), 828-836. doi: 10.1111/j.1365-2672.2006.02983.x
  • Bichai, F., Polo-López, M.I., Fernández Ibanez, P. (2012 ) Solar disinfection of wastewater to reduce contamination of lettuce crops by Escherichia coli in reclaimed water irrigation, Water Research, 46, 6040-6050. http://dx.doi.org/10.1016/j.watres.2012.08.024
  • Blanco, J., Malato, S., Fernández Ibanez, P., Alarcón, D., Gernjak, W., Maldonado, M.I. (2009) Review of feasible solar energy applications to water processes, Renewable and Sustainable Energy Reviews, 13, 1437–1445. doi: 10.1016/j.rser.2008.08.016
  • Bosshard, F., Bucheli, M., Meur, Y. ve Egli, T. (2010) The respiratory chain is the cell’s Achilles’ heel during UVA inactivation in Escherichia coli, Microbiology, 156, 2006–2015. Doi: 10.1099/mic.0.038471-0
  • Boyle, M., Sichel, C., Fernández-Ibánez, P., Arias-Quiroz, G.B. and Iriarte-Puná, Mercado, M.A., Ubomba-Jaswa, E. ve McGuigan, K.G. (2008) Bactericidal effect of solar water disinfection under real sunlight conditions, Applied and Environmental Microbiology, 74(10), 2997-3001. doi: 10.1128/AEM.02415-07
  • Britt, A.B. (1996) DNA damage and repair in plants, Annual Review of Plant Physiology and Plant Molecular Biology, 47, 75–100. doi: 10.1146/annurev.arplant.47.1.75
  • Byrne, J.A., Fernandez-Ibanez, P.A., Dunlop,P.S.M., Alrousan, D.M.A. ve Hamilton, J.W.J. (2011) Photocatalytic Enhancement for Solar Disinfection of Water: A Review, International Journal of Photoenergy, 1–12. doi:10.1155/2011/798051.
  • Cantwell, R.E., Hofmann, R. ve Templeton, M.R. (2008) Interactions between humic matter and bacteria when disinfecting water with UV light, Journal of Applied Microbiology, 105(1), 25-35. doi: 10.1111/j.1365-2672.2007.03714.x
  • Carratalà, A., Dionisio Calado, A., Mattle, M.J., Meierhofer, R., Luzi, S., Kohn., T. (2016) Solar disinfection of viruses in polyethylene terephthalate bottles. Applied and Environmental Microbiology, 82, 279 –288. doi:10.1128/AEM.02897-15.
  • Caslake, L.F., Connolly, D.J., Menon, V., Duncanson, C.M., Rojas, R., Tavakoli, J. (2004) Disinfection of contaminated water by using solar irradiation, Appl. Environmental Microbiology, 70, 1145–1150. doi: 10.1128/AEM.70.2.1145-1150.2004
  • Chamberlain J. ve Moss, S.H. (1987) Lipid peroxidation and other membrane damage produced in Escherichia coli K1060 by near-UV radiation and deuterium oxide, Photochemistry and Photobiology, 45(5), 625-630. doi: 10.1111/j.1751-1097.1987.tb07389.x
  • Cho, M., Lee, Y., Chung, H. ve Yoon, J. (2004) Inactivation of Escherichia coli by photochemical reaction of ferrioxalate at slightly acidic and near-neutral pHs, Applied and Environmental Microbiology, 70(2), 1129-1134. doi: 10.1128/AEM.70.2.1129-1134.2004
  • Christen, A., Pacheco, G.D., Hattendorf, J., Arnold, B.F., Cevallos, M., Indergand, S., Colford, J.M. ve Mäusezahl, D. (2011) Factors associated with compliance among users of solar water disinfection in rural Bolivia, BMC Public Health, 11, 210-223. http://www.biomedcentral.com/1471-2458/11/210
  • Çalışkan Eleren, S., Alkan, U., ve Teksoy, A. (2014) Inactivation of E. Coli and B. Subtilis by solar and solar/H2O2 processes in humic surface waters, Fresenius Environmental Bulletin, 23(6), 1397-1406.
  • Çelik, R., (2008) Diyarbakır ovasının yer altı ve yerüstü su potansiyeli, pompa verimlilik haritalarının çıkarılması, hidrojeolojik analizi, Doğu Anadolu Bölgesi araştırmaları, 154-164.
  • Davarcioglu, B. (2015) Solar water disinfection considerations: using ultraviolet light methods to make water safe to drink, International Journal of Innovative Science, Engineering & Technology, 2(8), 253-264.
