Araştırma Makalesi
BibTex RIS Kaynak Göster

DESIGN and ANALYSIS of 28 GHz MICROSTRIP PATCH ANTENNA for DIFFERENT TYPE FR4 CLADDINGS

Yıl 2019, , 265 - 288, 30.08.2019
https://doi.org/10.17482/uumfd.548410

Öz

In
this study, rectangular patch microstrip antennas operating at 28 GHz frequency
compatible with 5G mobile technology are designed with Computer Simulation
Technology (CST) program for different patch materials and the performances of
the designed antennas are compared. For each of the same sized antennas
designed with the selected patch materials, it is found that they are suitable
for the 28 GHz band and the best return loss performance is obtained by using
the tantalum conductor while the silver conductor has the best antenna
efficiency

Kaynakça

  • 1. Aguni, L., Chabaa, S., Ibnyaich, S. and Zeroual, A. (2019). Design of a Microstrip Patch Antenna for ISM band using Artificial Neural Networks, Journal of Engineering Technology, Vol 8, No 1, 97-113.
  • 2. Ahmed, Z., Yang, K., McEvoy, P. and Ammann, M.J., (2017). Study of mm-Wave Microstrip Patch Array on Curved Substrate. Loughborough Antennas & Propagation Conference (LAPC), Loughborough, UK, 1-4.
  • 3. Balanis, C.A. (2016). Antenna Theory: Analysis and Design, John Wiley&Sons Ltd.
  • 4. Bhanumathi, V. and Swathi, S. (2019). Bandwidth Enhanced Microstrip Patch Antenna for UWB Applications, ICTACT Journal on Microelectronics, Vol 4, No 4, 669-675. DOI: 10.21917/ijme.2019.01116.
  • 5. Garg, R., Bhartia, P., Bahl, I. and Ittipiboon, A. (2001). Microstrip Design Antenna Handbook, Artech House, Inc.
  • 6. Islam, Md.M., Hasan, R.R., Rahman, Md. M., Islam, K.S. and Al-Amin, S.M. (2016), Design & Analysis of Microstrip Patch Antenna Using Different Dielectric Materials for WiMAX Communication System. The International Journal of Engineering & Science, 4, 20-21. DOI:10.3991/ijes.v4i1.5569.
  • 7. Khalily, M., Rahman, T.A. and Kamarudin, M.R. (2016). Design of Phased Arrays of Series-Fed Patch Antennas with Reduced Number of the Controllers for 28 GHz mm-Wave Applications, IEEE Antennas and Wireless Propagation Letters, Vol 15, 1305-1308.DOI:10.1109/LAWP.2015.2505781.
  • 8. Kiran, T., Mounisha, N., Ch.Mythily, Akhil, D. and Kumar, T.V.B.P. (2018). Design of Microstrip Patch Antenna for 5g Applications, IOSR Journal of Electronics and Communication Engineering (IOSR-JECE), Vol 13, No 1, 14-17. DOI: 10.9790/2834-1301011417.
  • 9. Mahabub, A., Rahman, M.M., Al-Amin, M., Rahman, M.S. and Rana, M.M. (2018). Design of a Multiband Patch Antenna for 5G Communication Systems, Open Journal of Antennas and Propagation, 1-14. DOI: 10.4236/ojapr.2018.61001.
  • 10. Matin, M. A. and Sayeed, A. I. (2010). A design rule for inset-fed rectangular microstrip patch antenna, Wseas Transactions on Communications, 1(9), 63-72.
  • 11. Mondal, K. and Sarkar, P. P. (2019). Gain and Bandwidth Enhancement of Microstrip Patch Antenna for WiMAX and WLAN Applications, IETE Journal of Research, 1-9. DOI: 10.1080/03772063.2019.1565958.
  • 12. Nakar, P. S., (2004). Design of a Compact Microstrip Patch Antenna for Use in Wireless/Cellular Devices. The Florida State University College of Engineering Master of Thesis, Retrieved from http://purl.flvc.org/fsu/fd/FSU_migr_etd-2790.
  • 13. Parchin, N.O., Shen, M. and Pedersen,G.F., (2016). End-Fire Phased Array 5G Antenna Design Using Leaf-Shaped Bow-Tie Elements for 28/38 GHz MIMO Applications, 2016 IEEE International Conference Ubiquitous Wireless Broadband (ICUWB), 1-4. DOI: 10.1109/ICUWB.2016.7790538.
  • 14. Pozar, D.M. (2012). Microwave Engineering, John Wiley & Sons, Inc.
  • 15. Rodriguez, J. (2015). Fundamentals of 5G Mobile Networks, John Wiley&Sons Ltd.DOI:10.1002/9781118867464.
  • 16. Sethi, W.T., Ashraf, M.A., Ragheb, A., Alasaad, A. and Alshebeili, S.A. ( 2018). Demonstration of Millimeter Wave 5G Setup Employing High-Gain Vivaldi Array, Hindawi International Journal of Antennas and Propagation. Vol. 2018, 12 pages. DOI: 10.1155/2018/3927153.
  • 17. Verma, S., Mahajan, L., Kumar, R., Saini, H.S. and Kumar, N. (2016). A Small Microstrip Patch Antenna for Future 5G Applications. 5th International Conference on Reliability, Infocom Technologies and Optimization (ICRITO) (Trends and Future Directions), Sep. 7-9, AIIT, Amity University Uttar Pradesh, Noida, India.DOI: 10.1109/ICRITO.2016.7784999.
  • 18. Yoon, N. and Seo, C. (2017). A 28 GHz Wideband 2x2 U-Slot Patch Array Antenna, Journal of Electromagnetic Engineering and Science, 17, 133-137.DOI: 10.5515/JKIEES.2017.17.3.133.

