Araştırma Makalesi
BibTex RIS Kaynak Göster

Determination of the GFRP Reinforcement-Concrete Bond Strength from Pull-Out Tests Resulting in the Debonding Failure

Yıl 2019, , 203 - 216, 30.08.2019
https://doi.org/10.17482/uumfd.447057

Öz

Fiber reinforced
polymer (FRP) bars have begun to be used as an alternative to conventional
steel reinforcing bars in reinforced concrete structures, especially due to
their high resistance to corrosion and high tensile strength. However, their
bond behavior with concrete is different than steel because of their different
mechanical and physical properties compared to steel reinforcing bars. The bond
behavior of FRP bars with concrete depends on many parameters such as concrete
compressive strength, clear cover, embedment length, bar diameter, location of
the bar, bar surface properties. Different international FRP-reinforced
concrete codes recommended various equations for estimating the FRP-concrete
bond strength. These equations were established using experimental results that
resulted in splitting concrete failure. However, the maximum bond strength
cannot be determined from the loss of bond strength due to the fracture of
concrete and the parameters affecting the bond strength cannot be fully
determined from the specimens failed in splitting. For this reason, the
validity of the equations originating from the experiments ended up in the
splitting failure must be discussed. The present study aimed at developing a
bond strength equation between concrete and glass reinforced polymer (GFRP) by
using multiple linear regression analysis on a total of 243 pull-out
experiments from the literature that resulted in pullout failure. The proposed
bond strength equation was observed to yield to more consistent values with the
experimental results compared to the respective values from the international
code equations.

