Daily flow and suspended sediment
discharge are two major hydrologıcal variables that affect rivers’ morphology
and ecosystem, particularly during flood events. Artificial neural networks
(ANNs) have been successfully used to model and predict these variables in recent
studies. However, these are implicit and cannot be simply used in practice. In
this paper, linear genetic programming (LGP) approach has been suggested to
develop explicit models to predict these variables in two rivers in Iran. The
explicit relationships (prediction rules) evolved by LGP take the form of
equations or program codes, which can be checked for its physical consistency.
The results showed that the LGP outperforms ANNs in terms of root mean squared
error and coefficient of efficiency.
Abrahart, R.J., Anctil, F., Coulibaly, P., et al., (2012) Two decades of anarchy? Emerging themes and outstanding challenges for neural network modelling of surface hydrology. Progresses in Physical Geography 36(4), 480-513. doi: 10.1177/0309133312444943
Aytek, A., and Kisi, O. (2008) A genetic programming approach to suspended sediment modeling, Journal of Hydrology, 351, 288-298. doi: 10.1016/j.jhydrol.2007.12.005
Babovic, V., Keijzer, M. (2002) Declarative and preferential bias in GP-based scientific discovery. Genetic Programming and Evolvable Machines, 3(1), 41-79. Retrieved from https://link.springer.com/article/10.1023/A:1014596120381
Danandeh Mehr, A., Kahya, E. (2017) A Pareto-optimal moving average multigene genetic programming model for daily streamflow prediction, Journal of Hydrology,549, 603-615. doi: 10.1016/j.jhydrol.2017.04.045
Danandeh Mehr, A., Nourani, V. (2017) A Pareto-optimal moving average-multigene genetic programming model for rainfall-runoff modelling. Environmental Modelling & Software, 92, 239-251. doi: 10.1016/j.envsoft.2017.03.004
Danandeh Mehr, A., Demirel, M.C. (2016) On the calibration of multi-gene genetic programming to simulate low flows in the Moselle River. Uludağ University Journal of the Faculty of Engineering, 21 (2), 365-376. doi: 10.17482/uumfd.278107
Danandeh Mehr, A., Kahya E., Şahin, A. and Nazemosadat M.J. (2015) Successive-station monthly streamflow prediction using different ANN algorithms. International Journal of Environmental Science and Technology, 12 (7): 2191-2200. doi: 10.1007/s13762-014-0613-0
Danandeh Mehr, A., Kahya, E. and Yerdelen, C. (2014) Linear genetic programming application for successive-station monthly streamflow prediction. Computers & Geosciences, 70, 63-72.16(6), 1318-1330. doi: 10.1016/j.cageo.2014.04.015
Danandeh Mehr, A., Kahya E. and Olyaie E. (2013) Streamflow prediction using linear genetic programming in comparison with a neuro-wavelet technique. Journal of Hydrology, 505:240–249. doi: 10.1016/j.jhydrol.2013.10.003
Francone, D.F. (2001) DiscipulusTM Software Owner’s Manual, Version 3.0 Register Machine Learning Technologies, Inc., Littleton, Colorado. Retrieved from https://www.cs.bham.ac.uk/~wbl/biblio/gp-html/francone_manual.html
Giustolisi, O. (2004) Using genetic programming to determine chezy resistance coefficient in corrugated channels, Journal of Hydroinformatics, 157-173. doi: 10.2166/hydro.2004.0013
Guven A, Aytek A, Yuce M. I . and Aksoy H. (2008) Genetic programming-based empirical model for daily reference evapotranspiration estimation. Clean-Soil AirWater, 36(10-11) 905-912. doi: 10.1002/clen.200800009
Guven, A. (2009). Linear genetic programming for time-series modeling of daily flow rate, Journal of Earth System and Science. 118, No. 2, 157-173. doi: 10.1007/s12040-009-0022-9
Hrnjica, B. and Danandeh Mehr, A. (2019) Optimized Genetic Programming Applications: Emerging Research and Opportunities, (pp. 1-310). Hershey, PA: IGI Global. doi:10.4018/978-1-5225-6005-0
Kisi, O. and Cigizoglu H. K. (2007) Comparision of different ANN techniques in river flow prediction, Civil engineering and environmental system. vol 24(3), 211-231. doi: 10.1080/10286600600888565
Koza, J.R., 1992. Genetic Programming: on the Programming of Computers by Means of Natural Selection. MIT Press, Cambridge, MA, USA.
