Araştırma Makalesi
BibTex RIS Kaynak Göster

Cost Allocations of a Grey Inventory Model with Cooperative Game Theory

Yıl 2017, , 23 - 34, 20.08.2017
https://doi.org/10.17482/uumfd.335422

Öz

Inventory management studies on minimizing the
avarage total cost per unit time and determines the quantity of stocked
materaial which is an important issue for companies. However, in real life
inventory cost parameters may not be fully known, but they can be estimated as
intervals. Furthermore, the multiple companies can reduce their costs with
cooperation (coalition) and with the same target companies to reduce their
inventory and ordering costs.In this study, our contribution is how to
distribute the total cost of the companies operating  the same sector and the same product. In
order to make practice, we examine three shotgun firms which order the same
products . Also we develop three cost allocation rules which are grey
proportional rule, grey equal charge allocation and grey alternative cost
avoidiance rule. We propose fair and stable cost distubition rules and compare
the best for firms.

Kaynakça

  • Biddle, G. C., & Steinberg, R., “Allocations of Joint and Common Costs”, Journal of Accounting Literature, 3(1), 1–45, 1984.
  • Chakrabotty, S., Madhumangal, P., Kumar, P., Nayak, K., “An algorithm for solution of an interval valued EOQ model”, An International Journal of Optimization and Control: Theories & Applications, 3(1), 55-64, 2013. doi:10.11121/ijocta.01.2013.00113
  • Chase, R. B. ve Aquilano, N. J., Production and Operations Management: A life Cycle Approach, Third Edition, Irwin, USA, 1981.
  • Chessa M., “Cooperation in deterministic and stochastic inventory models with continuous review”, Universita’ di Genova”, Yüksek Lisans Tezi, 2009.
  • Dror, M., & Hartman, B. C., “Shipment consolidation: Who pays for it and how much?” Management Science, 53(1), 78–87, 2007.doi: 10.1287/mnsc.1060.0607
  • Dror, M., Hartman, B.C., “Survey of cooperative inventory games and extensions”, Journal of the Operational Research Society, 62, 565-580, 2011. -580. doi:10.1057/jors.2
  • Fiestras-Janerio M.G., Garcia-Jurado I., Meca A., Mosquera M.A., “Cooperative game theory and inventory management”, European Journal of Operational Research, 210, 459–466, 2011. doi: 10.1016/j.ejor.2010.06.025
  • Kose E., Forrest J.Y , “N-person grey game”, Kybernetes, Vol. 44, Issue 2, pp. 271 –282, 2015. doi: 10.1108/K-04-2014-0073
  • Kose, E., Temiz, I., Erol, S., “Grey system approach for economic order quantity models under uncertainty”, The Journal of Grey System, 1, 71-82, 2011.
  • Li J., Feng H., Zenh Y., “Inventory games with permissible delay in payments”, European Journal of Operational Research, 234, 694–700, 2014. doi: 10.1016/j.ejor.2013.11.008
  • Liu, S., Lin, Y., Grey Information: Theory and Practical Applications, Springer, Germany, 2006.
  • Mallozzi L., Scalzo V., Tijs S., “Fuzzy interval cooperative games”, Fuzzy Sets and Systems, 165(1), 98-105, 2011. DOI: 10.1016/j.fss.2010.06.005
  • Meca A., Timmer J., Garcia-Jurado I., and Borm P.E.M., “Inventory games”, European Journal of Operations Research, 156: 127–139, 2004. doi:10.1016/S0377-2217(02)00913-X
  • Meca, A., “A core-allocation family for generalized holding cost games”, Mathematical Methods of Operations Research, 65, 499-517, 2007.doi:10.1007/s00186-006-0131-z
  • Meca, A., Guardiola, L., Toledo, A., “p-additive games: A class of totally balanced games arising from inventory situations with temporary discounts” TOP 15, 322–340, 2007. doi: 10.1007/s11750-007-0020-5
  • Moore R., Methods and applications of interval analysis, SIAM, Philadelphi, 1979.
  • Olgun M.O., Özdemir G., “İşbirlikçi Stok Oyunları”, Journal of Engineering Science and Design, Vol 3 (1), pp.71-75, 2015.
  • Palancı O., Alparslan Gök, S.Z., Ergün S., Weber G.W., “Cooperative grey games and the grey Shapley value”, Optimization, 64:8, 1657-1668, doi:10.1080/02331934.2014.956743, 2015.
  • S.Z. Alparslan-Gok, O. Palanci, O. Olgun, “Alternative axiomatic characterizations of the grey Shapley value”, International Journal of Supply and Operations Management, Volume 1, Issue 1, pp.69-80, 2014.
  • S.Z. Alparslan-Gök, R. Branzei, S.H. Tijs, “Big Boss Interval Games”, International Journal of Uncertainty, Fuzziness and Knowledge-Based Systems (IJUFKS), Vol: 19 No:1, pp.135-149, 2011. doi: 10.2139/ssrn.1135214
  • Shapley LS. “A value for n-person games”, Ann. Math. Stud., 28:307–317, 1953.
  • Suijs, J., Cooperative Decision-making Under Risk, Kluwer: Boston, 2011.
  • Sulak H., Stok kontrolü ve ekonomik sipariş miktarı modellerinde yeni açılımlar: ödemelerde gecikmeye izin verilmesi durumu ve bir model önerisi, Süleyman Demirel Üniversitesi Sosyal Bilimler Enstitüsü İşletme Anabilim Dalı, Doktora tezi, 2008.
  • Tersine, R. J., Principles of Inventory and Materials Management, Printice Hall, 4th Edition, 591, ABD, 1994.
  • Young, H. P., “Monotonic Solutions of Cooperative Games”.,International Journal of Game Theory, 14(2), 65–72, 1985.