  • Davies, C.M., Evison, L.M. (1991) Sunlight and the survival of enteric bacteria in natural waters, Journal of Applied Microbiology, 70(3), 265–274.doi: 10.1111/j.1365-2672.1991.tb02935.x
  • Dejung, S., Fuentes, I., Almanza, G., Jarro, R., Navarro, L., Arias, G., Urquieta, E., Torrico, A., Fenandez, W., Iriarte, M., Birrer, C., Stahel, W.A. and Wegelin, M. (2007) Effect of solar water disinfection (SODIS) on model microorganisms under improved and field SODIS conditions, Journal of Water Supply: Research and Technology-AQUA, 56(4), 245-256. doi: 10.2166/aqua.2007.058
  • Deller, S., Mascher, F., Platzer, S., Reinthaler, F.F., Marth, E. (2006) Effect of solar radiation on survival of indicator bacteria in bathing waters, Central European Journal of Public Health, 14(3), 133–137.
  • Dunlop, P.S.M., Ciavola, M., Rizzo, L., Byrne, J.A. (2011) Inactivation and injury assessment of Escherichia coli during solar and photocatalytic disinfection in LDPE bags, Chemosphere, 85,1160–1166. doi:10.1016/j.chemosphere.2011.09.006
  • Dünya Enerji Konseyi Türk Milli Komitesi. (2009) Dünya’da ve Türkiye’de Güneş Enerjisi, ISBN: 978-605-89548-2-3. DEKTMK YAYIN NO: 0011/2009, EKC Form Ofset, Ankara.
  • Fernandez Ibanez, P. (2007) Solar disinfection of drinking water, Course on: Innovative Process and Practices for wastewater treatment and reuse, Ankara University, Turkey.
  • Feuerstein, O., Moreinos, D. ve Steinberg, D. (2006) Synergic antibacterial effect between visible light and hydrogen peroxide on Streptococcus mutans, Journal of Antimicrobial Chemotherapy, 57,872–876. doi: 10.1093/jac/dkl070
  • Fisher, M.B., Iriarte, M., Nelson, K.L. (2012) Solar water disinfection (SODIS) of Escherichia coli, Enterococcus spp., and MS2 coliphage: Effects of additives and alternative container materials, Water Research, 46, 1745-1754. doi:10.1016/j.watres.2011.12.048
  • Fridovich, I. (1998) Oxygen toxicity: A radical explanation, Journal of Experimental Biology, 201(8), 1203-1209.
  • Fogden, J. ve Wood, G. (2009) Access to safe drinking water and its impact on global economic growth a study, HaloSource, Inc., Bothell, WA 98021, USA.
  • Fujioka, R.S., Yoneyama, B.S. (2002) Sunlight inactivation of human enteric viruses and fecal bacteria, Water Science and Technology, 46(11-12), 291-295.
  • García-Fernández, I., Polo-López, M.I., Oller,I. ve Fernández-Ibánez, P. (2012) Bacteria and fungi inactivation using Fe3+/sunlight, H2O2/sunlight and near neutral photo-Fenton: A comparative study, Applied Catalysis B: Environmental, 121–122, 20–29.
  • Gelover, S., Gómez, L.A., Reyes, K. ve Leal, M.T. (2006) A practical demonstration of water disinfection using TiO2 films and sunlight, Water Research, 40(17), 3274-3280.doi:10.1016/j.watres.2006.07.006
  • Gomes, A.I., Santos, J.C., Vilar, V. J.P. and Boaventura, R.A.R. (2009) Inactivation of bacteria E. coli and photodegradation of humic acids using natural sunlight, Applied Catalysis B: Environmental, 88(3-4), 283-291. http://dx.doi.org/10.1016/j.apcatb.2008.11.014
  • Gomes, A.I., Vilar, V.J.P., Boaventura, R.A.R. (2009b) Synthetic and natural waters disinfection using natural solar radiation in a pilot plant with CPCs, Catalysis Today, 144(1–2),55–61.
  • Gómez-Couso, H., Fontán-Sainz, M., McGuigan, K.G., Ares-Mazás, E. (2009a) Effect of the radiation intensity, water turbidity and exposure time on the survival of Cryptosporidium during simulated solar disinfection of drinking water, Acta Tropica, 112(1), 43–48. doi:10.1016/j.actatropica.2009.06.004
  • Gómez-Couso, H., Fontán-Saínz, Sichel, M.C., Fernández-Ibanez, P. ve Ares-Mazás, E. (2009b) Efficacy of the solar water disinfection method in turbid waters experimentally contaminated with Cryptosporidium parvum oocysts under real field conditions, Tropical Medicine & International Health, 14(6), 620–627. doi: 10.1111/j.1365-3156.2009.02281.x
  • Halliwell, B. Ve Gutteridgde, J. (1999) Free radicals in biology and medicine, Oxford University Press, Oxford, U.K.
