Araştırma Makalesi
BibTex RIS Kaynak Göster

GALLİK ASİDİN FOTOKATALİTİK GİDERİMİ: DÜŞÜK MOLEKÜLER AĞIRLIKLI BİLEŞENLER KULLANILARAK DOĞAL ORGANİK MADDE MODELLEMESİ

Yıl 2019, , 595 - 608, 30.08.2019
https://doi.org/10.17482/uumfd.440212

Öz



Özet: Hümik asitler
gibi, doğal polimerlerin yapısal alt birimlerinden birini temsil eden gallik
asitler, sucul sistemlerde doğal organik madde bozunmasının bir ürünü olarak
kabul edilmektedir. Bu çalışmada, hümik maddelere yapısal olarak benzerlik
gösteren küçük moleküler ağırlıklı gallik asit, model madde olarak
değerlendirilmiştir. Gallik asidin fotokatalitik oksidasyonu, i) başlangıç
madde konsantrasyonu, ii) fotokatalizör konsantrasyonu ve iii) fotokatalizör
tipi gibi temel operasyon parametrelerinin etkisi araştırılarak incelenmiştir.
Fotokatalizör olarak TiO2 Degussa P-25, Hombikat UV-100, PC-10,
PC-50 ve PC-105 kullanılmıştır. Gallik asidin zamana karşı fotokatalitik olarak
giderimi, UV-vis ve floresans spektroskopik parametreler ve toplam organik
karbon ölçümleri ile takip edilmiş ve birinci mertebeden kinetik model
kullanılarak açıklanmıştır. Gallik asidin kinetik verilerinin, ana molekül olan
hümik asidin fotokatalitik bozunma çalışmalarıyla ilişkilendirilebilmesi için
karşılaştırmalı bir yaklaşım izlenmiştir. Gallik asidin farklı fotokatalizörler
üzerindeki ön adsorpsiyon sonuçları, gallik asidin fotokatalitik giderim hızı
ile doğru orantılı olarak ilişkilendirmiştir. Gallik asit giderim hız
sabitlerinin UV265 cinsinden karşılaştırılması; P-25> PC-10>
UV-100> PC-105> PC-50 şekilinde sıralanırken, toplam organik karbon
giderimi için hız sabitleri değişimi; PC-105> UV 100> PC-10> P-25>
PC-50 olarak bulunmuştur. Test edilen çeşitli fotokatalizörler arasında PC-105'
in, gallik asit giderimi için oldukça aktif olduğu bulunmuştur. PC-10 ve PC-50'
nin küçük yüzey alanları göz önünde bulundurulduğunda, bu fotokatalizörlerin
varlığında nispeten düşük giderim hızları elde edilmiştir.