Farklı Tipte FR4 Kaplamaları için 28 GHz Mikroşerit Yama Anteni Tasarımı ve Analizi

Yıl 2019, , 265 - 288, 30.08.2019
https://doi.org/10.17482/uumfd.548410

Öz

Bu
çalışmada, 5G mobil teknolojisine uygun olarak 28 GHz frekansında çalışan
dikdörtgen yama mikroşerit antenler, farklı yama malzemeleri için Computer
Simulation Technology (CST) programı ile tasarlanmış ve tasarlanan antenlerin
performansları karşılaştırılmıştır. Seçilen yama
malzemeleri ile tasarlanan aynı boyuttaki antenlerin her biri için 28 GHz
bandında çalışmalarının uygun oldukları ve en iyi geri dönüş performansının
tantal iletkeninin kullanılması ile elde edilirken gümüş iletkenin en iyi anten
verimine sahip olduğu görülmüştür.

Kaynakça

  • 1. Aguni, L., Chabaa, S., Ibnyaich, S. and Zeroual, A. (2019). Design of a Microstrip Patch Antenna for ISM band using Artificial Neural Networks, Journal of Engineering Technology, Vol 8, No 1, 97-113.
  • 2. Ahmed, Z., Yang, K., McEvoy, P. and Ammann, M.J., (2017). Study of mm-Wave Microstrip Patch Array on Curved Substrate. Loughborough Antennas & Propagation Conference (LAPC), Loughborough, UK, 1-4.
  • 3. Balanis, C.A. (2016). Antenna Theory: Analysis and Design, John Wiley&Sons Ltd.
  • 4. Bhanumathi, V. and Swathi, S. (2019). Bandwidth Enhanced Microstrip Patch Antenna for UWB Applications, ICTACT Journal on Microelectronics, Vol 4, No 4, 669-675. DOI: 10.21917/ijme.2019.01116.
  • 5. Garg, R., Bhartia, P., Bahl, I. and Ittipiboon, A. (2001). Microstrip Design Antenna Handbook, Artech House, Inc.
  • 6. Islam, Md.M., Hasan, R.R., Rahman, Md. M., Islam, K.S. and Al-Amin, S.M. (2016), Design & Analysis of Microstrip Patch Antenna Using Different Dielectric Materials for WiMAX Communication System. The International Journal of Engineering & Science, 4, 20-21. DOI:10.3991/ijes.v4i1.5569.
  • 7. Khalily, M., Rahman, T.A. and Kamarudin, M.R. (2016). Design of Phased Arrays of Series-Fed Patch Antennas with Reduced Number of the Controllers for 28 GHz mm-Wave Applications, IEEE Antennas and Wireless Propagation Letters, Vol 15, 1305-1308.DOI:10.1109/LAWP.2015.2505781.
  • 8. Kiran, T., Mounisha, N., Ch.Mythily, Akhil, D. and Kumar, T.V.B.P. (2018). Design of Microstrip Patch Antenna for 5g Applications, IOSR Journal of Electronics and Communication Engineering (IOSR-JECE), Vol 13, No 1, 14-17. DOI: 10.9790/2834-1301011417.