Kaynakça

  • 1. Achillides, Z. (1998) Bond behaviour of FRP bars in concrete, PhD Thesis, The University of Sheffield.
  • 2. Achillides, Z. and Pilakoutas, K. (2004) Bond Behavior of Fiber Reinforced Polymer Bars under Direct Pullout Conditions, Journal of Composites for Construction, 8(2), 173–181. doi:10.1061/(ASCE)1090-0268(2004)8:2(173)
  • 3. ACI 440 1R-06, (2006) Guide for the Design and Construction of Structural Concrete Reinforced with Fiber-Reinforced Polymer (FRP) Bars, American Concrete Institute (ACI).
  • 4. ACI 440 1R-15, (2015) Guide for the Design and Construction of Structural Concrete Reinforced with Fiber-Reinforced Polymer (FRP) Bars, American Concrete Institute (ACI).
  • 5. Aiello, M. A., Leone, M. and Pecce, M. (2007) Bond Performances of FRP Rebars-Reinforced Concrete, Journal of Materials in Civil Engineering, 19(3), 205–213. doi:10.1061/(ASCE)0899-1561(2007)19:3(205)
  • 6. Ametrano, D. (2011) Bond Characteristics of Glass Fibre Reinforced Polymer Bars Embedded in High Performance And Ultra-High Performance Concrete, Master Thesis, Ryerson University.
  • 7. Arias, J. P. M., Vazquez, A. and Escobar, M. M. (2012) Use of sand coating to improve bonding between GFRP bars and concrete, Journal of Composite Materials, 46(18), 2271–2278. doi:10.1177/0021998311431994
  • 8. Choi, D.-U., Ha, S.-S. and Lee, C.-H. (2007) Development Length of GFRP Rebars Based on Pullout Test, Journal of the Korea Concrete Institute, 19(3), 323–331. doi:10.4334/JKCI.2007.19.3.323
  • 9. CSA S6-06, (2006) Canadian highway bridge design code, Canadian Standards Association.
  • 10. CSA S6-10, (2010) Canadian highway bridge design code, Canadian Standards Association.
  • 11. CSA S806-02, (2002) Design and construction of building structures with fibre-reinforced polymers. Canadian Standards Association.
  • 12. CSA S806-12, (2012) Design and construction of building structures with fibre-reinforced polymers, Canadian Standards Association.
  • 13. Ehsani, M. R., Saadatmanesh, H. and Tao, S. (1997) Bond Behavior of Deformed GFRP Rebars, Journal of Composite Materials, 31(14), 1413–1430.
  • 14. Esfahani, M. R., Kianoush, M. R. and Lachemi, M. (2004) A Comparison Between Bond Strength of Steel and GFRP Bars in Self-Consolidating Concrete (SCC), International Journal of Civil Engineering, 2(3), 193–200.
  • 15. Ha, S.-S. and Choi, D.-U. (2010) Development Length of GFRP Bars, Journal of the Korea Concrete Institute, 22(1), 131–141. doi:10.4334/JKCI.2010.22.1.131
  • 16. Hossain, K. M. A., Ametrano, D. and Lachemi, M. (2014) Bond Strength of Standard and High-Modulus GFRP Bars in High-Strength Concrete, Journal of Materials in Civil Engineering, 26(3), 449–456. doi:10.1061/(ASCE)MT.1943-5533.0000758
  • 17. Hossain, K. M. A., Ametrano, D., Lachemi, M. (2017) Bond Strength of GFRP Bars in Ultra-High Strength Concrete Using RILEM Beam Tests, Journal of Building Engineering, 10, 69–79. doi:10.1016/j.jobe.2017.02.005
  • 18. Huang, Z., Engström, B. and Magnusson, J. (1996) Experimental and Analytical Studies of the Bond Behaviour of Deformed Bars in High Strength Concrete, In Fourth International Symposium at the Utilization of High Strength/High Performance Concrete, Paris, France.
  • 19. Islam, S., Afefy, H. M., Sennah, K. and Azimi, H. (2015) Bond characteristics of straight- and headed-end, ribbed-surface, GFRP bars embedded in high-strength concrete, Construction and Building Materials, 83(2), 283–298. doi:10.1016/j.conbuildmat.2015.03.025
  • 20. JSCE, 1997 Recommendation for design and construction of concrete structures using continuous fiber reinforcing materials, Japan Society of Civil Engineers.