Olyaie, E. Zare Abyaneh, H. and Danandeh Mehr, A. (2017). A comparative analysis among computational intelligence techniques for dissolved oxygen prediction in Delaware River. doi: 10.1016/j.gsf.2016.04.007
Ravansalar, M., Rajaee, T., & Kisi, O. (2017). Wavelet-linear genetic programming: A new approach for modeling monthly streamflow. Journal of Hydrology, 549, 461-475. doi: 10.1016/j.jhydrol.2017.04.018
Roushangar, K., & Homayounfar, F. (2015). Prediction of Flow Friction Coefficient using GEP and ANN Methods. International Journal of Artificial Intelligence and Mechatronics, 4(2), 65-68. Retrieved from http://www.ijaim.org/vol-issues.html?view=publication&task=show&id=140
Sajikumar, N., & Thandaveswara, B. S. (1999). A non-linear rainfall–runoff model using an artificial neural network. Journal of hydrology, 216(1-2), 32-55. doi: 10.1016/S0022-1694(98)00273-X
Tofiq F.A., Guven, .A (2014) Prediction of design flood discharge by statistical downscaling and General Circulation Models. Journal of Hydrology, 517, 1145-1153. doi: 10.1016/j.jhydrol.2014.06.028
Uyumaz, A., Danandeh Mehr A., Kahya E. and Erdem H. (2014) Rectangular side weirs discharge coefficient estimation in circular channels using linear genetic programming approach, Journal of Hydroinformatics, 16(6), 1318-1330. doi: 10.2166/hydro.2014.112
AKIM VE SEDIMENT YÜK ÖNGÖRÜMÜ İÇIN DOĞRUSAL GENETIK PROGRAMLAMANIN UYGULANMASI
Nehirlerin
morfolojisini, ekosistemi ve özellikle taşkın olaylarını etkileyen iki ana
değişken askıdaki sediment ve günlük akımlardır. Yapay sinir ağları (YSA), bu
değişkenleri modellemek ve tahmin etmek için yakın zamanda yapılmış
çalışmalarda başarıyla kullanılmıştır. Bununla birlikte, bunlar kapalı
yöntemlerdir ve pratik uygulamalarda kolaylıkla kullanılamazlar. Bu makalede,
İran'daki iki nehirde bu değişkenleri tahmin etmek üzere açık modeller
geliştirmek için doğrusal genetik programlama (DGP) yaklaşımı önerilmiştir. DGP
tarafından geliştirilen açık ilişkiler (tahmin kuralları), fiziksel tutarlılığı
açısından kontrol edilebilen denklemler veya program kodları şeklindedir.
Sonuçlar, global maksimum ve minimum akımları elde etme noktasında, DGP’nin
YSA’ya göre daha başarılı olduğunu gerek kalibrasyon gerekse doğrulama
aşamalarında hataların karelerinin ortalamasının karekökünün en düşük,
verimlilik katsayısının ise daha yüksek olmasını sağlayarak göstermiştir.
