Derleme
BibTex RIS Kaynak Göster

Self-Healing of Engineered Cementitious Composite Based on Micromechanics

Yıl 2017, , 115 - 126, 27.12.2017
https://doi.org/10.17482/uumfd.371874

Öz

Cementitious composites
have become very widely used in building materials in all over the world.
However, deterioration is inevitable since the initiation of the service life
of structure. Then,
labor and expenditure based maintenance and
repair works become necessary. Therefore, self-healing of the cementitious
composites deteriorated due to environmental effects has great importance. The
self-healing behavior of cementitious composites have been considered and
examined by many researchers for a long time. Especially,
self-healing was be more attractive method for ECC due to its sequential development of multiple cracks instead of continuous widening
of one localized crack in concrete. 

Kaynakça

  • Alyousif, M., Lachemi, M., Yildirim, G. ve Şahmaran, M. (2015) Effect of self-healing on the different transport properties of cementitious composites. Journal of Advanced Concrete Technology, 13, 112-123. doi:10.3151/jact.13.112
  • Clear, C. A. (1985) The effects of autogenous healing upon the leakage of water through cracks in concrete. Wexham Springs, Cement and Concrete Association, 28.
  • Edvardsen, C. (1999) Water permeability and autogenous healing of cracks in concrete. ACI Material Journal, 96, 448–55. doi: 10.14359/645
  • Homma, D., Mihashi, H. ve Nishiwaki, T. (2009) Self-healing capability of fibre reinforced cementitious composites. Journal of Advanced Concrete Technology, 7(2), 217–228. https://doi.org/10.3151/jact.7.217
  • Jacobsen, S., Marchand, J. ve Homain, H. (1995) SEM observations of the microstructure of frost deteriorated and self-healed concrete. Journal of Cement and Concrete Research, 25, 1781–90. https://doi.org/10.1016/0008-8846(95)00174-3
  • Kan, L. ve Shi, H. (2012) Investigation of self-healing behavior of Engineered Cementitious Composites (ECC) materials. Construction and Building Materials, 29, 348–356. doi:10.1016/j.conbuildmat.2011.10.051
  • Kanda, T. (1998) Design of Engineered Cementitious Composites for Ductile Seismic Resistant Elements, Ph.D. Thesis, Department of Civil and Environmental Engineering, Ann Arbor, University of Michigan.
  • Kim, P.J. (1999) Micromechanics Based Durability Study of Lightweight Thin Sheet Fiber Reinforced Cement Composites, Ph.D. Thesis, Department of Civil and Environmental Engineering, Ann Arbor, University of Michigan.
  • Li, M., Sahmaran, M. ve Li, V.C. (2007) Effect of cracking and healing on durability of engineered cementitious composites under marine environment, Proceedings of HPFRCC5-High Performance Fiber Reinforced Cement Composites, Stuttgart, Germany, July 10-13, 313–322.
  • Li, V.C. (1993) From micromechanics to structural engineering – the design of cementitious composites for civil engineering applications. JSCE Journal of Structural Mechanical Earthquake Engineering, 10(2), 37–48. https://doi.org/10.2208/jscej.1993.471_1
  • Li, V.C. (1998) Engineered cementitious composites (ECC) – tailored composites through micromechanical modeling, in: Banthia N, Bentur A, Mufti A, editors. Fiber reinforced concrete: present and the future. Montreal: Canadian Society for Civil Engineering, 64–97.
  • Li, V.C. (2003) On engineered cementitious composites (ECC) – a review of the material and its application. Journal of Advanced Concrete Technology, 1(3), 215–30. https://doi.org/10.3151/jact.1.215
  • Li, V.C., Leung, C.K.Y. (1992) Steady State and Multiple Cracking of Short Random Fiber Composites. ASCE Journal of Engineering Mechanics, 118(11), 2246-2264. https://doi.org/10.1061/(ASCE)0733-9399(1992)118:11(2246)
  • Li, V.C., Wang, S. Ve Wu, C. (2001) Tensile strain-hardening behaviour of polyvinyl alcohol engineered cementitious composite. ACI Material Journal, 98(6), 483–92. doi: 10.14359/10851
  • Lin, Z., Kanda, T. ve Li, V.C. (1999) On Interface Property Characterization and Performance of Fiber-Reinforced Cementitious Composites. Journal of Concrete Science and Engineering, 1(3), 173-184.
  • Ma, H., Qian, S. ve Zhang, Z. (2014) Effect of self-healing on water permeability and mechanical property of medium-early- strength cementitious composites. Construction and Building Materials, 68, 92-101. http://dx.doi.org/10.1016/j.conbuildmat.2014.05.065
  • Marshall, D.B. ve Cox, B.N. (1988) A J-Integral Method for Calculating Steady-State Matrix Cracking Stresses in Composites. Mechanics of Materials, 7(2), 127-133. https://doi.org/10.1016/0167-6636(88)90011-7