  • 21. Jung, W. T., Park, Y. H. and Park, J. S. (2011) An Experimental Study on Bond Characteristics of FRP Reinforcements with Various Surface-type, Journal of The Korean Society of Civil Engineers, 31(4a), 279–286.
  • 22. Kang, J., Kim, B., Park, J. and Lee, J. (2012) Influence Evaluation of Fiber on the Bond Behavior of GFRP Bars Embedded in Fiber Reinforced Concrete, Journal of the Korea Concrete Institute, 24(1), 79–86. doi:10.4334/JKCI.2012.24.1.079
  • 23. Kessler, R. J. and Powers, R. G. (1998) Corrosion of epoxy-coated rebars—Keys segmental bridge—Monroe County. Florida Department of Transportation, Materials Office, Rep. No. 88-8A.
  • 24. Khederzadeh, H. R. and Sennah, K. (2014) Pullout Strength of Pre-installed Sand-coated GFRP Bars for Bridge Barrier Construction, 4th International Structural Specialty Conference (CSCE 2014) (ss. 1–10), Halifax, NS.
  • 25. Larralde, J. and Silva‐Rodriguez, R. (1993) Bond and Slip of FRP Rebars in Concrete, Journal of Materials in Civil Engineering, 5(1), 30–40. doi:10.1061/(ASCE)0899-1561(1993)5:1(30)
  • 26. Lee, J.-Y., Kim, T.-Y., Kim, T.-J., Yi, C.-K., Park, J.-S., You, Y.-C. and Park, Y.-H. (2008) Interfacial bond strength of glass fiber reinforced polymer bars in high-strength concrete, Composites Part B: Engineering, 39(2), 258–270. doi:10.1016/j.compositesb.2007.03.008
  • 27. Lu, J. (2015) Investigation of Pullout Strength of Pre‐Installed Glass Fibre Reinforced Polymer Bars In High‐Performance Concrete, Master Thesis, Ryerson University.
  • 28. Mosley, C. P., Tureyen, A. K. and Frosch, R.J. (2008) Bond Strength of Nonmetallic Reinforcing Bars, ACI Structural Journal, 105 (5), 634-642.
  • 29. Newman, N., Ayoub, A. and Belarbi, A. (2010) Development Length of Straight FRP Composite Bars Embedded in Concrete, Journal of Reinforced Plastics and Composites, 29(4), 571–589. doi:10.1177/0731684408100262
  • 30. Park, J.-S., Lim, A.-R., Kim, J. and Lee, J.-Y. (2016) Bond performance of fiber reinforced polymer rebars in different casting positions, Polymer Composites, 37(7), 2098– 2108. doi:10.1002/pc.23388
  • 31. Pay, A. C., Canbay, E. and Frosch, R.J. (2014) Bond Strength of Spliced Fiber-Reinforced Polymer Reinforcement, ACI Structural Journal, 111 (2), 257-266. doi:10.14359/51686519
  • 32. Rakhshanimehr, M., Mousavi, S. R., Esfahani, M. R., & Shahri, S. F. (2018) Establishment and Experimental Validation of an Updated Predictive Equation for the Development and Lap-Spliced Length of GFRP Bars in Concrete, Materials and Structures, 51(1), 15. doi:10.1617/s11527-018-1137-8
  • 33. Shen, D., Ojha, B., Shi, X., Zhang, H. and Shen, J. (2016) Bond stress–slip relationship between basalt fiber-reinforced polymer bars and concrete using a pull-out test, Journal of Reinforced Plastics and Composites, 35(9), 747–763. doi:10.1177/0731684415627504
  • 34. Sulaiman, M. F., Ma, C.-K., Apandi, N. M., Chin, S., Awang, A. Z., Mansur, S. A. and Omar, W. (2017) A Review on Bond and Anchorage of Confined High-strength Concrete, Structures, 11, 97–109. doi:10.1016/j.istruc.2017.04.004
  • 35. Tekle, B. H., Khennane, A. and Kayali, O. (2015) Bond Properties of Glass Fibre Reinforced Polymer Bars With Fly-Ash Based Geopolymer Concrete, 10th International Conference on Composite Science and Technology (IDMEC 2015) (ss. 1–8), Lisboa, Portugal.
  • 36. Thamrin, R., and Kaku, T. (2005) Development Length Evaluation of Reinforced Concrete Beam with CFRP Bars, Proceedings of the International Symposium on Bond Behaviour of FRP in Structures (BBFS 2005) (ss. 385–392), Hong Kong.