Kaynakça

  • 1. Bekbölet, M. (1996) Destructive removal of humic acids in aqueous media by photocatalytic oxidation with illuminated titanium dioxide, Journal of Environmental Science and Health. Part A: Environmental Science and Engineering and Toxicology, 31,4, 845-858, doi:10.1080/10934529609376392
  • 2. Uyguner, C.S., Bekbölet, M. (2005a) A comparative study on the photocatalytic degradation of humic substances of various origins, Desalination,176, 1-3, 167-176, doi: 10.1016/j.desal.2004.11.006
  • 3. Uyguner, C.S. ve Bekbölet, M., (2005b) Evaluation of humic acid photocatalytic degradation by UV–vis and fluorescence spectroscopy, Catalysis Today, 101, 267-274, doi: 10.1016/j.cattod.2005.03.011
  • 4. Uyguner, C.S. ve Bekbölet, M., (2009) Application of photocatalysis for the removal of natural organic matter in simulated surface and ground waters, Journal of Advanced Oxidation Technologies, 12, 11, 87-92, doi: 10.1515/jaots-2009-0110
  • 5. Uyguner-Demirel, C.S., Birben, C., Bekbolet, M., (2013) Key role of common anions on the photocatalytic degradation profiles of the molecular size fractions of humic acids, Catalysis Today, 209, 122-126, doi: 10.1016/j.cattod.2012.11.020
  • 6. Bekbölet, M., Süphandağ, A.S., ve Uyguner, C.S., (2002) An investigation of the photocatalytic efficiencies of TiO2 powders on the decolourisation of humic acids, Journal of Photochemistry Photobiology A: Chemistry, 148, 121-128, doi:10.1016/S1010-6030(02)00081-3
  • 7. Uyguner-Demirel, C.S., Birben, N.C., Bekbölet, M., (2017) Elucidation of background organic matter matrix effect on photocatalytic treatment of contaminants using TiO2: A review, Catalysis Today, 284, 202–214, doi: 10.1016/j.cattod.2016.12.030
  • 8. Giannakopoulos, E., Stathi, P., Dimos, K., Gournis, D., Sanakis, Y. ve Deligiannakis, Y., (2006) Adsorption and radical stabilization of humic-Acid analogues and Pb2+ on restricted phyllomorphous clay, Langmuir, 22, 16, 6863-6874, doi: 10.1021/la053273m
  • 9. Kus, M., Gernjak, W, Ibanez, P.F., Rodriguez, S.M., Galvez, J.B., ve Icli, S., (2006) A comparative study of supported TiO2 as photocatalyst in water decontamination at solar pilot plant scale, Journal of Solar Energy Engineering-Transactions of the ASME, 128, 331–333, doi:10.1115/1.2210494
  • 10. Gumy, D., Rincon, A.G., Hajdu, R., Pulgarin, C., (2006) Solar photocatalysis for detoxification and disinfection of water: Different types of suspended and fixed TiO2 catalysts study, Solar Energy, 80, 10, 1376-1381, doi: 10.1016/j.solener.2005.04.026
  • 11. Beltran, F.J., Gimeno, O., Rivas, F.J. ve Carbajo, M., (2006) Photocatalytic ozonation of gallic acid in water, Journal of Chemical Technology and Biotechnology, 81, 1787-1796.
  • 12. Luna, A.L., Valenzuela, M.A., Colbeau-Justin, C., Vázquez, P.,Rodriguez, J.L., Juan, R. Avendano, J.R., Alfaro, S., Tirado, S., Garduno, A. ve De la Rosa, J.M., (2016) Photocatalytic degradation of gallic acid over CuO–TiO2 composites under UV/Vis LEDs irradiation, Applied Catalysis A: General, 52, 140–148, doi: 10.1016/j.apcata.2015.10.044
  • 13. Quici N. ve Litter, M. I., (2009) Heterogeneous photocatalytic degradation of gallic acid under different experimental conditions, Photochemistry and Photobiological Sciences, 8, 975-984, doi: 10.1039/B901904A
  • 14. Gernjak, W., Krutzler, T., Glaser, A., Malato, S., Caceres, J., Bauer, R. ve Fernandez-Alba, A.R., (2003) Photo-Fenton treatment of water containing natural phenolic pollutants, Chemosphere, 50, 71-78, doi: 10.1016/S0045-6535(02)00403-4
  • 15. Carbajo, M., Beltran, F.J., Medina, F., Gimeno, O. ve Rivas, F.J. (2006) Catalytic ozonation of phenolic compounds. The case of gallic acid, Applied Catalysis B: Environmental, 67, 177–186, doi: 10.1016/j.apcatb.2006.04.019