  • Hara, K., Holland, S., ve Woo J. (2004) Effects of Exogenous Reactive Oxygen Species Scavengers on the Survival of Escherichia coli B23 during Exposure to UV-A radiation, Journal of Experimental Microbiology and Immunology, 12,62-66.
  • Helali, S., Polo-López, M.I., Fernández-Ibánez, P., Ohtani, B., Amano, F., Malato, S., Guillar, C. (2014) Solar photocatalysis: A green technology for E. coli contaminatedwater disinfection. Effect of concentration and different types ofsuspended catalyst, Journal of Photochemistry and Photobiology A: Chemistry, 276, 31–40. http://dx.doi.org/10.1016/j.jphotochem.2013.11.011
  • Hernández-Ramírez, A., Medina-Ramirez, I. (Eds.) (2015) Photocatalytic Semiconductors: Synthesis, Characterization, and Environmental Applications, Springer International Publishing Switzerland. Page: 289, DOİ: 10.1007/978-3-319-10999-2.
  • Hoerter, J.D., Arnold, A.A., Kuczynska, D.A., Shibuya, A., Ward, C.S., Sauer, M.G., Gizachew, A., Hotchkiss, T.M., Fleming, T.J. , Johnson, S. (2005) Effects of sublethal UVA irradiation on activity levels of oxidative defense enzymes and protein oxidation in Escherichia coli, Journal of Photochemistry and Photobiology B: Biology, 81(3),171-180.
  • Huang, Z., Maness P.C., Blake, D.M., Wolfrum, E.J., Smolinski, S.L., Jacoby, W.A. (2000) Bactericidal mode of titanium dioxide photocatalysis, Journal of Photochemistry and Photobiology A: Chemistry, 130, 163–170. doi:S1010- 6030(99)00205-1
  • Hug, S. ve Leupin, O. (2003) Iron-catalyzed oxidation of arsenic(III) by oxygen and by hydrogen peroxide: pH-dependent formation of oxidants in the Fenton reaction, Environmental Science and Technology, 37(12), 2734-2742. doi: 10.1021/es026208x
  • Imlay, J.A. (2008) Cellular defenses against superoxide and hydrogen peroxide, Annual Review of Biochemistry, 77, 755–776. doi: 10.1146/annurev.biochem.77.061606.161055.
  • Jang, S., Imlay, J.A. (2010) Hydrogen peroxide inactivates the Escherichia coli Isc iron-sulphur assembly system, and OxyR induces the Suf system to compensate, Molecular Microbiology, 78(6), 1448–1467. doi:10.1111/j.1365-2958.2010.07418.x
  • Joyce, T.M., McGuigan, K.G., Elmore-Meegan, M., Conroy, R.M. (1996) Inactivation of fecal bacteria in drinking water by solar heating, Applied and Environmental Microbiology, 62 399–402.
  • Kalt, P., Birzer, C., Evans, H., Liew, A., Padovan, M., ve Watchman, M. (2014) A Solar Disinfection Water Treatment System for Remote Communities, Procedia Engineering, 78, 205-258. doi: 10.1016/j.proeng.2014.07.064
  • Kehoe, S.C., Joyce, T.M., Ibrahim, P., Gillespie, J.B., Shahar, R.A., ve McGuigan, K.G. (2001) Effect of agitation, turbidity, aluminium foil reflectors and container volume on the inactivation efficiency of batch-process solar disinfectors, Water Research, 35(4), 1061-1065. http://dx.doi.org/10.1016/S0043-1354(00)00353-5
  • Khaengraeng, R., ve Reed, R. H. (2005) Oxygen and photoinactivation of Escherichia coli in UVA and sunlight, Journal of Applied Microbiology, 99(1), 39-50. doi: 10.1111/j.1365-2672.2005.02606.x
  • Kılıç, F.Ç. (2015) Güneş Enerjisi, Türkiye’deki Son Durumu ve Üretim Teknolojileri, Mühendis ve Makina, 56(671), 28-40.