GFRP DONATI-BETON ARASINDAKİ ADERANS GERİLMESİNİN SIYRILMA GÖÇME TİPİ İLE SONUÇLANAN ÇEKİP ÇIKARMA DENEYLERİ İLE TESPİTİ

Yıl 2019, , 203 - 216, 30.08.2019
https://doi.org/10.17482/uumfd.447057

Öz

Lif
takviyeli polimer donatılar (FRP) özellikle korozyona uğramama ve yüksek çekme
dayanımları nedeniyle betonarme yapılarda çelik donatıya alternatif olarak
kullanılmaya başlanmıştır. Ancak, mekanik ve fiziksel özelliklerinin çelik
donatıya göre farklı olmasından dolayı, FRP donatıların beton ile olan aderans davranışları
çelikten farklıdır. FRP donatının beton ile olan aderans davranışı, beton
basınç dayanımına, pas payına, donatı gömülme boyuna, donatı çapına, donatının
konumuna ve donatı yüzey özelliği gibi daha birçok değişkene bağlıdır. Farklı
uluslararası FRP donatılı beton yönetmelikleri, donatı aderansının tahmininde
kullanılacak çeşitli bağıntılar önermişlerdir. Bu bağıntılar, donatının
betondan ayrışması ile sonuçlanan deneylerin sonuçları kullanılarak
oluşturulmuştur. Ancak, ayrışma ile sonuçlanan numunelerde, betonun
çatlamasından doğan aderans kaybı neticesinde maksimum aderans
belirlenemeyeceği için aderansı etkileyen değişkenler tam olarak tespit
edilemez. Bu nedenle ayrışma göçme tipi ile sonuçlanan deneyler ile ortaya
konan bağıntıların geçerliliği tartışmalıdır. Bu çalışmada, literatürde mevcut
donatı sıyrılması ile sonuçlanan 243 adet çekip çıkarma deneyinden
yararlanılarak,  çoklu doğrusal regresyon
analizi ile cam takviyeli polimer donatıların (GFRP) beton ile aralarındaki
aderans bağıntısının tespit edilmesi amaçlanmıştır. Çalışma sonucunda önerilen
bağıntı kullanılarak tahmin edilen aderans gerilmesi değerlerinin, uluslararası
yönetmeliklerde geçen bağıntılar ile elde edilen değerlerden daha tutarlı
sonuçlar verdiği görülmüştür.