  • 9. Mahabub, A., Rahman, M.M., Al-Amin, M., Rahman, M.S. and Rana, M.M. (2018). Design of a Multiband Patch Antenna for 5G Communication Systems, Open Journal of Antennas and Propagation, 1-14. DOI: 10.4236/ojapr.2018.61001.
  • 10. Matin, M. A. and Sayeed, A. I. (2010). A design rule for inset-fed rectangular microstrip patch antenna, Wseas Transactions on Communications, 1(9), 63-72.
  • 11. Mondal, K. and Sarkar, P. P. (2019). Gain and Bandwidth Enhancement of Microstrip Patch Antenna for WiMAX and WLAN Applications, IETE Journal of Research, 1-9. DOI: 10.1080/03772063.2019.1565958.
  • 12. Nakar, P. S., (2004). Design of a Compact Microstrip Patch Antenna for Use in Wireless/Cellular Devices. The Florida State University College of Engineering Master of Thesis, Retrieved from http://purl.flvc.org/fsu/fd/FSU_migr_etd-2790.
  • 13. Parchin, N.O., Shen, M. and Pedersen,G.F., (2016). End-Fire Phased Array 5G Antenna Design Using Leaf-Shaped Bow-Tie Elements for 28/38 GHz MIMO Applications, 2016 IEEE International Conference Ubiquitous Wireless Broadband (ICUWB), 1-4. DOI: 10.1109/ICUWB.2016.7790538.
  • 14. Pozar, D.M. (2012). Microwave Engineering, John Wiley & Sons, Inc.
  • 15. Rodriguez, J. (2015). Fundamentals of 5G Mobile Networks, John Wiley&Sons Ltd.DOI:10.1002/9781118867464.
  • 16. Sethi, W.T., Ashraf, M.A., Ragheb, A., Alasaad, A. and Alshebeili, S.A. ( 2018). Demonstration of Millimeter Wave 5G Setup Employing High-Gain Vivaldi Array, Hindawi International Journal of Antennas and Propagation. Vol. 2018, 12 pages. DOI: 10.1155/2018/3927153.
  • 17. Verma, S., Mahajan, L., Kumar, R., Saini, H.S. and Kumar, N. (2016). A Small Microstrip Patch Antenna for Future 5G Applications. 5th International Conference on Reliability, Infocom Technologies and Optimization (ICRITO) (Trends and Future Directions), Sep. 7-9, AIIT, Amity University Uttar Pradesh, Noida, India.DOI: 10.1109/ICRITO.2016.7784999.
  • 18. Yoon, N. and Seo, C. (2017). A 28 GHz Wideband 2x2 U-Slot Patch Array Antenna, Journal of Electromagnetic Engineering and Science, 17, 133-137.DOI: 10.5515/JKIEES.2017.17.3.133.
Toplam 18 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Mühendislik
Bölüm Araştırma Makaleleri
Yazarlar

Bahadır Hiçdurmaz 0000-0002-4610-1400

Ömer Faruk Gümüş Bu kişi benim

Yayımlanma Tarihi 30 Ağustos 2019
Gönderilme Tarihi 2 Nisan 2019
Kabul Tarihi 23 Mayıs 2019
Yayımlandığı Sayı Yıl 2019