  • 16. Silva, M. T., Nouli, E., Carmo-Apolinario, A.C., Xekoukoulotakis, N.P. ve Mantzavinos, D., (2007) Sonophotocatalytic/H2O2 degradation of phenolic compounds in agro-industrial effluents, Catalysis Today, 124, 232–239, doi: 10.1016/j.cattod.2007.03.057
  • 17. Herrmann, J. M., Guillard, C., Disdier, J., Lehaut, C., Malato, S. ve Blanco, J., (2002) New industrial titania photocatalysts for the solar detoxification of water containing various pollutants, Applied Catalysis B: Environmental, 35, 281-294, doi: 10.1016/S0926-3373(01)00265-X
  • 18. Zertal, A., Molnár-Gábor, D., Malouki, M.A., Sehili, T., Boule, P., (2004) Photocatalytic transformation of 4-chloro2-methylphenoxyacetic acid (MCPA) on several kinds of TiO2, Applied Catalysis B: Environmental, 49, 83–89, doi: 10.1016/j.apcatb.2003.11.015
  • 19. Hatchard, C.G. ve Parker, C.A., (1956) A new sensitive chemical actinometer. II. Potassium ferrioxalate as a standard chemical, Proceedings of Royal Society London Series A, Mathematical and Physical Sciences, 235, 518-536, doi: 10.1098/rspa.1956.0102
  • 20. Singleton, V.L. ve Rossi, J.A. (1965) Colorimetry of total phenolics with phosphomolybdic-phosphotungstic acid reagents, American Journal of Enology and Viticulture, 16, 144-158.
  • 21. Blekas, G., Psomiadou, E., Tsimidou, M., Boskou, D., (2002) On the importance of total polar phenols to monitor the stability of Greek virgin olive oil, European Journal of Lipid Science and Technology, 104, 340-346, doi: 10.1002/1438-9312(200206)104:6<340::AID-EJLT340>3.0.CO;2-L
  • 22. Gimeno, O., Carbajo, M., Lopez, M. J., Melero, J. A., Beltran, F., Rivas, F. J. (2007) Photocatalytic promoted oxidation of phenolic mixtures: An insight into the operating andmechanistic aspects, Water Research, 41 (20), 4672–4684, doi: 10.1016/j.watres.2007.06.042
  • 23. Benitez, F. J., Real, F. J., Acero, J. L., Leal, A.I., ve Garcia, C. (2005) Gallic acid degradation in aqueous solutions by UV/H2O2 treatment, Fenton’s reagent and the photo-Fenton system, Journal of Hazardous Materials, B126, 31–39, doi: 10.1016/j.jhazmat.2005.04.040
  • 24. Polewski, K., Kniat, S. ve Slawinska, D. (2002) Gallic acid, a natural antioxidant, inaqueous and micellar environment: spectroscopic studies, Current Topics in Biophysics, 26, 217-227.
  • 25. Arana, J., Lopez, V.M.R., Melian, E.P., Reyes, M.I.S., Rodriguez, J.M.D., Diaz, O.G. (2007) Comparative study of phenolic compounds mixtures, Catalysis Today, 129, 177-184.
  • 26. Schlafani, A. ve Herrmann, J.M. (1996) Comparison of the photoelectronic and photocatalytic activities of various anatase and rutile forms of titania in pure liquid organic phases and in aqueous solutions, Journal of Physical Chemistry, 100, 32, 13655-13661, doi: 10.1021/jp9533584.
  • 27. Rincon, A.G., ve Pulgarin, C., (2003) Photocatalytical inactivation of E. coli: effect of (continuous–intermittent) light intensity and of (suspended–fixed) TiO2 concentration, Applied Catalysis B: Environmental, 44, 263-284, doi:10.1016/S0926-3373(03)00076-6
  • 28. Guillard, C., Disdier, J., Herrmann, J.M., Lehaut, C., Chopin, T., Malato, S., Blanco, J. (1999) Comparison of various titania samples of industrial origin in the solar photocatalytic detoxification of water containing 4-chlorophenol, Catalysis Today, 54, 217–228, doi: 10.1016/S0920-5861(99)00184-4
  • 29. Saadoun L., Ayllon, J.A., Becerril, J.J., Peral, J., Domenech, X. ve Clemente, R.R. (1999) 1,2-diolates of titanium as suitable precursors for the preparation of photoactive high surface titania, Applied Catalysis B: Environmental, 21, 269-277, doi: 10.1016/S0926-3373(99)00031-4
  • 30. Uyguner-Demirel, C.S., Birben, NC. ve Bekbölet, M. (2017) Elucidation of background organic matter matrix effect on photocatalytic treatment of contaminants using TiO2: A review, Catalysis Today, 284, 202–214, doi: 10.1016/j.cattod.2016.12.030
Yıl 2019, , 595 - 608, 30.08.2019
https://doi.org/10.17482/uumfd.440212