Abrahart, R.J., Anctil, F., Coulibaly, P., et al., (2012) Two decades of anarchy? Emerging themes and outstanding challenges for neural network modelling of surface hydrology. Progresses in Physical Geography 36(4), 480-513. doi: 10.1177/0309133312444943
Aytek, A., and Kisi, O. (2008) A genetic programming approach to suspended sediment modeling, Journal of Hydrology, 351, 288-298. doi: 10.1016/j.jhydrol.2007.12.005
Babovic, V., Keijzer, M. (2002) Declarative and preferential bias in GP-based scientific discovery. Genetic Programming and Evolvable Machines, 3(1), 41-79. Retrieved from https://link.springer.com/article/10.1023/A:1014596120381
Danandeh Mehr, A., Kahya, E. (2017) A Pareto-optimal moving average multigene genetic programming model for daily streamflow prediction, Journal of Hydrology,549, 603-615. doi: 10.1016/j.jhydrol.2017.04.045
Danandeh Mehr, A., Nourani, V. (2017) A Pareto-optimal moving average-multigene genetic programming model for rainfall-runoff modelling. Environmental Modelling & Software, 92, 239-251. doi: 10.1016/j.envsoft.2017.03.004
Danandeh Mehr, A., Demirel, M.C. (2016) On the calibration of multi-gene genetic programming to simulate low flows in the Moselle River. Uludağ University Journal of the Faculty of Engineering, 21 (2), 365-376. doi: 10.17482/uumfd.278107
Danandeh Mehr, A., Kahya E., Şahin, A. and Nazemosadat M.J. (2015) Successive-station monthly streamflow prediction using different ANN algorithms. International Journal of Environmental Science and Technology, 12 (7): 2191-2200. doi: 10.1007/s13762-014-0613-0
Danandeh Mehr, A., Kahya, E. and Yerdelen, C. (2014) Linear genetic programming application for successive-station monthly streamflow prediction. Computers & Geosciences, 70, 63-72.16(6), 1318-1330. doi: 10.1016/j.cageo.2014.04.015
Danandeh Mehr, A., Kahya E. and Olyaie E. (2013) Streamflow prediction using linear genetic programming in comparison with a neuro-wavelet technique. Journal of Hydrology, 505:240–249. doi: 10.1016/j.jhydrol.2013.10.003
Francone, D.F. (2001) DiscipulusTM Software Owner’s Manual, Version 3.0 Register Machine Learning Technologies, Inc., Littleton, Colorado. Retrieved from https://www.cs.bham.ac.uk/~wbl/biblio/gp-html/francone_manual.html
Giustolisi, O. (2004) Using genetic programming to determine chezy resistance coefficient in corrugated channels, Journal of Hydroinformatics, 157-173. doi: 10.2166/hydro.2004.0013
Guven A, Aytek A, Yuce M. I . and Aksoy H. (2008) Genetic programming-based empirical model for daily reference evapotranspiration estimation. Clean-Soil AirWater, 36(10-11) 905-912. doi: 10.1002/clen.200800009
Guven, A. (2009). Linear genetic programming for time-series modeling of daily flow rate, Journal of Earth System and Science. 118, No. 2, 157-173. doi: 10.1007/s12040-009-0022-9
Hrnjica, B. and Danandeh Mehr, A. (2019) Optimized Genetic Programming Applications: Emerging Research and Opportunities, (pp. 1-310). Hershey, PA: IGI Global. doi:10.4018/978-1-5225-6005-0
Kisi, O. and Cigizoglu H. K. (2007) Comparision of different ANN techniques in river flow prediction, Civil engineering and environmental system. vol 24(3), 211-231. doi: 10.1080/10286600600888565
Koza, J.R., 1992. Genetic Programming: on the Programming of Computers by Means of Natural Selection. MIT Press, Cambridge, MA, USA.
