It is known that significant investments have been made in our country which is rich in solar
energy.However, it is very difficult to say that the feasibility of these investments is very accurate. It is
seen that many mistakes have been made in the design, establishment and operation of the GES plants
and as a result of this, very large plants are inefficient. There are important points to be taken into
consideration in the design of these power plants as well as the points to be considered in the installation
and operation. During projecting, location selection, panel direction, panel angle and shading are
important parameters. It is known that panel temperature, wind and pollution significantly affect panel
efficiency in solar power plants.
In this study; The effects of the parameters such as panel angle, panel direction, shading, temperature,
humidity, wind, pollution of the GES plants on the panel efficiency were revealed by the studies given in
the literature and the subject was discussed. In addition, the effects of solar tracking systems on the
efficiency of photovoltaic systems are discussed. Suggestions for the design, installation and operation of
the GES plants are presented.
Abdeen, E., Orabi, M., Haseneen, E. (2017). Optimum tilt angle for photovoltaic system in desert environment, Solar Energy, 155, 267–280.
doi: 10.1016/j.solener.2017.06.031
Abu-Khader, M. M., Badran, O. O., Abdallah, S. (2008). Evaluating multi-axes suntracking system at different modes of operation in Jordan, Renewable and sustainable
energy reviews, 12(3), 864-873. doi: 10.1016/j.rser.2006.10.005
Bakirci, K. (2012). General models for optimum tilt angles of solar panels:Turkey case study, Renewable and Sustainable Energy Reviews, 16, 6149–6159.
doi: 10.1016/j.rser.2012.07.009
Fedorov, A. (2015). Photovoltaic System Design for a Contaminated Area in Falun –Comparison of South and East-West Layout, Yüksek Lisans Tezi, European Solar
Engineering School.,
Gholami, A., Khazaee, I., Eslami, S., Zandi, M., Akrami, E. (2018). Experimental investigation of dust deposition effects on photo-voltaic output performance, Solar Energy,
159, 346–352. doi: 10.1016/j.solener.2017.11.010
Gökmen, N., Hu, W., Hou, P., Chen, Z., Sera, D., Spataru, S. (2016). Investigation of wind speed cooling effect on PV panels in windy locations, Renewable Energy, 90, 283-290. doi: 10.1016/j.renene.2016.01.017
Hafez, A.Z., Soliman, A., El-Metwally, K.A., Ismail, I.M.(2017). Tilt and azimuth angles in solar energy applications – A review, Renewable and Sustainable Energy Reviews,
77,147–168. doi: 10.1016/j.rser.2017.03.131
Hammad, B., Al-Abed, M., Al-Ghandoor, A., Al-Sradeah, A., Al-Bashir, A. (2018). Modeling and analysis of dust and temperature effects on photovoltaic systems’
performance and optimal cleaning frequency: Jordan case study, Renewable and Sustainable Energy Reviews, 82, 2218–2234. doi: 10.1016/j.rser.2017.08.070
IRENA, (2018). Renewable Power Generation Costs in 2018. Erişim Adresi: https://www.irena.org/publications/2019/May/Renewable-power-generation-costs-in-2018
(Erişim Tarihi: 20.01.2019)
Jiang, H., Lu, L., Sun, K. (2011). Experimental investigation of the impact of airborne dust deposition on the performance of solar photovoltaic (PV) modules, Atmospheric
Environment, 45, 4299-4304. doi: 10.1016/j.atmosenv.2011.04.084
Kaldellis, J.K., Kapsali, M., Kavadias, K.A. (2014). Temperature and wind speed impact on the efficiency of PV installations. Experience obtained from outdoor measurements in
Greece, Renewable Energy, 66, 612-624. doi: 10.1016/j.renene.2013.12.041
Kaplani, E., Kaplanis, S. (2014). Thermal modelling and experimental assessment of the dependence of PV module temperature on wind velocity and direction,module orientation and inclination, Solar Energy, 107, 443–460. doi: 10.1016/j.solener.2014.05.037
Kazem, H. A., Chaichan, M. T. (2015). Effect of humidity on photovoltaic performance based on experimental study, International Journal of Applied Engineering Research
(IJAER), 10(23), 43572-43577.