GRİ STOK MODELİNİN İŞBİRLİKÇİ OYUN TEORİSİ İLE MALİYET DAĞITIMLARININ İNCELENMESİ

Yıl 2017, , 23 - 34, 20.08.2017
https://doi.org/10.17482/uumfd.335422

Öz

Stok yönetimi çalışmalarında birim zamanda
ortalama toplam stok maliyetini ve depolanacak ürün miktarını belirlemek
firmalar için önemli bir konudur. Ancak gerçek hayatta stok maliyeti
parametreleri tam olarak bilinemeyebilir fakat belirli aralık olarak tahmin
edilebilir. Ayrıca birden fazla firma ortak hedeflere sahip olan firmalar ile
stok ve sipariş maliyetlerinin azaltmak için diğer firmalar ile işbirliği
(koalisyon) yoluna giderek giderlerini azaltabilirler. Bu çalışma ile aynı
sektörde  faaliyet gösteren ve aynı
ürünleri sipariş veren firmaların bir araya gelerek ortak sipariş verme
durumunda oluşacak toplam maliyetin firmalar arasında nasıl dağıtılacağı
konularına katkı sağlanmıştır. Uygulama geliştirmek amacıyla av silahı
sektöründe faaliyet gösteren ve aynı ürünleri sipariş eden üç firma
incelenmiştir. Ayrıca geliştirilen üç adet maliyet dağıtım kuralı olan gri
orantılı kural, gri eşit kayıp dağıtım kuralı, gri kaçırılan alternatif
kayıpların dağıtımı ile ilgili adil ve kararlı dağıtımlar karşılaştırılarak
incelenmiş firmalar için en uygun dağıtım kuralları önerilmiştir.