  • Kiwi, J. ve Nadtochenko, V. (2005) Evidence for the Mechanism of Photocatalytic Degradation of the Bacterial Wall Membrane at the TiO2 Interface by ATR-FTIR and Laser Kinetic Spectroscopy, Langmuir, 21, 4631-4641. doi: 10.1021/la046983l
  • Lee, E., Lee, H., Jung, W., Park, S., Yang, D., ve Lee K. (2009) Influences of humic acids and photoreactivation on the disinfection of Escherichia coli by a high-power pulsed UV irradiation, Korean Journal of Chemical Engineering, 26(5), 1301-1307. doi: 10.1007/s11814-009-0208-5
  • Lonnen, J., Kilvington, S., Kehoe, S.C., Al-Touati, F. ve McGuigan, K.G. (2005) Solar and photocatalytic disinfection of protozoan, fungal and bacterial microbes in drinking water, Water Research, 39(5), 877–883. http://dx.doi.org/10.1016/j.watres.2004.11.023
  • Mahvi, A.H. (2007) Feasibility of Solar Energy in Disinfection of Drinking Water in Iran, American-Eurasian Journal of Agricultural & Environmental Sciences, 2(4), 407-410.
  • Mamane, H., Shemer, H., Linden, K.G. (2007) Inactivation of E. coli, B. subtilis spores, and MS2, T4, and T7 phage using UV/H2O2 advanced oxidation, Journal of Hazardous Materials, 146, 479–486. doi:10.1016/j.jhazmat.2007.04.050
  • Mani, S.K., Kanjur, R., Bright Singh, I.S., Reed, R.H. (2006) Comparative effectiveness of solar disinfection using small-scale batch reactors with reflective, absorptive and transmissive rear surfaces, Water Research, 40, 721–727. doi:10.1016/j.watres.2005.11.039
  • Manjón, F., Villén, L., García-Fresnadillo, D., ve Orellana, G. (2008) On the factors ınfluencing the performance of solar reactors for water disinfection with photosensitized singlet oxygen, Environmental Science&Technology, 42(1), 301–307. doi: 10.1021/es071762y
  • Maraccini, P.A., M. Mattioli C.M., Sassoubre, L.M., Cao, Y., Griffith, J.F., Ervin, J.S., Werfhorst, L.C.V. D., ve Boehm, A.B. (2016) Solar inactivation of Enterococci and Escherichia coli in natural waters: effects of water absorbance and depth, Environmental Science&Technology, 50, 5068−5076. doi: 10.1021/acs.est.6b00505
  • McGuigan, K.M., Joyce, T.M., Conroy, R.M., Gillespie, J.B. ve Elmore-Meegan, M. (1998) Solar disinfection of drinking water contained in transparent plastic bottles: characterizing the bacterial inactivation process, Journal of Applied Microbiology, 84(6), 1138-1148. doi: 10.1046/j.1365-2672.1998.00455.x
  • McGuigan, K.G., Conroy, R.M., Mosler, H.J., du Preez, M., Ubomba-Jaswa, E., Fernandez-Ibanez, P. (2012) Solar water disinfection (SODIS): A review from bench-top to roof-top, Journal of Hazardous Materials, 235–236, 29– 46. http://dx.doi.org/10.1016/j.jhazmat.2012.07.053
  • Méndez-Hermida, F., Castro-Hermida, J.A., Ares-Mazás, E., Kehoe, S.C., McGuigan, K.G. (2005) Effect of batch-process solar disinfection on survival of Cryptosporidium parvum oocysts in drinking water, Applied and Environmental Microbiology, 71(3), 1653-1654. doi: 10.1128/AEM.71.3.1653-1654.2005
  • Méndez-Hermida, F., Ares-Mazás, E., McGuigan, K.G., Boyle, M., Sichel, C., Fernández-Ibáñez, P. (2007) Disinfection of drinking water contaminated with Cryptosporidium parvum oocysts under natural sunlight and using the photocatalyst TiO2, Journal of Photochemistry and Photobiology B: Biology, 88(2–3), 105–111. doi:10.1016/j.jphotobiol.2007.05.004
  • Meierhofer R., ve Wegelin M. (2002) Solar Water Disinfection: A Guide for the application of SODİS, SANDEC-EAWAG, Report No: 06/02, Switzerland.