Mahboub, C., Moummi, N., Moummi, A., Youcef-Ali, S. (2011). Effect of the angle of attack on the wind convection coefficient, Solar Energy, 85, 776–780.
doi: 10.1016/j.solener.2011.01.008
Mekhilef, S., Saidur, R., & Kamalisarvestani, M. (2012). Effect of dust, humidity and air velocity on efficiency of photovoltaic cells, Renewable and sustainable energy reviews, 16,
2920-2925. doi: 10.1016/j.rser.2012.02.012
Meral, M.E. ve Dinçer, F. (2011). A review of the factors affecting operation and efficiency of photovoltaic based electricity generation systems, Renewable and Sustainable Energy Reviews, 15, 2176–2184. doi: 10.1016/j.rser.2011.01.010
Oda Raporu, (2018). Türkiye’nin Enerji Görünümü , MMO, 691, Ankara.
Paudyal, B.R., Shakya, S.R.(2016). Dust accumulation effects on efficiency of solar PV modules for off grid purpose: A case study of Kathmandu, Solar Energy ,135, 103–110. doi: 10.1016/j.solener.2016.05.046
Poulek, V., Matuska, T., Libra, M., Kachalouski, E., Sedlacek, J. (2018). Influence of increased temperature on energy production of roof integrated PV panels, Energy &
Buildings 166, 418–425. doi: 10.1016/j.enbuild.2018.01.063
Ross Jr, R. G. (1976). Interface design considerations for terrestrial solar cell modules. In 12th Photovoltaic Specialists Conference (pp. 801-806).
Skoplaki, E., Boudouvis, A. G., Palyvos, J. A. (2008). A simple correlation for the operating temperature of photovoltaic modules of arbitrary mounting. Solar Energy
Materials and Solar Cells, 92(11), 1393-1402. doi: 10.1016/j.solmat.2008.05.016
Sungur, C. (2009). Multi-axes sun-tracking system with PLC control for photovoltaic panels in Turkey, Renewable Energy, 34(4), 1119-1125. doi: 10.1016/j.renene.2008.06.020
Şenpinar, A., Cebeci, M. (2012). Evaluation of power output for fixed and two-axis tracking PV arrays. Applied Energy, 92, 677-685. doi: 10.1016/j.apenergy.2011.07.043
Tripanagnostopoulos, Y., Souliotis, M., Battisti, R., Corrado, A. (2005). Energy, cost and LCA results of PV and hybrid PV/T solar systems, Progress in Photovoltaics: Research and applications, 13(3), 235-250.
Ulgen, K., Hepbasli, A. (2003). Comparison of the diffuse fraction of Daily and monthly global radiation for Izmir, Turkey, Energy Sources, 25, 637–49.
doi: 10.1080/00908310390212444
Vasel, A., Lakovidis, F. (2017). The effect of wind direction on the performance of solar PV plants. Energy Conversion and Management, 153, 455–461.
doi: 10.1016/j.enconman.2017.09.077
Yıldırım, E., Aktacir, M. A. (2019). Binaya entegre fotovoltaik sistemlerde azimut ve eğim açısı etkilerinin incelenmesi, Journal of the Faculty of Engineering & Architecture of Gazi
University, 34(2), 609-619. doi: 10.17341/gummfd.42149
FOTOVOLTAİK SİSTEMLERİN PROJELENDİRME, KURULUM VE İŞLETİLMESİNDE ÖNEMLİ FAKTÖRLER
Güneş enerjisi bakımından zengin olan ülkemizde Güneş Enerjisi Santralleri (GES) ile ilgili önemli
yatırımların yapıldığı bilinmektedir. Ancak bu yatırımların fizibilitelerinin çok doğru yapıldığını
söylemek oldukça zordur. GES santrallerinin projelendirilmesi, kurulması ve işletilmesi aşamalarında
birçok yanlışların yapıldığı ve bunun sonucu santrallerin verimsiz çalıştığı görülmektedir. Bu
santrallerin projelendirilmesinde dikkat edilmesi gereken önemli noktalar olduğu gibi, kurulum ve
işletmesinde de dikkat edilmesi gereken hususlar bulunmaktadır. Projelendirme esnasında yer seçimi,
panel doğrultusu, panel açısı ve gölgeleme önemli parametreler arasındadır. GES santrallerinde panel
sıcaklığının, rüzgarın ve kirliliğin panel verimini önemli ölçüde etkilediği bilinmektedir.