Öz

Kaynakça

  • 1. Bekbölet, M. (1996) Destructive removal of humic acids in aqueous media by photocatalytic oxidation with illuminated titanium dioxide, Journal of Environmental Science and Health. Part A: Environmental Science and Engineering and Toxicology, 31,4, 845-858, doi:10.1080/10934529609376392
  • 2. Uyguner, C.S., Bekbölet, M. (2005a) A comparative study on the photocatalytic degradation of humic substances of various origins, Desalination,176, 1-3, 167-176, doi: 10.1016/j.desal.2004.11.006
  • 3. Uyguner, C.S. ve Bekbölet, M., (2005b) Evaluation of humic acid photocatalytic degradation by UV–vis and fluorescence spectroscopy, Catalysis Today, 101, 267-274, doi: 10.1016/j.cattod.2005.03.011
  • 4. Uyguner, C.S. ve Bekbölet, M., (2009) Application of photocatalysis for the removal of natural organic matter in simulated surface and ground waters, Journal of Advanced Oxidation Technologies, 12, 11, 87-92, doi: 10.1515/jaots-2009-0110
  • 5. Uyguner-Demirel, C.S., Birben, C., Bekbolet, M., (2013) Key role of common anions on the photocatalytic degradation profiles of the molecular size fractions of humic acids, Catalysis Today, 209, 122-126, doi: 10.1016/j.cattod.2012.11.020
  • 6. Bekbölet, M., Süphandağ, A.S., ve Uyguner, C.S., (2002) An investigation of the photocatalytic efficiencies of TiO2 powders on the decolourisation of humic acids, Journal of Photochemistry Photobiology A: Chemistry, 148, 121-128, doi:10.1016/S1010-6030(02)00081-3
  • 7. Uyguner-Demirel, C.S., Birben, N.C., Bekbölet, M., (2017) Elucidation of background organic matter matrix effect on photocatalytic treatment of contaminants using TiO2: A review, Catalysis Today, 284, 202–214, doi: 10.1016/j.cattod.2016.12.030
  • 8. Giannakopoulos, E., Stathi, P., Dimos, K., Gournis, D., Sanakis, Y. ve Deligiannakis, Y., (2006) Adsorption and radical stabilization of humic-Acid analogues and Pb2+ on restricted phyllomorphous clay, Langmuir, 22, 16, 6863-6874, doi: 10.1021/la053273m
  • 9. Kus, M., Gernjak, W, Ibanez, P.F., Rodriguez, S.M., Galvez, J.B., ve Icli, S., (2006) A comparative study of supported TiO2 as photocatalyst in water decontamination at solar pilot plant scale, Journal of Solar Energy Engineering-Transactions of the ASME, 128, 331–333, doi:10.1115/1.2210494
  • 10. Gumy, D., Rincon, A.G., Hajdu, R., Pulgarin, C., (2006) Solar photocatalysis for detoxification and disinfection of water: Different types of suspended and fixed TiO2 catalysts study, Solar Energy, 80, 10, 1376-1381, doi: 10.1016/j.solener.2005.04.026
  • 11. Beltran, F.J., Gimeno, O., Rivas, F.J. ve Carbajo, M., (2006) Photocatalytic ozonation of gallic acid in water, Journal of Chemical Technology and Biotechnology, 81, 1787-1796.
  • 12. Luna, A.L., Valenzuela, M.A., Colbeau-Justin, C., Vázquez, P.,Rodriguez, J.L., Juan, R. Avendano, J.R., Alfaro, S., Tirado, S., Garduno, A. ve De la Rosa, J.M., (2016) Photocatalytic degradation of gallic acid over CuO–TiO2 composites under UV/Vis LEDs irradiation, Applied Catalysis A: General, 52, 140–148, doi: 10.1016/j.apcata.2015.10.044
  • 13. Quici N. ve Litter, M. I., (2009) Heterogeneous photocatalytic degradation of gallic acid under different experimental conditions, Photochemistry and Photobiological Sciences, 8, 975-984, doi: 10.1039/B901904A
  • 14. Gernjak, W., Krutzler, T., Glaser, A., Malato, S., Caceres, J., Bauer, R. ve Fernandez-Alba, A.R., (2003) Photo-Fenton treatment of water containing natural phenolic pollutants, Chemosphere, 50, 71-78, doi: 10.1016/S0045-6535(02)00403-4
  • 15. Carbajo, M., Beltran, F.J., Medina, F., Gimeno, O. ve Rivas, F.J. (2006) Catalytic ozonation of phenolic compounds. The case of gallic acid, Applied Catalysis B: Environmental, 67, 177–186, doi: 10.1016/j.apcatb.2006.04.019