  • Mihashi, H. ve De Leite, J.P.B. (2004) State-of-the-art report on control of cracking in early age concrete. Advanced Concrete Technology, 2(2), 141-154. https://doi.org/10.3151/jact.2.141
  • Qian, S.Z., Zhou, J. ve Schlangen, E. (2010) Influence of curing condition and precracking time on the self-healing behavior of Engineered Cementitious Composites. Cement and Concrete Composites, 32, 686–693. doi:10.1016/j.cemconcomp.2010.07.015
  • Reinhardt, H. ve Joos, M. (2003) Permeability and self-healing of cracked concrete as a function of temperature and crack width. Journal of Cement and Concrete Research, 33, 981–5. doi:10.1016/S0008-8846(02)01099-2
  • Sahmaran, M. ve Li, V.C. (2007) De-icing salt scaling resistance of mechanically loaded engineered cementitious composites. Cement and Concrete Research, 37(7), 1035–1046. doi:10.1016/j.cemconres.2007.04.001
  • Sahmaran, M. ve Li, V.C. (2008) Durability of mechanically loaded engineered cementitious composites under high alkaline environment. Cement and Concrete Composites, 30(2), 72–81. doi:10.1016/j.cemconcomp.2007.09.004
  • Sahmaran, M. ve Li, V.C. (2009) Influence of microcracking on water absorption and sorptivity of ECC. Journal of Materials and Structures (RILEM), 42(5), 593– 603. https://doi.org/10.1617/s11527-008-9406-6
  • Sahmaran, M. ve Yaman, I.O. (2008) Influence of transverse crack width on reinforcement corrosion initiation and propagation in mortar beams. Can Journal Civil Engineering, 35, 236–45. https://doi.org/10.1139/L07-117
  • Sahmaran, M., Li, M. ve Li, V.C. (2007) Transport properties of engineered cementitious composites under chloride exposure. ACI Materials Journal, 104(6), 604–611. doi: 10.14359/18964
  • Sahmaran, M., Li, V.C. ve Andrade, C. (2008) Corrosion resistance performance of steel-reinforced engineered cementitious composite beams. ACI Materials Journal, 105(3), 243–250. doi: 10.14359/19820
  • Sahmaran, M., Yildirim, G. ve Erdem, T.K. (2013) Self-healing capability of cementitious composites incorporating different supplementary cementitious materials. Cement Concrete Composites, 35, 89-101, 2013. http://dx.doi.org/10.1016/j.cemconcomp.2012.08.013
  • Schlangen, E. (2010) Fracture mechanics. CT5146 Lecture Notes. In: Hua X. Selfhealing of Engineered Cementitious Composites (ECC) in concrete repair system, Master thesis, Delft University of Technology.
  • Standard Test Method for Electrical Indication of Chloride’s Ability to Resist Chloride (ASTM C1202-94), 1994, Annual Book of ASTM Standards V 04.02, ASTM, Philadelphia, 620-5.
  • Wang, K. (2005) Micromechanics based matrix design for engineered cementitious composites, PhD dissertation, Department of Civil and Environmental Engineering, University of Michigan, Ann Arbor.
  • Wang, K., Jansen, D., Shah, S. ve Karr, A. (1997) Permeability study of cracked concrete. Cement and Concrete Research, 27(3), 381–93, 1997. https://doi.org/10.1016/S0008-8846(97)00031-8
  • Weimann, M.B. ve Li, V.C. (2003) Hygral behavior of engineered cementitious composites (ECC). International Journal of for Restoration of Buildings and Monuments, 9(5), 513-534. https://doi.org/10.1515/rbm-2003-5791
  • Wittmann, F.H. (1998) Seperation of assignments: A new approach towards more durable reinforced concrete structures. Proceeding of the Fifth Workshop on Material Properties and Design, Durable Reinforced Concrete Structures, Aedification Publishers, 151-160.
  • Wittmann, F.H. (2002) Crack formation and fracture energy of normal and high strength concrete. Sadhana, 27(4), 413-423. https://doi.org/10.1007/BF02706991
  • Wu, C. (2001) Micromechanical Tailoring of PVA-ECC for Structural Applications, Ph.D. Thesis, Departmental of Civil and Environmental Engineering, Ann Arbor, University of Michigan.
  • Wu, M., Johannesson, B. ve Geiker, M. (2012) A review: Self-healing in cementitious materials and engineered cementitious composite as a self-healing material. Construction and Building Materials, 28, 571–583. doi:10.1016/j.conbuildmat.2011.08.086
  • Yang, E., Wang, S., Yang, Y. ve Li, V.C. (2006) Fiber Bridging Constitutive Law of Engineered Cementitious Composites. Journal of Advanced Concrete Technology, 6(1), 181-193. https://doi.org/10.3151/jact.6.181
  • Yang, Y., Yang, E. ve Li, V.C. (2011) Autogenous healing of engineered cementitious composites at early age. Cement and Concrete Research, 41, 176–183. doi:10.1016/j.cemconres.2010.11.002
  • Zhang, Z., Qian, S. ve Ma, H. (2014) Investigating mechanical properties and self-healing behavior of micro-cracked ECC with different volume of fly ash. Construction and Building Materials,52,17-23.https://doi.org/10.1016/j.conbuildmat.2013.11.001