  • Méndez-Hermida, F., Castro-Hermida, J.A., Ares-Mazás, E., Kehoe, S.C. ve McGuigan, K. G. (2005) Effect of Batch-Process Solar Disinfection on Survival of Cryptosporidium parvum Oocysts in Drinking Water, Applied and Environmental Microbiology, 71(3), 1653–1654. doi:10.1128/AEM.71.3.1653–1654.2005
  • Mohamed, A.H., Galal, M., Osman, G.Y. ve Aboamer, M. (2014) Influence of solar energy on encysted parasitic protozoa Giardia and Entamoeba spp in water-treatment plants, Egypt, Journal of Materials Science and Engineering B,4(10), 284-292. doi: 10.17265/2161-6221/2014.10.003
  • Moncayo-Lasso, A., Sanabria, J., Pulgarin, C., Benítez, N. (2009) Simultaneous E. coli inactivation and NOM degradation in river water via photo-Fenton process at natural pH in solar CPC reactor. A new way for enhancing solar disinfection of natural water, Chemosphere, 77, 296–300. doi:10.1016/j.chemosphere.2009.07.007
  • Mtapuri-Zinyowera, S., Midzi, N., Muchaneta-Kubara, C.E., Simbini, T. ve Mduluza T. (2009) Impact of solar radiation in disinfecting drinking water contaminated with Giardia duodenalis and Entamoeba histolytica ⁄dispar at a point-of-use water treatment, Journal of Applied Microbiology, 106(3), 847–852. doi: 10.1111/j.1365-2672.2008.04054.x
  • Muela, A., Garcia-Bringas, J.M., Arana, I., Barcina, I. (2000) Humic Materials Offer Photoprotective Effect to Escherichia coli Exposed to Damaging Luminous Radiation, Microbial Ecology, 40, 336-344. doi: 10.1007/s002480000064
  • Nalwanga, R., Quilty, B., Muyanja, C., Fernandez-Ibanez, P., McGuigan, K.G. (2014) Evaluation of solar disinfection of E. coli under Sub-Saharan field conditions using a 25L borosilicate glass batch reactor fitted with a compound parabolic collector, Solar Energy, 100, 195–202. http://dx.doi.org/10.1016/j.solener.2013.12.011
  • Nararom, M., Thepa, S., Kongkiattikajorn, J., Songprakorp, R. (2015) Disinfection of water containing Escherichia coli by use of a compound parabolic concentrator: effect of global solar radiation and reactor surface treatment, Research on Chemical Intermediates, 41(9), 6543–6558. doi: 10.1007/s11164-014-1760-0
  • Navntoft, C., Ubomba-Jaswa, E., McGuigan, K.G., Fernández-Ibáñez, P. (2008) Effectiveness of solar disinfection using batch reactors with non-imaging aluminium reflectors under real conditions: Natural well-water and solar light, Journal of Photochemistry and Photobiology B: Biology, 93, 155–161. doi:10.1016/j.jphotobiol.2008.08.002
  • Ndounlaa, J., Spuhler, D., Kenfack, S., Wéthé, J., Pulgarin C. (2013) Inactivation by solar photo-Fenton in pet bottles of wild enteric bacteria of natural well water: Absence of re-growth after one week of subsequent storage, Applied Catalysis B: Environmental, 129, 309–317. http://dx.doi.org/10.1016/j.apcatb.2012.09.016
  • Ndounlaa, J., Kenfack, S., Wéthé, J., Pulgarin C. J. (2014) Relevant impact of irradiance (vs. dose) and evolution of pH andmineral nitrogen compounds during natural water disinfection byphoto-Fenton in a solar CPC reactor, Applied Catalysis B: Environmental, 148–149, 144–153. http://dx.doi.org/10.1016/j.apcatb.2013.10.048
  • Oates, P.M., Shanahan, P., Polz, M.F. (2003) Solar disinfection (SODIS): simulation of solar radiation for global assessment and application for point-of-use water treatment in Haiti, Water Research, 37, 47–54. doi: 10.1016/S0043-1354(02)00241-5.
  • Pharabod, F. ve Philibert, C. (1991) LUZ solar power plants : Success in California and worldwide prospects, Deutsche Forshungsanstalt fûr Luft- und Raumfahrt e.V. for IEA-SSPS (SolarPACES), Köln.