Olyaie, E. Zare Abyaneh, H. and Danandeh Mehr, A. (2017). A comparative analysis among computational intelligence techniques for dissolved oxygen prediction in Delaware River. doi: 10.1016/j.gsf.2016.04.007
Ravansalar, M., Rajaee, T., & Kisi, O. (2017). Wavelet-linear genetic programming: A new approach for modeling monthly streamflow. Journal of Hydrology, 549, 461-475. doi: 10.1016/j.jhydrol.2017.04.018
Roushangar, K., & Homayounfar, F. (2015). Prediction of Flow Friction Coefficient using GEP and ANN Methods. International Journal of Artificial Intelligence and Mechatronics, 4(2), 65-68. Retrieved from http://www.ijaim.org/vol-issues.html?view=publication&task=show&id=140
Sajikumar, N., & Thandaveswara, B. S. (1999). A non-linear rainfall–runoff model using an artificial neural network. Journal of hydrology, 216(1-2), 32-55. doi: 10.1016/S0022-1694(98)00273-X
Tofiq F.A., Guven, .A (2014) Prediction of design flood discharge by statistical downscaling and General Circulation Models. Journal of Hydrology, 517, 1145-1153. doi: 10.1016/j.jhydrol.2014.06.028
Uyumaz, A., Danandeh Mehr A., Kahya E. and Erdem H. (2014) Rectangular side weirs discharge coefficient estimation in circular channels using linear genetic programming approach, Journal of Hydroinformatics, 16(6), 1318-1330. doi: 10.2166/hydro.2014.112
Danandeh Mehr, A., & Şorman, A. U. (2018). Streamflow and Sediment Load Prediction Using Linear Genetic Programming. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi, 23(2), 323-332. https://doi.org/10.17482/uumfd.352833
AMA
Danandeh Mehr A, Şorman AU. Streamflow and Sediment Load Prediction Using Linear Genetic Programming. UUJFE. Ağustos 2018;23(2):323-332. doi:10.17482/uumfd.352833
Chicago
Danandeh Mehr, Ali, ve Ali Unal Şorman. “Streamflow and Sediment Load Prediction Using Linear Genetic Programming”. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi 23, sy. 2 (Ağustos 2018): 323-32. https://doi.org/10.17482/uumfd.352833.
EndNote
Danandeh Mehr A, Şorman AU (01 Ağustos 2018) Streamflow and Sediment Load Prediction Using Linear Genetic Programming. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi 23 2 323–332.
IEEE
A. Danandeh Mehr ve A. U. Şorman, “Streamflow and Sediment Load Prediction Using Linear Genetic Programming”, UUJFE, c. 23, sy. 2, ss. 323–332, 2018, doi: 10.17482/uumfd.352833.
ISNAD
Danandeh Mehr, Ali - Şorman, Ali Unal. “Streamflow and Sediment Load Prediction Using Linear Genetic Programming”. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi 23/2 (Ağustos 2018), 323-332. https://doi.org/10.17482/uumfd.352833.
JAMA
Danandeh Mehr A, Şorman AU. Streamflow and Sediment Load Prediction Using Linear Genetic Programming. UUJFE. 2018;23:323–332.
MLA
Danandeh Mehr, Ali ve Ali Unal Şorman. “Streamflow and Sediment Load Prediction Using Linear Genetic Programming”. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi, c. 23, sy. 2, 2018, ss. 323-32, doi:10.17482/uumfd.352833.
Vancouver
Danandeh Mehr A, Şorman AU. Streamflow and Sediment Load Prediction Using Linear Genetic Programming. UUJFE. 2018;23(2):323-32.
30.03.2021- Nisan 2021 (26/1) sayımızdan itibaren TR-Dizin yeni kuralları gereği, dergimizde basılacak makalelerde, ilk gönderim aşamasında Telif Hakkı Formu yanısıra, Çıkar Çatışması Bildirim Formu ve Yazar Katkısı Bildirim Formu da tüm yazarlarca imzalanarak gönderilmelidir. Yayınlanacak makalelerde de makale metni içinde "Çıkar Çatışması" ve "Yazar Katkısı" bölümleri yer alacaktır. İlk gönderim aşamasında doldurulması gereken yeni formlara "Yazım Kuralları" ve "Makale Gönderim Süreci" sayfalarımızdan ulaşılabilir. (Değerlendirme süreci bu tarihten önce tamamlanıp basımı bekleyen makalelerin yanısıra değerlendirme süreci devam eden makaleler için, yazarlar tarafından ilgili formlar doldurularak sisteme yüklenmelidir). Makale şablonları da, bu değişiklik doğrultusunda güncellenmiştir. Tüm yazarlarımıza önemle duyurulur.
Bursa Uludağ Üniversitesi, Mühendislik Fakültesi Dekanlığı, Görükle Kampüsü, Nilüfer, 16059 Bursa. Tel: (224) 294 1907, Faks: (224) 294 1903, e-posta: mmfd@uludag.edu.tr