Kaynakça

  • Biddle, G. C., & Steinberg, R., “Allocations of Joint and Common Costs”, Journal of Accounting Literature, 3(1), 1–45, 1984.
  • Chakrabotty, S., Madhumangal, P., Kumar, P., Nayak, K., “An algorithm for solution of an interval valued EOQ model”, An International Journal of Optimization and Control: Theories & Applications, 3(1), 55-64, 2013. doi:10.11121/ijocta.01.2013.00113
  • Chase, R. B. ve Aquilano, N. J., Production and Operations Management: A life Cycle Approach, Third Edition, Irwin, USA, 1981.
  • Chessa M., “Cooperation in deterministic and stochastic inventory models with continuous review”, Universita’ di Genova”, Yüksek Lisans Tezi, 2009.
  • Dror, M., & Hartman, B. C., “Shipment consolidation: Who pays for it and how much?” Management Science, 53(1), 78–87, 2007.doi: 10.1287/mnsc.1060.0607
  • Dror, M., Hartman, B.C., “Survey of cooperative inventory games and extensions”, Journal of the Operational Research Society, 62, 565-580, 2011. -580. doi:10.1057/jors.2
  • Fiestras-Janerio M.G., Garcia-Jurado I., Meca A., Mosquera M.A., “Cooperative game theory and inventory management”, European Journal of Operational Research, 210, 459–466, 2011. doi: 10.1016/j.ejor.2010.06.025
  • Kose E., Forrest J.Y , “N-person grey game”, Kybernetes, Vol. 44, Issue 2, pp. 271 –282, 2015. doi: 10.1108/K-04-2014-0073
  • Kose, E., Temiz, I., Erol, S., “Grey system approach for economic order quantity models under uncertainty”, The Journal of Grey System, 1, 71-82, 2011.
  • Li J., Feng H., Zenh Y., “Inventory games with permissible delay in payments”, European Journal of Operational Research, 234, 694–700, 2014. doi: 10.1016/j.ejor.2013.11.008
  • Liu, S., Lin, Y., Grey Information: Theory and Practical Applications, Springer, Germany, 2006.
  • Mallozzi L., Scalzo V., Tijs S., “Fuzzy interval cooperative games”, Fuzzy Sets and Systems, 165(1), 98-105, 2011. DOI: 10.1016/j.fss.2010.06.005
  • Meca A., Timmer J., Garcia-Jurado I., and Borm P.E.M., “Inventory games”, European Journal of Operations Research, 156: 127–139, 2004. doi:10.1016/S0377-2217(02)00913-X
  • Meca, A., “A core-allocation family for generalized holding cost games”, Mathematical Methods of Operations Research, 65, 499-517, 2007.doi:10.1007/s00186-006-0131-z
  • Meca, A., Guardiola, L., Toledo, A., “p-additive games: A class of totally balanced games arising from inventory situations with temporary discounts” TOP 15, 322–340, 2007. doi: 10.1007/s11750-007-0020-5
  • Moore R., Methods and applications of interval analysis, SIAM, Philadelphi, 1979.
  • Olgun M.O., Özdemir G., “İşbirlikçi Stok Oyunları”, Journal of Engineering Science and Design, Vol 3 (1), pp.71-75, 2015.
  • Palancı O., Alparslan Gök, S.Z., Ergün S., Weber G.W., “Cooperative grey games and the grey Shapley value”, Optimization, 64:8, 1657-1668, doi:10.1080/02331934.2014.956743, 2015.
  • S.Z. Alparslan-Gok, O. Palanci, O. Olgun, “Alternative axiomatic characterizations of the grey Shapley value”, International Journal of Supply and Operations Management, Volume 1, Issue 1, pp.69-80, 2014.
  • S.Z. Alparslan-Gök, R. Branzei, S.H. Tijs, “Big Boss Interval Games”, International Journal of Uncertainty, Fuzziness and Knowledge-Based Systems (IJUFKS), Vol: 19 No:1, pp.135-149, 2011. doi: 10.2139/ssrn.1135214
  • Shapley LS. “A value for n-person games”, Ann. Math. Stud., 28:307–317, 1953.
  • Suijs, J., Cooperative Decision-making Under Risk, Kluwer: Boston, 2011.
  • Sulak H., Stok kontrolü ve ekonomik sipariş miktarı modellerinde yeni açılımlar: ödemelerde gecikmeye izin verilmesi durumu ve bir model önerisi, Süleyman Demirel Üniversitesi Sosyal Bilimler Enstitüsü İşletme Anabilim Dalı, Doktora tezi, 2008.
  • Tersine, R. J., Principles of Inventory and Materials Management, Printice Hall, 4th Edition, 591, ABD, 1994.
  • Young, H. P., “Monotonic Solutions of Cooperative Games”.,International Journal of Game Theory, 14(2), 65–72, 1985.
Toplam 25 adet kaynakça vardır.