Kaynakça

  • 1. Achillides, Z. (1998) Bond behaviour of FRP bars in concrete, PhD Thesis, The University of Sheffield.
  • 2. Achillides, Z. and Pilakoutas, K. (2004) Bond Behavior of Fiber Reinforced Polymer Bars under Direct Pullout Conditions, Journal of Composites for Construction, 8(2), 173–181. doi:10.1061/(ASCE)1090-0268(2004)8:2(173)
  • 3. ACI 440 1R-06, (2006) Guide for the Design and Construction of Structural Concrete Reinforced with Fiber-Reinforced Polymer (FRP) Bars, American Concrete Institute (ACI).
  • 4. ACI 440 1R-15, (2015) Guide for the Design and Construction of Structural Concrete Reinforced with Fiber-Reinforced Polymer (FRP) Bars, American Concrete Institute (ACI).
  • 5. Aiello, M. A., Leone, M. and Pecce, M. (2007) Bond Performances of FRP Rebars-Reinforced Concrete, Journal of Materials in Civil Engineering, 19(3), 205–213. doi:10.1061/(ASCE)0899-1561(2007)19:3(205)
  • 6. Ametrano, D. (2011) Bond Characteristics of Glass Fibre Reinforced Polymer Bars Embedded in High Performance And Ultra-High Performance Concrete, Master Thesis, Ryerson University.
  • 7. Arias, J. P. M., Vazquez, A. and Escobar, M. M. (2012) Use of sand coating to improve bonding between GFRP bars and concrete, Journal of Composite Materials, 46(18), 2271–2278. doi:10.1177/0021998311431994
  • 8. Choi, D.-U., Ha, S.-S. and Lee, C.-H. (2007) Development Length of GFRP Rebars Based on Pullout Test, Journal of the Korea Concrete Institute, 19(3), 323–331. doi:10.4334/JKCI.2007.19.3.323
  • 9. CSA S6-06, (2006) Canadian highway bridge design code, Canadian Standards Association.
  • 10. CSA S6-10, (2010) Canadian highway bridge design code, Canadian Standards Association.
  • 11. CSA S806-02, (2002) Design and construction of building structures with fibre-reinforced polymers. Canadian Standards Association.
  • 12. CSA S806-12, (2012) Design and construction of building structures with fibre-reinforced polymers, Canadian Standards Association.
  • 13. Ehsani, M. R., Saadatmanesh, H. and Tao, S. (1997) Bond Behavior of Deformed GFRP Rebars, Journal of Composite Materials, 31(14), 1413–1430.
  • 14. Esfahani, M. R., Kianoush, M. R. and Lachemi, M. (2004) A Comparison Between Bond Strength of Steel and GFRP Bars in Self-Consolidating Concrete (SCC), International Journal of Civil Engineering, 2(3), 193–200.
  • 15. Ha, S.-S. and Choi, D.-U. (2010) Development Length of GFRP Bars, Journal of the Korea Concrete Institute, 22(1), 131–141. doi:10.4334/JKCI.2010.22.1.131
  • 16. Hossain, K. M. A., Ametrano, D. and Lachemi, M. (2014) Bond Strength of Standard and High-Modulus GFRP Bars in High-Strength Concrete, Journal of Materials in Civil Engineering, 26(3), 449–456. doi:10.1061/(ASCE)MT.1943-5533.0000758
  • 17. Hossain, K. M. A., Ametrano, D., Lachemi, M. (2017) Bond Strength of GFRP Bars in Ultra-High Strength Concrete Using RILEM Beam Tests, Journal of Building Engineering, 10, 69–79. doi:10.1016/j.jobe.2017.02.005
  • 18. Huang, Z., Engström, B. and Magnusson, J. (1996) Experimental and Analytical Studies of the Bond Behaviour of Deformed Bars in High Strength Concrete, In Fourth International Symposium at the Utilization of High Strength/High Performance Concrete, Paris, France.
  • 19. Islam, S., Afefy, H. M., Sennah, K. and Azimi, H. (2015) Bond characteristics of straight- and headed-end, ribbed-surface, GFRP bars embedded in high-strength concrete, Construction and Building Materials, 83(2), 283–298. doi:10.1016/j.conbuildmat.2015.03.025
  • 20. JSCE, 1997 Recommendation for design and construction of concrete structures using continuous fiber reinforcing materials, Japan Society of Civil Engineers.