  • 16. Silva, M. T., Nouli, E., Carmo-Apolinario, A.C., Xekoukoulotakis, N.P. ve Mantzavinos, D., (2007) Sonophotocatalytic/H2O2 degradation of phenolic compounds in agro-industrial effluents, Catalysis Today, 124, 232–239, doi: 10.1016/j.cattod.2007.03.057
  • 17. Herrmann, J. M., Guillard, C., Disdier, J., Lehaut, C., Malato, S. ve Blanco, J., (2002) New industrial titania photocatalysts for the solar detoxification of water containing various pollutants, Applied Catalysis B: Environmental, 35, 281-294, doi: 10.1016/S0926-3373(01)00265-X
  • 18. Zertal, A., Molnár-Gábor, D., Malouki, M.A., Sehili, T., Boule, P., (2004) Photocatalytic transformation of 4-chloro2-methylphenoxyacetic acid (MCPA) on several kinds of TiO2, Applied Catalysis B: Environmental, 49, 83–89, doi: 10.1016/j.apcatb.2003.11.015
  • 19. Hatchard, C.G. ve Parker, C.A., (1956) A new sensitive chemical actinometer. II. Potassium ferrioxalate as a standard chemical, Proceedings of Royal Society London Series A, Mathematical and Physical Sciences, 235, 518-536, doi: 10.1098/rspa.1956.0102
  • 20. Singleton, V.L. ve Rossi, J.A. (1965) Colorimetry of total phenolics with phosphomolybdic-phosphotungstic acid reagents, American Journal of Enology and Viticulture, 16, 144-158.
  • 21. Blekas, G., Psomiadou, E., Tsimidou, M., Boskou, D., (2002) On the importance of total polar phenols to monitor the stability of Greek virgin olive oil, European Journal of Lipid Science and Technology, 104, 340-346, doi: 10.1002/1438-9312(200206)104:6<340::AID-EJLT340>3.0.CO;2-L
  • 22. Gimeno, O., Carbajo, M., Lopez, M. J., Melero, J. A., Beltran, F., Rivas, F. J. (2007) Photocatalytic promoted oxidation of phenolic mixtures: An insight into the operating andmechanistic aspects, Water Research, 41 (20), 4672–4684, doi: 10.1016/j.watres.2007.06.042
  • 23. Benitez, F. J., Real, F. J., Acero, J. L., Leal, A.I., ve Garcia, C. (2005) Gallic acid degradation in aqueous solutions by UV/H2O2 treatment, Fenton’s reagent and the photo-Fenton system, Journal of Hazardous Materials, B126, 31–39, doi: 10.1016/j.jhazmat.2005.04.040
  • 24. Polewski, K., Kniat, S. ve Slawinska, D. (2002) Gallic acid, a natural antioxidant, inaqueous and micellar environment: spectroscopic studies, Current Topics in Biophysics, 26, 217-227.
  • 25. Arana, J., Lopez, V.M.R., Melian, E.P., Reyes, M.I.S., Rodriguez, J.M.D., Diaz, O.G. (2007) Comparative study of phenolic compounds mixtures, Catalysis Today, 129, 177-184.
  • 26. Schlafani, A. ve Herrmann, J.M. (1996) Comparison of the photoelectronic and photocatalytic activities of various anatase and rutile forms of titania in pure liquid organic phases and in aqueous solutions, Journal of Physical Chemistry, 100, 32, 13655-13661, doi: 10.1021/jp9533584.
  • 27. Rincon, A.G., ve Pulgarin, C., (2003) Photocatalytical inactivation of E. coli: effect of (continuous–intermittent) light intensity and of (suspended–fixed) TiO2 concentration, Applied Catalysis B: Environmental, 44, 263-284, doi:10.1016/S0926-3373(03)00076-6
  • 28. Guillard, C., Disdier, J., Herrmann, J.M., Lehaut, C., Chopin, T., Malato, S., Blanco, J. (1999) Comparison of various titania samples of industrial origin in the solar photocatalytic detoxification of water containing 4-chlorophenol, Catalysis Today, 54, 217–228, doi: 10.1016/S0920-5861(99)00184-4
  • 29. Saadoun L., Ayllon, J.A., Becerril, J.J., Peral, J., Domenech, X. ve Clemente, R.R. (1999) 1,2-diolates of titanium as suitable precursors for the preparation of photoactive high surface titania, Applied Catalysis B: Environmental, 21, 269-277, doi: 10.1016/S0926-3373(99)00031-4
  • 30. Uyguner-Demirel, C.S., Birben, NC. ve Bekbölet, M. (2017) Elucidation of background organic matter matrix effect on photocatalytic treatment of contaminants using TiO2: A review, Catalysis Today, 284, 202–214, doi: 10.1016/j.cattod.2016.12.030
Toplam 30 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Mühendislik
Bölüm Araştırma Makaleleri
Yazarlar