  • Polo-López, M.I ., Fernández-Ibáñez, P., García-Fernández, I., Oller, I., Salgado-Tránsito, I., ve Sichel, C., (2010) Resistance of Fusarium sp spores to solar TiO2 photocatalysis: influence of spore type and water (scaling-up results), Journal of Chemical Technology and Biotechnology, 85(8), 1038–1048. doi: 10.1002/jctb.2397
  • Polo-López, M.I., García-Fernández, I., Oller, I. ve Fernández-Ibáñez, P. (2011) Solar disinfection of fungal spores in water aided by low concentrations of hydrogen peroxide, Photochemical & Photobiological Sciences, 10, 381-388. doi: 10.1039/C0PP00174K
  • Pulgarin, C., Kiwia, J., Nadtochenko, V. (2012) Mechanism of photocatalytic bacterial inactivation on TiO2 films involving cell-wall damage ve lysis, Applied Catalysis B: Environmental, 128(30), 179–183. doi:10.1016/j.apcatb.2012.01.036
  • Reed, R.H., Mani, S.K. ve Meyer, V. (2000) Solar photo-oxidative disinfection of drinking water: preliminary field observations, Letters in Applied Microbiology, 30, 432-436. doi: 10.1046/j.1472-765x.2000.00741.x
  • Riesenman, P.J., Nicholson, W.L. (2000) Role of the spore coat layers in Bacillus subtilis spore resistance to hydrogen peroxide, artificial UV-C, UV-B, and solar UV radiation, Applied and Environmental Microbiology, 66(2), 620-626. doi: 10.1128/AEM.66.2.620-626.2000
  • Rincón, A.G. ve Pulgarin, C. (2003) Photocatalytical inactivation of E. coli: effect of (continuous–intermittent) light intensity and of (suspended–fixed) TiO2 concentration, Applied Catalysis B: Environmental, 44, 263–284. doi:10.1016/S0926-3373(03)00076-6
  • Rincón, A.G. ve Pulgarin, C. (2004a) Bactericidal action of illuminated TiO2 on pure Escherichia coli and natural bacterial consortia: post-irradiation events in the dark and assessment of the effective disinfection time, Applied Catalysis B: Environmental, 49(2), 99-112. doi:10.1016/j.apcatb.2003.11.013
  • Rincón, A.G. ve Pulgarin, C. (2004b) Field solar E. coli inactivation in the absence and presence of TiO2: is UV solar dose an appropriate parameter for standardization of water solar disinfection?, Solar Energy, 77, 635–648. doi:10.1016/j.solener.2004.08.002
  • Rincón, A.G. ve Pulgarin, C. (2004c) Effect of pH, inorganic ions, organic matter and H2O2 on E. coli K12 photocatalytic inactivation by TiO2 implications in solar water disinfection, Applied Catalysis B: Environmental, 51(4), 283-302. doi:10.1016/j.apcatb.2004.03.007
  • Rincón, A.G. ve Pulgarin, C. (2006) Comparative evaluation of Fe3+ and TiO2 photoassisted processes in solar photocatalytic disinfection of water, Applied Catalysis B: Environmental, 63(3-4), 222-231. doi:10.1016/j.apcatb.2005.10.009
  • Rincón, A.G. ve Pulgarin, C. (2007a) Fe3+ and TiO2 solar-light-assisted inactivation of E. coli at field scale: Implications in solar disinfection at low temperature of large quantities of water, Catalysis Today, 122(1–2), 128–136. doi:10.1016/j.cattod.2007.01.028
  • Rincón, A.G. ve Pulgarin, C. (2007b) Absence of E. coli regrowth after Fe3+ and TiO2 solar photoassisted disinfection of water in CPC solar photoreactor, Catalysis Today, 124, 204–214. doi:10.1016/j.cattod.2007.03.039
  • Sciacca, F., Rengifo-Herrera, J.A., Wéthé, J., Pulgarin, C. (2010) Dramatic enhancement of solar disinfection (SODIS) of wild Salmonella sp. in PET bottles by H2O2 addition on natural water of Burkina Faso containing dissolved iron, Chemosphere, 78(9), 1186–1191. doi:10.1016/j.chemosphere.2009.12.001.
  • Sharpe, M., Robb, S. ve Clark, J. (2003) Nitric oxide and Fenton/Haber–Weiss chemistry: Nitric oxide is a potent antioxidant at physiological concentrations, Journal of Neurochemistry, 87, 386-394. doi: 10.1046/j.1471-4159.2003.02001.x
  • Sichel, C., Blanco, J., Malato, S. and Fernández-Ibánez, P. (2007) Effects of experimental conditions on E. coli survival during solar photocatalytic water disinfection, Journal of Photochemistry and Photobiology A: Chemistry, 189(2-3), 239-246. http://dx.doi.org/10.1016/j.jphotochem.2007.02.004
  • Sichel, C., Fernández-Ibánez, P., de Carac, M., Telloc, J. (2009) Lethal synergy of solar UV-radiation and H2O2 on wild Fusarium solani spores in distilled and natural well water, Water Research, 43, 1841–1850. http://dx.doi.org/10.1016/j.watres.2009.01.017
  • Silkin, H. (2014). İklim değişikliğine uyum özelinde bazı uygulamaların Türkiye açısından değerlendirilmesi, Orman ve Su İşleri Uzmanlık Tezi, T.C.Orman ve Su İşleri Bakanlığı, Su Yönetimi Genel Müdürlüğü, Ankara.