  • 21. Jung, W. T., Park, Y. H. and Park, J. S. (2011) An Experimental Study on Bond Characteristics of FRP Reinforcements with Various Surface-type, Journal of The Korean Society of Civil Engineers, 31(4a), 279–286.
  • 22. Kang, J., Kim, B., Park, J. and Lee, J. (2012) Influence Evaluation of Fiber on the Bond Behavior of GFRP Bars Embedded in Fiber Reinforced Concrete, Journal of the Korea Concrete Institute, 24(1), 79–86. doi:10.4334/JKCI.2012.24.1.079
  • 23. Kessler, R. J. and Powers, R. G. (1998) Corrosion of epoxy-coated rebars—Keys segmental bridge—Monroe County. Florida Department of Transportation, Materials Office, Rep. No. 88-8A.
  • 24. Khederzadeh, H. R. and Sennah, K. (2014) Pullout Strength of Pre-installed Sand-coated GFRP Bars for Bridge Barrier Construction, 4th International Structural Specialty Conference (CSCE 2014) (ss. 1–10), Halifax, NS.
  • 25. Larralde, J. and Silva‐Rodriguez, R. (1993) Bond and Slip of FRP Rebars in Concrete, Journal of Materials in Civil Engineering, 5(1), 30–40. doi:10.1061/(ASCE)0899-1561(1993)5:1(30)
  • 26. Lee, J.-Y., Kim, T.-Y., Kim, T.-J., Yi, C.-K., Park, J.-S., You, Y.-C. and Park, Y.-H. (2008) Interfacial bond strength of glass fiber reinforced polymer bars in high-strength concrete, Composites Part B: Engineering, 39(2), 258–270. doi:10.1016/j.compositesb.2007.03.008
  • 27. Lu, J. (2015) Investigation of Pullout Strength of Pre‐Installed Glass Fibre Reinforced Polymer Bars In High‐Performance Concrete, Master Thesis, Ryerson University.
  • 28. Mosley, C. P., Tureyen, A. K. and Frosch, R.J. (2008) Bond Strength of Nonmetallic Reinforcing Bars, ACI Structural Journal, 105 (5), 634-642.
  • 29. Newman, N., Ayoub, A. and Belarbi, A. (2010) Development Length of Straight FRP Composite Bars Embedded in Concrete, Journal of Reinforced Plastics and Composites, 29(4), 571–589. doi:10.1177/0731684408100262
  • 30. Park, J.-S., Lim, A.-R., Kim, J. and Lee, J.-Y. (2016) Bond performance of fiber reinforced polymer rebars in different casting positions, Polymer Composites, 37(7), 2098– 2108. doi:10.1002/pc.23388
  • 31. Pay, A. C., Canbay, E. and Frosch, R.J. (2014) Bond Strength of Spliced Fiber-Reinforced Polymer Reinforcement, ACI Structural Journal, 111 (2), 257-266. doi:10.14359/51686519
  • 32. Rakhshanimehr, M., Mousavi, S. R., Esfahani, M. R., & Shahri, S. F. (2018) Establishment and Experimental Validation of an Updated Predictive Equation for the Development and Lap-Spliced Length of GFRP Bars in Concrete, Materials and Structures, 51(1), 15. doi:10.1617/s11527-018-1137-8
  • 33. Shen, D., Ojha, B., Shi, X., Zhang, H. and Shen, J. (2016) Bond stress–slip relationship between basalt fiber-reinforced polymer bars and concrete using a pull-out test, Journal of Reinforced Plastics and Composites, 35(9), 747–763. doi:10.1177/0731684415627504
  • 34. Sulaiman, M. F., Ma, C.-K., Apandi, N. M., Chin, S., Awang, A. Z., Mansur, S. A. and Omar, W. (2017) A Review on Bond and Anchorage of Confined High-strength Concrete, Structures, 11, 97–109. doi:10.1016/j.istruc.2017.04.004
  • 35. Tekle, B. H., Khennane, A. and Kayali, O. (2015) Bond Properties of Glass Fibre Reinforced Polymer Bars With Fly-Ash Based Geopolymer Concrete, 10th International Conference on Composite Science and Technology (IDMEC 2015) (ss. 1–8), Lisboa, Portugal.
  • 36. Thamrin, R., and Kaku, T. (2005) Development Length Evaluation of Reinforced Concrete Beam with CFRP Bars, Proceedings of the International Symposium on Bond Behaviour of FRP in Structures (BBFS 2005) (ss. 385–392), Hong Kong.
Toplam 36 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Mühendislik
Bölüm Araştırma Makaleleri
Yazarlar