MİKROMEKANİK OLARAK TASARLANMIŞ ÇİMENTO ESASLI KOMPOZİTİN (ECC) KENDİLİĞİNDEN İYİLEŞMESİ

Yıl 2017, , 115 - 126, 27.12.2017
https://doi.org/10.17482/uumfd.371874

Öz

Tüm dünyada, çimento esaslı kompozitler çok
yaygın bir şekilde kullanılan yapı malzemeleri haline gelmiştir. Bununla
birlikte, bu malzemelerde yapının servis ömrünün başlangıcından itibaren
bozulma kaçınılmazdır. Daha sonra, çoğunlukla işçilik ve harcama yoğunluğu olan
bakım ve onarım işleri söz konusu olmaktadır. Bu sebeple, çevresel etkilerle
bozulan çimento esaslı kompozitlerin kendiliğinden iyileşmesi büyük bir öneme
sahiptir. Çimento esaslı kompozitlerde kendiliğinden iyileşme olayı, uzun
zamandır birçok araştırmacı tarafından dikkate alınmakta ve incelenmektedir.
Özellikle, ECC’de lokal olarak sürekli genişleyen bir çatlak yerine betonda
birbirini izleyen çoklu çatlak oluşumu, kendiliğinden iyileşmeyi bu alanda daha
cazip bir yöntem haline getirmektedir.