  • Sinton, L.W., Hall, C.H., Lynch, P.A., Davies-Colley, R.J. (2002) Sunlight inactivation of fecal indicator bacteria and bacteriophages from waste stabilization pond effluent in fresh and saline waters, Applied and Environmental Microbiology, 68(3), 1122–1131. doi: 10.1128/AEM.68.3.1122-1131.2002
  • Sommer, B., Marino, A., Solarte, Y., Salas, M.L., Dierolf, C., Valiente, C., Mora, D., Rechsteiner, R., Setter, P., Wirojanagud, W., Ajarmeh, H.A., AlHassan, Wegelin, M. (1997) SODIS – an emerging water treatment process, Journal of Water Supply: Research and Technology – AQUA, 46, 127–137.
  • Spuhler, D., Rengifo-Herrera, J.A. ved Pulgarin, C. (2010) The effect of Fe2+, Fe3+, H2O2 and the photo-Fenton reagent at near neutral pH on the solar disinfection (SODIS) at low temperatures of water containing Escherichia coli K12. Applied Catalysis B: Environmental, 96(1-2), 126-141. doi:10.1016/j.apcatb.2010.02.010
  • Tchobanoglous, G., Burton, F.L., Stensel, H.D. (2004) Wastewater Engineering: Treatment and Reuse, 4. Edition, Mc Graw- Hill, Singapore.
  • Tsydenova, O., Batoev, V., ve Batoeva, A. (2015) Solar-Enhanced Advanced Oxidation Processes for Water Treatment: Simultaneous Removal of Pathogens and Chemical Pollutants, International Journal of Environmental Research and Public Health, 12, 9542-9561. doi:10.3390/ijerph120809542
  • Ubomba-Jaswa, E., Navntoft, C., Polo-Lopez, M.I., Fernandez-Ibanez, P., McGuigan, K.G. (2009) Solar disinfection of drinking water (SODIS): an investigation of the effect of UV-A dose on inactivation efficiency, Photochemical and Photobiological Sciences, 8, 587–595. DOI: 10.1039/B816593A.
  • Wegelin, M., Canonica, S., Mechsner, K., Pesaro, F. ve Metzler, A. (1994) Solar water disinfection: scope of the process and analysis of radiation experiments, Journal of Water Supply: Research and Technology – AQUA, 43(3), 154-169.
  • Wegelin M., Del, X., Torres, R., Gremion, B., Mercado, A., Mausezahl, D., Hobbins, M., Indergand-Echeverria, S., Grimm, B. ve Aristanti, C. (2002). EAWAG and SANDEC. Solar Water Disinfection, A Guide for The Application of SODİS
  • Wilson, S.A. (2010). Impact of water quality on solar disinfection (SODIS): Investigating a natural coagulant pretreatment on the photoinactivation of Escherichia Coli, McS Thesis, University of Toronto.
  • World Water Council; Ministry of Foreign Affairs, Department of Regional and Transboundary Waters, General Directorate of State Hydraulic Works; Southeastern Anatolia Project Regional Development ,Administration,(2003) Republic of Turkey.
  • Varınca, K.B. ve Gönüllü, M. T. (2007) Türkiye’de Güneş Enerjisi Potansiyeli ve Bu Potansiyelin Kullanım Derecesi, Yöntemi ve Yaygınlığı Üzerine Bir Araştırma, Kaynak Elektrik Dergisi, 217, 127-130.
  • Vicars, S. (1999). Factors affecting the survival of enteric bacteria in saline waters. PhD Thesis. Northumbria University, Newcastle upon Tyne.
  • Vohra, A., Goswami, D.Y., Deshpande, D.A., Block, S.S (2005) Enhanced photocatalytic inactivation of bacterial spores on surfaces in air, Journal of Industrial Microbiology and Biotechnology, 32, 364–370. doi: 10.1007/s10295-005-0006-y
  • Yıldırım, S., Algan, M., Alkaranlı, T.F. (2004) Köy Hizmetleri Genel Müdürlüğü Havza Islahı Ve Göletler Daire Başkanlığı Yeraltı Sulamaları I.Yeraltısuları Ulusal, Sempozyomu Konya.
  • Yoriya, S., Chumphu, A., Pookmanee, P., Laithong, W., Thepa, S., ve Songprakorp, R. (2016) Multi-Layered TiO2 films towards enhancement of Escherichia coli inactivation, Materials, 9(10), 808-820. doi:10.3390/ma9100808
  • Zhang, P., Scrudato, R.J., Germano, G. (1994) Solar catalytic inactivation of Escherichia coli in aqueous solutions using TiO2 as catalyst, Chemosphere, 28(3), 607-611. doi:10.1016/0045-6535(94)90302-6
Toplam 113 adet kaynakça vardır.