Ceyda Senem Uyguner Demirel

Yayımlanma Tarihi 30 Ağustos 2019
Gönderilme Tarihi 3 Temmuz 2018
Kabul Tarihi 2 Mayıs 2019
Yayımlandığı Sayı Yıl 2019

Kaynak Göster

APA Uyguner Demirel, C. S. (2019). GALLİK ASİDİN FOTOKATALİTİK GİDERİMİ: DÜŞÜK MOLEKÜLER AĞIRLIKLI BİLEŞENLER KULLANILARAK DOĞAL ORGANİK MADDE MODELLEMESİ. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi, 24(2), 595-608. https://doi.org/10.17482/uumfd.440212
AMA Uyguner Demirel CS. GALLİK ASİDİN FOTOKATALİTİK GİDERİMİ: DÜŞÜK MOLEKÜLER AĞIRLIKLI BİLEŞENLER KULLANILARAK DOĞAL ORGANİK MADDE MODELLEMESİ. UUJFE. Ağustos 2019;24(2):595-608. doi:10.17482/uumfd.440212
Chicago Uyguner Demirel, Ceyda Senem. “GALLİK ASİDİN FOTOKATALİTİK GİDERİMİ: DÜŞÜK MOLEKÜLER AĞIRLIKLI BİLEŞENLER KULLANILARAK DOĞAL ORGANİK MADDE MODELLEMESİ”. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi 24, sy. 2 (Ağustos 2019): 595-608. https://doi.org/10.17482/uumfd.440212.
EndNote Uyguner Demirel CS (01 Ağustos 2019) GALLİK ASİDİN FOTOKATALİTİK GİDERİMİ: DÜŞÜK MOLEKÜLER AĞIRLIKLI BİLEŞENLER KULLANILARAK DOĞAL ORGANİK MADDE MODELLEMESİ. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi 24 2 595–608.
IEEE C. S. Uyguner Demirel, “GALLİK ASİDİN FOTOKATALİTİK GİDERİMİ: DÜŞÜK MOLEKÜLER AĞIRLIKLI BİLEŞENLER KULLANILARAK DOĞAL ORGANİK MADDE MODELLEMESİ”, UUJFE, c. 24, sy. 2, ss. 595–608, 2019, doi: 10.17482/uumfd.440212.
ISNAD Uyguner Demirel, Ceyda Senem. “GALLİK ASİDİN FOTOKATALİTİK GİDERİMİ: DÜŞÜK MOLEKÜLER AĞIRLIKLI BİLEŞENLER KULLANILARAK DOĞAL ORGANİK MADDE MODELLEMESİ”. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi 24/2 (Ağustos 2019), 595-608. https://doi.org/10.17482/uumfd.440212.
JAMA Uyguner Demirel CS. GALLİK ASİDİN FOTOKATALİTİK GİDERİMİ: DÜŞÜK MOLEKÜLER AĞIRLIKLI BİLEŞENLER KULLANILARAK DOĞAL ORGANİK MADDE MODELLEMESİ. UUJFE. 2019;24:595–608.
MLA Uyguner Demirel, Ceyda Senem. “GALLİK ASİDİN FOTOKATALİTİK GİDERİMİ: DÜŞÜK MOLEKÜLER AĞIRLIKLI BİLEŞENLER KULLANILARAK DOĞAL ORGANİK MADDE MODELLEMESİ”. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi, c. 24, sy. 2, 2019, ss. 595-08, doi:10.17482/uumfd.440212.
Vancouver Uyguner Demirel CS. GALLİK ASİDİN FOTOKATALİTİK GİDERİMİ: DÜŞÜK MOLEKÜLER AĞIRLIKLI BİLEŞENLER KULLANILARAK DOĞAL ORGANİK MADDE MODELLEMESİ. UUJFE. 2019;24(2):595-608.

DUYURU:

30.03.2021- Nisan 2021 (26/1) sayımızdan itibaren TR-Dizin yeni kuralları gereği, dergimizde basılacak makalelerde, ilk gönderim aşamasında Telif Hakkı Formu yanısıra, Çıkar Çatışması Bildirim Formu ve Yazar Katkısı Bildirim Formu da tüm yazarlarca imzalanarak gönderilmelidir. Yayınlanacak makalelerde de makale metni içinde "Çıkar Çatışması" ve "Yazar Katkısı" bölümleri yer alacaktır. İlk gönderim aşamasında doldurulması gereken yeni formlara "Yazım Kuralları" ve "Makale Gönderim Süreci" sayfalarımızdan ulaşılabilir. (Değerlendirme süreci bu tarihten önce tamamlanıp basımı bekleyen makalelerin yanısıra değerlendirme süreci devam eden makaleler için, yazarlar tarafından ilgili formlar doldurularak sisteme yüklenmelidir).  Makale şablonları da, bu değişiklik doğrultusunda güncellenmiştir. Tüm yazarlarımıza önemle duyurulur.

Bursa Uludağ Üniversitesi, Mühendislik Fakültesi Dekanlığı, Görükle Kampüsü, Nilüfer, 16059 Bursa. Tel: (224) 294 1907, Faks: (224) 294 1903, e-posta: mmfd@uludag.edu.tr