Kaynak Göster

APA Hiçdurmaz, B., & Gümüş, Ö. F. (2019). DESIGN and ANALYSIS of 28 GHz MICROSTRIP PATCH ANTENNA for DIFFERENT TYPE FR4 CLADDINGS. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi, 24(2), 265-288. https://doi.org/10.17482/uumfd.548410
AMA Hiçdurmaz B, Gümüş ÖF. DESIGN and ANALYSIS of 28 GHz MICROSTRIP PATCH ANTENNA for DIFFERENT TYPE FR4 CLADDINGS. UUJFE. Ağustos 2019;24(2):265-288. doi:10.17482/uumfd.548410
Chicago Hiçdurmaz, Bahadır, ve Ömer Faruk Gümüş. “DESIGN and ANALYSIS of 28 GHz MICROSTRIP PATCH ANTENNA for DIFFERENT TYPE FR4 CLADDINGS”. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi 24, sy. 2 (Ağustos 2019): 265-88. https://doi.org/10.17482/uumfd.548410.
EndNote Hiçdurmaz B, Gümüş ÖF (01 Ağustos 2019) DESIGN and ANALYSIS of 28 GHz MICROSTRIP PATCH ANTENNA for DIFFERENT TYPE FR4 CLADDINGS. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi 24 2 265–288.
IEEE B. Hiçdurmaz ve Ö. F. Gümüş, “DESIGN and ANALYSIS of 28 GHz MICROSTRIP PATCH ANTENNA for DIFFERENT TYPE FR4 CLADDINGS”, UUJFE, c. 24, sy. 2, ss. 265–288, 2019, doi: 10.17482/uumfd.548410.
ISNAD Hiçdurmaz, Bahadır - Gümüş, Ömer Faruk. “DESIGN and ANALYSIS of 28 GHz MICROSTRIP PATCH ANTENNA for DIFFERENT TYPE FR4 CLADDINGS”. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi 24/2 (Ağustos 2019), 265-288. https://doi.org/10.17482/uumfd.548410.
JAMA Hiçdurmaz B, Gümüş ÖF. DESIGN and ANALYSIS of 28 GHz MICROSTRIP PATCH ANTENNA for DIFFERENT TYPE FR4 CLADDINGS. UUJFE. 2019;24:265–288.
MLA Hiçdurmaz, Bahadır ve Ömer Faruk Gümüş. “DESIGN and ANALYSIS of 28 GHz MICROSTRIP PATCH ANTENNA for DIFFERENT TYPE FR4 CLADDINGS”. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi, c. 24, sy. 2, 2019, ss. 265-88, doi:10.17482/uumfd.548410.
Vancouver Hiçdurmaz B, Gümüş ÖF. DESIGN and ANALYSIS of 28 GHz MICROSTRIP PATCH ANTENNA for DIFFERENT TYPE FR4 CLADDINGS. UUJFE. 2019;24(2):265-88.

DUYURU:

30.03.2021- Nisan 2021 (26/1) sayımızdan itibaren TR-Dizin yeni kuralları gereği, dergimizde basılacak makalelerde, ilk gönderim aşamasında Telif Hakkı Formu yanısıra, Çıkar Çatışması Bildirim Formu ve Yazar Katkısı Bildirim Formu da tüm yazarlarca imzalanarak gönderilmelidir. Yayınlanacak makalelerde de makale metni içinde "Çıkar Çatışması" ve "Yazar Katkısı" bölümleri yer alacaktır. İlk gönderim aşamasında doldurulması gereken yeni formlara "Yazım Kuralları" ve "Makale Gönderim Süreci" sayfalarımızdan ulaşılabilir. (Değerlendirme süreci bu tarihten önce tamamlanıp basımı bekleyen makalelerin yanısıra değerlendirme süreci devam eden makaleler için, yazarlar tarafından ilgili formlar doldurularak sisteme yüklenmelidir).  Makale şablonları da, bu değişiklik doğrultusunda güncellenmiştir. Tüm yazarlarımıza önemle duyurulur.

Bursa Uludağ Üniversitesi, Mühendislik Fakültesi Dekanlığı, Görükle Kampüsü, Nilüfer, 16059 Bursa. Tel: (224) 294 1907, Faks: (224) 294 1903, e-posta: mmfd@uludag.edu.tr