Araştırma Makalesi
BibTex RIS Kaynak Göster

Effect of Heat Curing with Electrical Resistance on the Concrete Properties

Yıl 2018, , 431 - 440, 27.04.2018
https://doi.org/10.17482/uumfd.419244

Öz

Freezing of the concrete mix water in cold weather
caused strength loss of concrete and permeability. Besides, the setting of
concrete is accomplished slowly in the cold weather conditions. In this study, the
main goal is the production of quickly setting concrete in a cold weather. For
this purpose, the inner side of a concrete part is heated by an electrical
resistance and therefore the setting of concrete is completed in a short while
by this way
. The cable for heating
purpose is placed with different lengths and shapes in the template. Prepared
concrete mix is placed this templates in deep freeze.  They are waited until setting period of
concrete in deep freeze at -15, -20, -25 degrees ambient temperature. The
concrete temperature during the setting period of concrete is measured. The
concrete is set in a short time such as 4.5 hours though by using this method
in the cold weather conditions. Samples were removed from the mold and left to
cure pool. After having experiments on 8 cm cube samples cut form the samples
day 7th and 28th day, the unit weight of concrete, compressive strength, water
absorption, ultrasonic pulse velocity are calculated. Completion of concrete
setting through heating electrical resistance at very low temperatures has had
a positive impact on the concrete characteristics.

Kaynakça

  • ACI 306 R – 88 (1994) , “Cold Weather Concreting”, ACI Manual of Practice.
  • Chung D.D.L.. (2001) Cement-matrix composites for thermal engineering, Applied Thermal Engineering 21, 1607-1619. doi: 10.1016/S1359-4311(01)00043-6.
  • Devi. (2012) Kar-Buz Birikimini Engelleme Sistemleri, Raf Ürün Dergisi, 36, 40.
  • Jacobsz, G. S. B., and Gryzagoridis, J. (2017, August). Finite difference method heat transfer applied to thermally activated building systems. In Industrial and Commercial Use of Energy (ICUE), 2017 International Conference on the (pp. 1-7). IEEE. doi: 10.23919/ICUE.2017.8067996.
  • Mei Z., Chung D.D.L. (2000) Effects of temperature and stress on the interface between concrete and its carbon fiber epoxy-matrix composite retrofit, studied by electrical resistance measurement, Cement and Concrete Research 30, 799-802. doi: 10.1016/S0008-8846(00)00238-6.
  • Olesen, B. W., & Liedelt, D. F. (2001). Cooling and heating of buildings by activating their thermal mass with embedded hydronic pipe systems. Proceedings of the ASHRAE-CIBSE, Dublin, Ireland, 3-4.
  • Sohn D., Mason T.O. (1998) Electrically Induced Microstructural Changes in Portland Cement Pastes. Advn Cem Bas Mat 7, 81–88. doi: 10.1016/S1065-7355(97)00056-4.
  • Topçu İB, Karakurt C, (2002) Farklı Çimentolar ile Üretilen Betonlarda Olgunluk Kavramı, ECAS 2002 Uluslararası Yapı ve Deprem Mühendisliği Sempozyumu, 14 Ekim, Orta Doğu Teknik Üniversitesi, Ankara, Türkiye.
  • Topçu İB, Toprak MU, (2005) Fine aggregate and curing temperature effect on concrete maturity, Cement and Concrete Research 35, 758– 762. doi: 10.1016/j.cemconres.2004.04.023.
  • Topçu İB, Uygunoğlu T., Hocaoğlu İ., (2012) Electrical conductivity of setting cement paste with different mineral admixtures, Construction and Building Materials 28, 414–420. doi: 10.1016/j.conbuildmat.2011.08.068.
  • Tumidajski P.J., Xie P., Arnott M., Beaudoin J.J. (2003) Overlay current in a conductive concrete snow melting system, Cement and Concrete Research 33, 1807–1809. doi: 10.1016/S0008-8846(03)00198-4.
  • Wilson J.G., Whittington H.W. (1990) Variations in the electrical properties of concrete with change in frequency. IEE Proceedings, Vol. 137, No. 5.
  • Xiao L., Li Z. (2008) Early-age hydration of fresh concrete monitored by non-contact electrical resistivity measurement, Cement and Concrete Research 38, 312–319. doi: 10.1016/j.cemconres.2007.09.027.
  • Xu J., Yao W.. (2009) Current distribution in reinforced concrete cathodic protection system with conductive mortar overlay anode, Construction and Building Materials 23, 2220–2226. doi: 10.1016/j.conbuildmat.2008.12.002.
  • Zhang K., Han B., Yu. (2011) Nickel particle based electrical resistance heating cementitious composites, Cold Regions Science and Technology 69, 64–69. doi: 10.1016/j.coldregions.2011.07.002.