Boğaçhan Başaran

Saruhan Kartal Bu kişi benim

İlker Kalkan Bu kişi benim

Yayımlanma Tarihi 30 Ağustos 2019
Gönderilme Tarihi 24 Temmuz 2018
Kabul Tarihi 13 Mayıs 2019
Yayımlandığı Sayı Yıl 2019

Kaynak Göster

APA Başaran, B., Kartal, S., & Kalkan, İ. (2019). GFRP DONATI-BETON ARASINDAKİ ADERANS GERİLMESİNİN SIYRILMA GÖÇME TİPİ İLE SONUÇLANAN ÇEKİP ÇIKARMA DENEYLERİ İLE TESPİTİ. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi, 24(2), 203-216. https://doi.org/10.17482/uumfd.447057
AMA Başaran B, Kartal S, Kalkan İ. GFRP DONATI-BETON ARASINDAKİ ADERANS GERİLMESİNİN SIYRILMA GÖÇME TİPİ İLE SONUÇLANAN ÇEKİP ÇIKARMA DENEYLERİ İLE TESPİTİ. UUJFE. Ağustos 2019;24(2):203-216. doi:10.17482/uumfd.447057
Chicago Başaran, Boğaçhan, Saruhan Kartal, ve İlker Kalkan. “GFRP DONATI-BETON ARASINDAKİ ADERANS GERİLMESİNİN SIYRILMA GÖÇME TİPİ İLE SONUÇLANAN ÇEKİP ÇIKARMA DENEYLERİ İLE TESPİTİ”. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi 24, sy. 2 (Ağustos 2019): 203-16. https://doi.org/10.17482/uumfd.447057.
EndNote Başaran B, Kartal S, Kalkan İ (01 Ağustos 2019) GFRP DONATI-BETON ARASINDAKİ ADERANS GERİLMESİNİN SIYRILMA GÖÇME TİPİ İLE SONUÇLANAN ÇEKİP ÇIKARMA DENEYLERİ İLE TESPİTİ. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi 24 2 203–216.
IEEE B. Başaran, S. Kartal, ve İ. Kalkan, “GFRP DONATI-BETON ARASINDAKİ ADERANS GERİLMESİNİN SIYRILMA GÖÇME TİPİ İLE SONUÇLANAN ÇEKİP ÇIKARMA DENEYLERİ İLE TESPİTİ”, UUJFE, c. 24, sy. 2, ss. 203–216, 2019, doi: 10.17482/uumfd.447057.
ISNAD Başaran, Boğaçhan vd. “GFRP DONATI-BETON ARASINDAKİ ADERANS GERİLMESİNİN SIYRILMA GÖÇME TİPİ İLE SONUÇLANAN ÇEKİP ÇIKARMA DENEYLERİ İLE TESPİTİ”. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi 24/2 (Ağustos 2019), 203-216. https://doi.org/10.17482/uumfd.447057.
JAMA Başaran B, Kartal S, Kalkan İ. GFRP DONATI-BETON ARASINDAKİ ADERANS GERİLMESİNİN SIYRILMA GÖÇME TİPİ İLE SONUÇLANAN ÇEKİP ÇIKARMA DENEYLERİ İLE TESPİTİ. UUJFE. 2019;24:203–216.
MLA Başaran, Boğaçhan vd. “GFRP DONATI-BETON ARASINDAKİ ADERANS GERİLMESİNİN SIYRILMA GÖÇME TİPİ İLE SONUÇLANAN ÇEKİP ÇIKARMA DENEYLERİ İLE TESPİTİ”. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi, c. 24, sy. 2, 2019, ss. 203-16, doi:10.17482/uumfd.447057.
Vancouver Başaran B, Kartal S, Kalkan İ. GFRP DONATI-BETON ARASINDAKİ ADERANS GERİLMESİNİN SIYRILMA GÖÇME TİPİ İLE SONUÇLANAN ÇEKİP ÇIKARMA DENEYLERİ İLE TESPİTİ. UUJFE. 2019;24(2):203-16.

DUYURU:

30.03.2021- Nisan 2021 (26/1) sayımızdan itibaren TR-Dizin yeni kuralları gereği, dergimizde basılacak makalelerde, ilk gönderim aşamasında Telif Hakkı Formu yanısıra, Çıkar Çatışması Bildirim Formu ve Yazar Katkısı Bildirim Formu da tüm yazarlarca imzalanarak gönderilmelidir. Yayınlanacak makalelerde de makale metni içinde "Çıkar Çatışması" ve "Yazar Katkısı" bölümleri yer alacaktır. İlk gönderim aşamasında doldurulması gereken yeni formlara "Yazım Kuralları" ve "Makale Gönderim Süreci" sayfalarımızdan ulaşılabilir. (Değerlendirme süreci bu tarihten önce tamamlanıp basımı bekleyen makalelerin yanısıra değerlendirme süreci devam eden makaleler için, yazarlar tarafından ilgili formlar doldurularak sisteme yüklenmelidir).  Makale şablonları da, bu değişiklik doğrultusunda güncellenmiştir. Tüm yazarlarımıza önemle duyurulur.

Bursa Uludağ Üniversitesi, Mühendislik Fakültesi Dekanlığı, Görükle Kampüsü, Nilüfer, 16059 Bursa. Tel: (224) 294 1907, Faks: (224) 294 1903, e-posta: mmfd@uludag.edu.tr