Kaynakça

  • Alyousif, M., Lachemi, M., Yildirim, G. ve Şahmaran, M. (2015) Effect of self-healing on the different transport properties of cementitious composites. Journal of Advanced Concrete Technology, 13, 112-123. doi:10.3151/jact.13.112
  • Clear, C. A. (1985) The effects of autogenous healing upon the leakage of water through cracks in concrete. Wexham Springs, Cement and Concrete Association, 28.
  • Edvardsen, C. (1999) Water permeability and autogenous healing of cracks in concrete. ACI Material Journal, 96, 448–55. doi: 10.14359/645
  • Homma, D., Mihashi, H. ve Nishiwaki, T. (2009) Self-healing capability of fibre reinforced cementitious composites. Journal of Advanced Concrete Technology, 7(2), 217–228. https://doi.org/10.3151/jact.7.217
  • Jacobsen, S., Marchand, J. ve Homain, H. (1995) SEM observations of the microstructure of frost deteriorated and self-healed concrete. Journal of Cement and Concrete Research, 25, 1781–90. https://doi.org/10.1016/0008-8846(95)00174-3
  • Kan, L. ve Shi, H. (2012) Investigation of self-healing behavior of Engineered Cementitious Composites (ECC) materials. Construction and Building Materials, 29, 348–356. doi:10.1016/j.conbuildmat.2011.10.051
  • Kanda, T. (1998) Design of Engineered Cementitious Composites for Ductile Seismic Resistant Elements, Ph.D. Thesis, Department of Civil and Environmental Engineering, Ann Arbor, University of Michigan.
  • Kim, P.J. (1999) Micromechanics Based Durability Study of Lightweight Thin Sheet Fiber Reinforced Cement Composites, Ph.D. Thesis, Department of Civil and Environmental Engineering, Ann Arbor, University of Michigan.
  • Li, M., Sahmaran, M. ve Li, V.C. (2007) Effect of cracking and healing on durability of engineered cementitious composites under marine environment, Proceedings of HPFRCC5-High Performance Fiber Reinforced Cement Composites, Stuttgart, Germany, July 10-13, 313–322.
  • Li, V.C. (1993) From micromechanics to structural engineering – the design of cementitious composites for civil engineering applications. JSCE Journal of Structural Mechanical Earthquake Engineering, 10(2), 37–48. https://doi.org/10.2208/jscej.1993.471_1
  • Li, V.C. (1998) Engineered cementitious composites (ECC) – tailored composites through micromechanical modeling, in: Banthia N, Bentur A, Mufti A, editors. Fiber reinforced concrete: present and the future. Montreal: Canadian Society for Civil Engineering, 64–97.
  • Li, V.C. (2003) On engineered cementitious composites (ECC) – a review of the material and its application. Journal of Advanced Concrete Technology, 1(3), 215–30. https://doi.org/10.3151/jact.1.215
  • Li, V.C., Leung, C.K.Y. (1992) Steady State and Multiple Cracking of Short Random Fiber Composites. ASCE Journal of Engineering Mechanics, 118(11), 2246-2264. https://doi.org/10.1061/(ASCE)0733-9399(1992)118:11(2246)
  • Li, V.C., Wang, S. Ve Wu, C. (2001) Tensile strain-hardening behaviour of polyvinyl alcohol engineered cementitious composite. ACI Material Journal, 98(6), 483–92. doi: 10.14359/10851
  • Lin, Z., Kanda, T. ve Li, V.C. (1999) On Interface Property Characterization and Performance of Fiber-Reinforced Cementitious Composites. Journal of Concrete Science and Engineering, 1(3), 173-184.
  • Ma, H., Qian, S. ve Zhang, Z. (2014) Effect of self-healing on water permeability and mechanical property of medium-early- strength cementitious composites. Construction and Building Materials, 68, 92-101. http://dx.doi.org/10.1016/j.conbuildmat.2014.05.065
  • Marshall, D.B. ve Cox, B.N. (1988) A J-Integral Method for Calculating Steady-State Matrix Cracking Stresses in Composites. Mechanics of Materials, 7(2), 127-133. https://doi.org/10.1016/0167-6636(88)90011-7
  • Mihashi, H. ve De Leite, J.P.B. (2004) State-of-the-art report on control of cracking in early age concrete. Advanced Concrete Technology, 2(2), 141-154. https://doi.org/10.3151/jact.2.141
  • Qian, S.Z., Zhou, J. ve Schlangen, E. (2010) Influence of curing condition and precracking time on the self-healing behavior of Engineered Cementitious Composites. Cement and Concrete Composites, 32, 686–693. doi:10.1016/j.cemconcomp.2010.07.015