ELEKTRİKSEL DİRENÇ İLE ISITMA YOLUYLA UYGULANAN KÜRÜN BETON ÖZELLİKLERİNE ETKİSİ

Yıl 2018, , 431 - 440, 27.04.2018
https://doi.org/10.17482/uumfd.419244

Öz

Soğuk havalarda beton karma suyunun donması
betonda dayanım kaybına ve geçirimliliğe neden olmaktadır. Ayrıca soğuk hava
koşullarında beton prizini oldukça yavaş alır. Bu çalışmada, soğuk havada hızlı
priz alan beton üretilmesi hedeflenmiştir. Bu amaçla elektriksel direnç kullanılarak
beton içeriden ısıtılmış ve kısa sürede betonun prizini tamamlaması
sağlanmıştır. Isıtma için kullanılan kablo farklı boy ve farklı şekillerde
kalıp içerisine yerleştirilmiştir. Hazırlanan beton karışımı bu kalıplara
yerleştirilerek derin dondurucuya konulmuştur. Derin dondurucuda -15, -20, -25
derece ortam sıcaklıklarında priz alıncaya kadar bekletilmiştir. Betonun priz
alma sürecindeki sıcaklığı her 30 dakikada bir ölçülmüştür. Bu yöntemle soğuk
hava koşullarına rağmen 4,5 saat gibi kısa bir sürede beton priz almıştır.
Kalıptan çıkarılan numuneler kür havuzuna bırakılmıştır. 7. ve 28. günde
numunelerden kesilerek alınan 8 cm boyutlarındaki küp numuneler üzerinde
yapılan deneyler sonucunda betonun birim hacim ağırlığı, basınç dayanımı, su
emme, ultrases geçiş hızları hesaplanmıştır. 
Oldukça düşük sıcaklıklarda elektrik direnci ile ısıtma sayesinde betonun
prizini tamamlamasının beton özelikleri üzerinde olumlu etkileri gözlemlenmiştir.

Kaynakça

  • ACI 306 R – 88 (1994) , “Cold Weather Concreting”, ACI Manual of Practice.
  • Chung D.D.L.. (2001) Cement-matrix composites for thermal engineering, Applied Thermal Engineering 21, 1607-1619. doi: 10.1016/S1359-4311(01)00043-6.
  • Devi. (2012) Kar-Buz Birikimini Engelleme Sistemleri, Raf Ürün Dergisi, 36, 40.
  • Jacobsz, G. S. B., and Gryzagoridis, J. (2017, August). Finite difference method heat transfer applied to thermally activated building systems. In Industrial and Commercial Use of Energy (ICUE), 2017 International Conference on the (pp. 1-7). IEEE. doi: 10.23919/ICUE.2017.8067996.
  • Mei Z., Chung D.D.L. (2000) Effects of temperature and stress on the interface between concrete and its carbon fiber epoxy-matrix composite retrofit, studied by electrical resistance measurement, Cement and Concrete Research 30, 799-802. doi: 10.1016/S0008-8846(00)00238-6.
  • Olesen, B. W., & Liedelt, D. F. (2001). Cooling and heating of buildings by activating their thermal mass with embedded hydronic pipe systems. Proceedings of the ASHRAE-CIBSE, Dublin, Ireland, 3-4.
  • Sohn D., Mason T.O. (1998) Electrically Induced Microstructural Changes in Portland Cement Pastes. Advn Cem Bas Mat 7, 81–88. doi: 10.1016/S1065-7355(97)00056-4.
  • Topçu İB, Karakurt C, (2002) Farklı Çimentolar ile Üretilen Betonlarda Olgunluk Kavramı, ECAS 2002 Uluslararası Yapı ve Deprem Mühendisliği Sempozyumu, 14 Ekim, Orta Doğu Teknik Üniversitesi, Ankara, Türkiye.
  • Topçu İB, Toprak MU, (2005) Fine aggregate and curing temperature effect on concrete maturity, Cement and Concrete Research 35, 758– 762. doi: 10.1016/j.cemconres.2004.04.023.
  • Topçu İB, Uygunoğlu T., Hocaoğlu İ., (2012) Electrical conductivity of setting cement paste with different mineral admixtures, Construction and Building Materials 28, 414–420. doi: 10.1016/j.conbuildmat.2011.08.068.
  • Tumidajski P.J., Xie P., Arnott M., Beaudoin J.J. (2003) Overlay current in a conductive concrete snow melting system, Cement and Concrete Research 33, 1807–1809. doi: 10.1016/S0008-8846(03)00198-4.
  • Wilson J.G., Whittington H.W. (1990) Variations in the electrical properties of concrete with change in frequency. IEE Proceedings, Vol. 137, No. 5.
  • Xiao L., Li Z. (2008) Early-age hydration of fresh concrete monitored by non-contact electrical resistivity measurement, Cement and Concrete Research 38, 312–319. doi: 10.1016/j.cemconres.2007.09.027.
  • Xu J., Yao W.. (2009) Current distribution in reinforced concrete cathodic protection system with conductive mortar overlay anode, Construction and Building Materials 23, 2220–2226. doi: 10.1016/j.conbuildmat.2008.12.002.
  • Zhang K., Han B., Yu. (2011) Nickel particle based electrical resistance heating cementitious composites, Cold Regions Science and Technology 69, 64–69. doi: 10.1016/j.coldregions.2011.07.002.
Toplam 15 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Mühendislik
Bölüm Araştırma Makaleleri
Yazarlar