Ayrıntılar

Konular Mühendislik
Bölüm Araştırma Makaleleri
Yazarlar

Mehmet Onur Olgun

Gültekin Özdemir

Sırma Zeynep Alparslan Gök

Yayımlanma Tarihi 20 Ağustos 2017
Gönderilme Tarihi 29 Nisan 2016
Kabul Tarihi 10 Mayıs 2017
Yayımlandığı Sayı Yıl 2017

Kaynak Göster

APA Olgun, M. O., Özdemir, G., & Alparslan Gök, S. Z. (2017). GRİ STOK MODELİNİN İŞBİRLİKÇİ OYUN TEORİSİ İLE MALİYET DAĞITIMLARININ İNCELENMESİ. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi, 22(2), 23-34. https://doi.org/10.17482/uumfd.335422
AMA Olgun MO, Özdemir G, Alparslan Gök SZ. GRİ STOK MODELİNİN İŞBİRLİKÇİ OYUN TEORİSİ İLE MALİYET DAĞITIMLARININ İNCELENMESİ. UUJFE. Ağustos 2017;22(2):23-34. doi:10.17482/uumfd.335422
Chicago Olgun, Mehmet Onur, Gültekin Özdemir, ve Sırma Zeynep Alparslan Gök. “GRİ STOK MODELİNİN İŞBİRLİKÇİ OYUN TEORİSİ İLE MALİYET DAĞITIMLARININ İNCELENMESİ”. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi 22, sy. 2 (Ağustos 2017): 23-34. https://doi.org/10.17482/uumfd.335422.
EndNote Olgun MO, Özdemir G, Alparslan Gök SZ (01 Ağustos 2017) GRİ STOK MODELİNİN İŞBİRLİKÇİ OYUN TEORİSİ İLE MALİYET DAĞITIMLARININ İNCELENMESİ. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi 22 2 23–34.
IEEE M. O. Olgun, G. Özdemir, ve S. Z. Alparslan Gök, “GRİ STOK MODELİNİN İŞBİRLİKÇİ OYUN TEORİSİ İLE MALİYET DAĞITIMLARININ İNCELENMESİ”, UUJFE, c. 22, sy. 2, ss. 23–34, 2017, doi: 10.17482/uumfd.335422.
ISNAD Olgun, Mehmet Onur vd. “GRİ STOK MODELİNİN İŞBİRLİKÇİ OYUN TEORİSİ İLE MALİYET DAĞITIMLARININ İNCELENMESİ”. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi 22/2 (Ağustos 2017), 23-34. https://doi.org/10.17482/uumfd.335422.
JAMA Olgun MO, Özdemir G, Alparslan Gök SZ. GRİ STOK MODELİNİN İŞBİRLİKÇİ OYUN TEORİSİ İLE MALİYET DAĞITIMLARININ İNCELENMESİ. UUJFE. 2017;22:23–34.
MLA Olgun, Mehmet Onur vd. “GRİ STOK MODELİNİN İŞBİRLİKÇİ OYUN TEORİSİ İLE MALİYET DAĞITIMLARININ İNCELENMESİ”. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi, c. 22, sy. 2, 2017, ss. 23-34, doi:10.17482/uumfd.335422.
Vancouver Olgun MO, Özdemir G, Alparslan Gök SZ. GRİ STOK MODELİNİN İŞBİRLİKÇİ OYUN TEORİSİ İLE MALİYET DAĞITIMLARININ İNCELENMESİ. UUJFE. 2017;22(2):23-34.

DUYURU:

30.03.2021- Nisan 2021 (26/1) sayımızdan itibaren TR-Dizin yeni kuralları gereği, dergimizde basılacak makalelerde, ilk gönderim aşamasında Telif Hakkı Formu yanısıra, Çıkar Çatışması Bildirim Formu ve Yazar Katkısı Bildirim Formu da tüm yazarlarca imzalanarak gönderilmelidir. Yayınlanacak makalelerde de makale metni içinde "Çıkar Çatışması" ve "Yazar Katkısı" bölümleri yer alacaktır. İlk gönderim aşamasında doldurulması gereken yeni formlara "Yazım Kuralları" ve "Makale Gönderim Süreci" sayfalarımızdan ulaşılabilir. (Değerlendirme süreci bu tarihten önce tamamlanıp basımı bekleyen makalelerin yanısıra değerlendirme süreci devam eden makaleler için, yazarlar tarafından ilgili formlar doldurularak sisteme yüklenmelidir).  Makale şablonları da, bu değişiklik doğrultusunda güncellenmiştir. Tüm yazarlarımıza önemle duyurulur.

Bursa Uludağ Üniversitesi, Mühendislik Fakültesi Dekanlığı, Görükle Kampüsü, Nilüfer, 16059 Bursa. Tel: (224) 294 1907, Faks: (224) 294 1903, e-posta: mmfd@uludag.edu.tr