  • Reinhardt, H. ve Joos, M. (2003) Permeability and self-healing of cracked concrete as a function of temperature and crack width. Journal of Cement and Concrete Research, 33, 981–5. doi:10.1016/S0008-8846(02)01099-2
  • Sahmaran, M. ve Li, V.C. (2007) De-icing salt scaling resistance of mechanically loaded engineered cementitious composites. Cement and Concrete Research, 37(7), 1035–1046. doi:10.1016/j.cemconres.2007.04.001
  • Sahmaran, M. ve Li, V.C. (2008) Durability of mechanically loaded engineered cementitious composites under high alkaline environment. Cement and Concrete Composites, 30(2), 72–81. doi:10.1016/j.cemconcomp.2007.09.004
  • Sahmaran, M. ve Li, V.C. (2009) Influence of microcracking on water absorption and sorptivity of ECC. Journal of Materials and Structures (RILEM), 42(5), 593– 603. https://doi.org/10.1617/s11527-008-9406-6
  • Sahmaran, M. ve Yaman, I.O. (2008) Influence of transverse crack width on reinforcement corrosion initiation and propagation in mortar beams. Can Journal Civil Engineering, 35, 236–45. https://doi.org/10.1139/L07-117
  • Sahmaran, M., Li, M. ve Li, V.C. (2007) Transport properties of engineered cementitious composites under chloride exposure. ACI Materials Journal, 104(6), 604–611. doi: 10.14359/18964
  • Sahmaran, M., Li, V.C. ve Andrade, C. (2008) Corrosion resistance performance of steel-reinforced engineered cementitious composite beams. ACI Materials Journal, 105(3), 243–250. doi: 10.14359/19820
  • Sahmaran, M., Yildirim, G. ve Erdem, T.K. (2013) Self-healing capability of cementitious composites incorporating different supplementary cementitious materials. Cement Concrete Composites, 35, 89-101, 2013. http://dx.doi.org/10.1016/j.cemconcomp.2012.08.013
  • Schlangen, E. (2010) Fracture mechanics. CT5146 Lecture Notes. In: Hua X. Selfhealing of Engineered Cementitious Composites (ECC) in concrete repair system, Master thesis, Delft University of Technology.
  • Standard Test Method for Electrical Indication of Chloride’s Ability to Resist Chloride (ASTM C1202-94), 1994, Annual Book of ASTM Standards V 04.02, ASTM, Philadelphia, 620-5.
  • Wang, K. (2005) Micromechanics based matrix design for engineered cementitious composites, PhD dissertation, Department of Civil and Environmental Engineering, University of Michigan, Ann Arbor.
  • Wang, K., Jansen, D., Shah, S. ve Karr, A. (1997) Permeability study of cracked concrete. Cement and Concrete Research, 27(3), 381–93, 1997. https://doi.org/10.1016/S0008-8846(97)00031-8
  • Weimann, M.B. ve Li, V.C. (2003) Hygral behavior of engineered cementitious composites (ECC). International Journal of for Restoration of Buildings and Monuments, 9(5), 513-534. https://doi.org/10.1515/rbm-2003-5791
  • Wittmann, F.H. (1998) Seperation of assignments: A new approach towards more durable reinforced concrete structures. Proceeding of the Fifth Workshop on Material Properties and Design, Durable Reinforced Concrete Structures, Aedification Publishers, 151-160.
  • Wittmann, F.H. (2002) Crack formation and fracture energy of normal and high strength concrete. Sadhana, 27(4), 413-423. https://doi.org/10.1007/BF02706991
  • Wu, C. (2001) Micromechanical Tailoring of PVA-ECC for Structural Applications, Ph.D. Thesis, Departmental of Civil and Environmental Engineering, Ann Arbor, University of Michigan.
  • Wu, M., Johannesson, B. ve Geiker, M. (2012) A review: Self-healing in cementitious materials and engineered cementitious composite as a self-healing material. Construction and Building Materials, 28, 571–583. doi:10.1016/j.conbuildmat.2011.08.086
  • Yang, E., Wang, S., Yang, Y. ve Li, V.C. (2006) Fiber Bridging Constitutive Law of Engineered Cementitious Composites. Journal of Advanced Concrete Technology, 6(1), 181-193. https://doi.org/10.3151/jact.6.181
  • Yang, Y., Yang, E. ve Li, V.C. (2011) Autogenous healing of engineered cementitious composites at early age. Cement and Concrete Research, 41, 176–183. doi:10.1016/j.cemconres.2010.11.002
  • Zhang, Z., Qian, S. ve Ma, H. (2014) Investigating mechanical properties and self-healing behavior of micro-cracked ECC with different volume of fly ash. Construction and Building Materials,52,17-23.https://doi.org/10.1016/j.conbuildmat.2013.11.001
Toplam 39 adet kaynakça vardır.