Mehmet Canbaz

Muammer Akçay

Semih Ergin

Yayımlanma Tarihi 27 Nisan 2018
Gönderilme Tarihi 14 Mayıs 2016
Kabul Tarihi 16 Nisan 2018
Yayımlandığı Sayı Yıl 2018

Kaynak Göster

APA Canbaz, M., Akçay, M., & Ergin, S. (2018). ELEKTRİKSEL DİRENÇ İLE ISITMA YOLUYLA UYGULANAN KÜRÜN BETON ÖZELLİKLERİNE ETKİSİ. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi, 23(1), 431-440. https://doi.org/10.17482/uumfd.419244
AMA Canbaz M, Akçay M, Ergin S. ELEKTRİKSEL DİRENÇ İLE ISITMA YOLUYLA UYGULANAN KÜRÜN BETON ÖZELLİKLERİNE ETKİSİ. UUJFE. Nisan 2018;23(1):431-440. doi:10.17482/uumfd.419244
Chicago Canbaz, Mehmet, Muammer Akçay, ve Semih Ergin. “ELEKTRİKSEL DİRENÇ İLE ISITMA YOLUYLA UYGULANAN KÜRÜN BETON ÖZELLİKLERİNE ETKİSİ”. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi 23, sy. 1 (Nisan 2018): 431-40. https://doi.org/10.17482/uumfd.419244.
EndNote Canbaz M, Akçay M, Ergin S (01 Nisan 2018) ELEKTRİKSEL DİRENÇ İLE ISITMA YOLUYLA UYGULANAN KÜRÜN BETON ÖZELLİKLERİNE ETKİSİ. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi 23 1 431–440.
IEEE M. Canbaz, M. Akçay, ve S. Ergin, “ELEKTRİKSEL DİRENÇ İLE ISITMA YOLUYLA UYGULANAN KÜRÜN BETON ÖZELLİKLERİNE ETKİSİ”, UUJFE, c. 23, sy. 1, ss. 431–440, 2018, doi: 10.17482/uumfd.419244.
ISNAD Canbaz, Mehmet vd. “ELEKTRİKSEL DİRENÇ İLE ISITMA YOLUYLA UYGULANAN KÜRÜN BETON ÖZELLİKLERİNE ETKİSİ”. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi 23/1 (Nisan 2018), 431-440. https://doi.org/10.17482/uumfd.419244.
JAMA Canbaz M, Akçay M, Ergin S. ELEKTRİKSEL DİRENÇ İLE ISITMA YOLUYLA UYGULANAN KÜRÜN BETON ÖZELLİKLERİNE ETKİSİ. UUJFE. 2018;23:431–440.
MLA Canbaz, Mehmet vd. “ELEKTRİKSEL DİRENÇ İLE ISITMA YOLUYLA UYGULANAN KÜRÜN BETON ÖZELLİKLERİNE ETKİSİ”. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi, c. 23, sy. 1, 2018, ss. 431-40, doi:10.17482/uumfd.419244.
Vancouver Canbaz M, Akçay M, Ergin S. ELEKTRİKSEL DİRENÇ İLE ISITMA YOLUYLA UYGULANAN KÜRÜN BETON ÖZELLİKLERİNE ETKİSİ. UUJFE. 2018;23(1):431-40.

DUYURU:

30.03.2021- Nisan 2021 (26/1) sayımızdan itibaren TR-Dizin yeni kuralları gereği, dergimizde basılacak makalelerde, ilk gönderim aşamasında Telif Hakkı Formu yanısıra, Çıkar Çatışması Bildirim Formu ve Yazar Katkısı Bildirim Formu da tüm yazarlarca imzalanarak gönderilmelidir. Yayınlanacak makalelerde de makale metni içinde "Çıkar Çatışması" ve "Yazar Katkısı" bölümleri yer alacaktır. İlk gönderim aşamasında doldurulması gereken yeni formlara "Yazım Kuralları" ve "Makale Gönderim Süreci" sayfalarımızdan ulaşılabilir. (Değerlendirme süreci bu tarihten önce tamamlanıp basımı bekleyen makalelerin yanısıra değerlendirme süreci devam eden makaleler için, yazarlar tarafından ilgili formlar doldurularak sisteme yüklenmelidir).  Makale şablonları da, bu değişiklik doğrultusunda güncellenmiştir. Tüm yazarlarımıza önemle duyurulur.

Bursa Uludağ Üniversitesi, Mühendislik Fakültesi Dekanlığı, Görükle Kampüsü, Nilüfer, 16059 Bursa. Tel: (224) 294 1907, Faks: (224) 294 1903, e-posta: mmfd@uludag.edu.tr