Ayrıntılar

Konular Mühendislik
Bölüm Derleme Makaleler
Yazarlar

Sevil Çalışkan Eleren

Yayımlanma Tarihi 27 Nisan 2017
Gönderilme Tarihi 7 Ekim 2016
Kabul Tarihi 20 Şubat 2017
Yayımlandığı Sayı Yıl 2017

Kaynak Göster

APA Çalışkan Eleren, S. (2017). GÜNEŞ IŞIĞINA DAYALI YÖNTEMLERLE SULARDA MİKROORGANİZMA İNAKTİVASYONU: DERLEME. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi, 22(1), 149-168. https://doi.org/10.17482/uumfd.309467
AMA Çalışkan Eleren S. GÜNEŞ IŞIĞINA DAYALI YÖNTEMLERLE SULARDA MİKROORGANİZMA İNAKTİVASYONU: DERLEME. UUJFE. Nisan 2017;22(1):149-168. doi:10.17482/uumfd.309467
Chicago Çalışkan Eleren, Sevil. “GÜNEŞ IŞIĞINA DAYALI YÖNTEMLERLE SULARDA MİKROORGANİZMA İNAKTİVASYONU: DERLEME”. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi 22, sy. 1 (Nisan 2017): 149-68. https://doi.org/10.17482/uumfd.309467.
EndNote Çalışkan Eleren S (01 Nisan 2017) GÜNEŞ IŞIĞINA DAYALI YÖNTEMLERLE SULARDA MİKROORGANİZMA İNAKTİVASYONU: DERLEME. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi 22 1 149–168.
IEEE S. Çalışkan Eleren, “GÜNEŞ IŞIĞINA DAYALI YÖNTEMLERLE SULARDA MİKROORGANİZMA İNAKTİVASYONU: DERLEME”, UUJFE, c. 22, sy. 1, ss. 149–168, 2017, doi: 10.17482/uumfd.309467.
ISNAD Çalışkan Eleren, Sevil. “GÜNEŞ IŞIĞINA DAYALI YÖNTEMLERLE SULARDA MİKROORGANİZMA İNAKTİVASYONU: DERLEME”. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi 22/1 (Nisan 2017), 149-168. https://doi.org/10.17482/uumfd.309467.
JAMA Çalışkan Eleren S. GÜNEŞ IŞIĞINA DAYALI YÖNTEMLERLE SULARDA MİKROORGANİZMA İNAKTİVASYONU: DERLEME. UUJFE. 2017;22:149–168.
MLA Çalışkan Eleren, Sevil. “GÜNEŞ IŞIĞINA DAYALI YÖNTEMLERLE SULARDA MİKROORGANİZMA İNAKTİVASYONU: DERLEME”. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi, c. 22, sy. 1, 2017, ss. 149-68, doi:10.17482/uumfd.309467.
Vancouver Çalışkan Eleren S. GÜNEŞ IŞIĞINA DAYALI YÖNTEMLERLE SULARDA MİKROORGANİZMA İNAKTİVASYONU: DERLEME. UUJFE. 2017;22(1):149-68.

DUYURU:

30.03.2021- Nisan 2021 (26/1) sayımızdan itibaren TR-Dizin yeni kuralları gereği, dergimizde basılacak makalelerde, ilk gönderim aşamasında Telif Hakkı Formu yanısıra, Çıkar Çatışması Bildirim Formu ve Yazar Katkısı Bildirim Formu da tüm yazarlarca imzalanarak gönderilmelidir. Yayınlanacak makalelerde de makale metni içinde "Çıkar Çatışması" ve "Yazar Katkısı" bölümleri yer alacaktır. İlk gönderim aşamasında doldurulması gereken yeni formlara "Yazım Kuralları" ve "Makale Gönderim Süreci" sayfalarımızdan ulaşılabilir. (Değerlendirme süreci bu tarihten önce tamamlanıp basımı bekleyen makalelerin yanısıra değerlendirme süreci devam eden makaleler için, yazarlar tarafından ilgili formlar doldurularak sisteme yüklenmelidir).  Makale şablonları da, bu değişiklik doğrultusunda güncellenmiştir. Tüm yazarlarımıza önemle duyurulur.

Bursa Uludağ Üniversitesi, Mühendislik Fakültesi Dekanlığı, Görükle Kampüsü, Nilüfer, 16059 Bursa. Tel: (224) 294 1907, Faks: (224) 294 1903, e-posta: mmfd@uludag.edu.tr