Ayrıntılar

Konular Mühendislik
Bölüm Derleme Makaleler
Yazarlar

Ceren Kına Bu kişi benim

Kâzım Türk

Yayımlanma Tarihi 27 Aralık 2017
Gönderilme Tarihi 29 Eylül 2016
Kabul Tarihi 29 Eylül 2017
Yayımlandığı Sayı Yıl 2017

Kaynak Göster

APA Kına, C., & Türk, K. (2017). MİKROMEKANİK OLARAK TASARLANMIŞ ÇİMENTO ESASLI KOMPOZİTİN (ECC) KENDİLİĞİNDEN İYİLEŞMESİ. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi, 22(3), 115-126. https://doi.org/10.17482/uumfd.371874
AMA Kına C, Türk K. MİKROMEKANİK OLARAK TASARLANMIŞ ÇİMENTO ESASLI KOMPOZİTİN (ECC) KENDİLİĞİNDEN İYİLEŞMESİ. UUJFE. Aralık 2017;22(3):115-126. doi:10.17482/uumfd.371874
Chicago Kına, Ceren, ve Kâzım Türk. “MİKROMEKANİK OLARAK TASARLANMIŞ ÇİMENTO ESASLI KOMPOZİTİN (ECC) KENDİLİĞİNDEN İYİLEŞMESİ”. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi 22, sy. 3 (Aralık 2017): 115-26. https://doi.org/10.17482/uumfd.371874.
EndNote Kına C, Türk K (01 Aralık 2017) MİKROMEKANİK OLARAK TASARLANMIŞ ÇİMENTO ESASLI KOMPOZİTİN (ECC) KENDİLİĞİNDEN İYİLEŞMESİ. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi 22 3 115–126.
IEEE C. Kına ve K. Türk, “MİKROMEKANİK OLARAK TASARLANMIŞ ÇİMENTO ESASLI KOMPOZİTİN (ECC) KENDİLİĞİNDEN İYİLEŞMESİ”, UUJFE, c. 22, sy. 3, ss. 115–126, 2017, doi: 10.17482/uumfd.371874.
ISNAD Kına, Ceren - Türk, Kâzım. “MİKROMEKANİK OLARAK TASARLANMIŞ ÇİMENTO ESASLI KOMPOZİTİN (ECC) KENDİLİĞİNDEN İYİLEŞMESİ”. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi 22/3 (Aralık 2017), 115-126. https://doi.org/10.17482/uumfd.371874.
JAMA Kına C, Türk K. MİKROMEKANİK OLARAK TASARLANMIŞ ÇİMENTO ESASLI KOMPOZİTİN (ECC) KENDİLİĞİNDEN İYİLEŞMESİ. UUJFE. 2017;22:115–126.
MLA Kına, Ceren ve Kâzım Türk. “MİKROMEKANİK OLARAK TASARLANMIŞ ÇİMENTO ESASLI KOMPOZİTİN (ECC) KENDİLİĞİNDEN İYİLEŞMESİ”. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi, c. 22, sy. 3, 2017, ss. 115-26, doi:10.17482/uumfd.371874.
Vancouver Kına C, Türk K. MİKROMEKANİK OLARAK TASARLANMIŞ ÇİMENTO ESASLI KOMPOZİTİN (ECC) KENDİLİĞİNDEN İYİLEŞMESİ. UUJFE. 2017;22(3):115-26.

DUYURU:

30.03.2021- Nisan 2021 (26/1) sayımızdan itibaren TR-Dizin yeni kuralları gereği, dergimizde basılacak makalelerde, ilk gönderim aşamasında Telif Hakkı Formu yanısıra, Çıkar Çatışması Bildirim Formu ve Yazar Katkısı Bildirim Formu da tüm yazarlarca imzalanarak gönderilmelidir. Yayınlanacak makalelerde de makale metni içinde "Çıkar Çatışması" ve "Yazar Katkısı" bölümleri yer alacaktır. İlk gönderim aşamasında doldurulması gereken yeni formlara "Yazım Kuralları" ve "Makale Gönderim Süreci" sayfalarımızdan ulaşılabilir. (Değerlendirme süreci bu tarihten önce tamamlanıp basımı bekleyen makalelerin yanısıra değerlendirme süreci devam eden makaleler için, yazarlar tarafından ilgili formlar doldurularak sisteme yüklenmelidir).  Makale şablonları da, bu değişiklik doğrultusunda güncellenmiştir. Tüm yazarlarımıza önemle duyurulur.

Bursa Uludağ Üniversitesi, Mühendislik Fakültesi Dekanlığı, Görükle Kampüsü, Nilüfer, 16059 Bursa. Tel: (224) 294 1907, Faks: (224) 294 1903, e-posta: mmfd@uludag.edu.tr