Bu çalışmada; GES santrallerinin panel açısı, panel yönü, gölgeleme, sıcaklık, nem, rüzgar, kirlilik gibi
parametrelerin panel verimine etkileri literatürde verilen çalışmalarla ortaya konulup, konunun tartışması
yapılmıştır. Ayrıca, güneş takip sistemlerinin fotovoltaik sistemlerin verimleri üzerine etkileri
tartışılmıştır. GES santrallerinin projelendirilmesi, kurulumu ve işletilmesi ile ilgili öneriler sunulmuştur.
Abdeen, E., Orabi, M., Haseneen, E. (2017). Optimum tilt angle for photovoltaic system in desert environment, Solar Energy, 155, 267–280.
doi: 10.1016/j.solener.2017.06.031
Abu-Khader, M. M., Badran, O. O., Abdallah, S. (2008). Evaluating multi-axes suntracking system at different modes of operation in Jordan, Renewable and sustainable
energy reviews, 12(3), 864-873. doi: 10.1016/j.rser.2006.10.005
Bakirci, K. (2012). General models for optimum tilt angles of solar panels:Turkey case study, Renewable and Sustainable Energy Reviews, 16, 6149–6159.
doi: 10.1016/j.rser.2012.07.009
Fedorov, A. (2015). Photovoltaic System Design for a Contaminated Area in Falun –Comparison of South and East-West Layout, Yüksek Lisans Tezi, European Solar
Engineering School.,
Gholami, A., Khazaee, I., Eslami, S., Zandi, M., Akrami, E. (2018). Experimental investigation of dust deposition effects on photo-voltaic output performance, Solar Energy,
159, 346–352. doi: 10.1016/j.solener.2017.11.010
Gökmen, N., Hu, W., Hou, P., Chen, Z., Sera, D., Spataru, S. (2016). Investigation of wind speed cooling effect on PV panels in windy locations, Renewable Energy, 90, 283-290. doi: 10.1016/j.renene.2016.01.017
Hafez, A.Z., Soliman, A., El-Metwally, K.A., Ismail, I.M.(2017). Tilt and azimuth angles in solar energy applications – A review, Renewable and Sustainable Energy Reviews,
77,147–168. doi: 10.1016/j.rser.2017.03.131
Hammad, B., Al-Abed, M., Al-Ghandoor, A., Al-Sradeah, A., Al-Bashir, A. (2018). Modeling and analysis of dust and temperature effects on photovoltaic systems’
performance and optimal cleaning frequency: Jordan case study, Renewable and Sustainable Energy Reviews, 82, 2218–2234. doi: 10.1016/j.rser.2017.08.070
IRENA, (2018). Renewable Power Generation Costs in 2018. Erişim Adresi: https://www.irena.org/publications/2019/May/Renewable-power-generation-costs-in-2018
(Erişim Tarihi: 20.01.2019)
Jiang, H., Lu, L., Sun, K. (2011). Experimental investigation of the impact of airborne dust deposition on the performance of solar photovoltaic (PV) modules, Atmospheric
Environment, 45, 4299-4304. doi: 10.1016/j.atmosenv.2011.04.084
Kaldellis, J.K., Kapsali, M., Kavadias, K.A. (2014). Temperature and wind speed impact on the efficiency of PV installations. Experience obtained from outdoor measurements in
Greece, Renewable Energy, 66, 612-624. doi: 10.1016/j.renene.2013.12.041
Kaplani, E., Kaplanis, S. (2014). Thermal modelling and experimental assessment of the dependence of PV module temperature on wind velocity and direction,module orientation and inclination, Solar Energy, 107, 443–460. doi: 10.1016/j.solener.2014.05.037
Kazem, H. A., Chaichan, M. T. (2015). Effect of humidity on photovoltaic performance based on experimental study, International Journal of Applied Engineering Research
(IJAER), 10(23), 43572-43577.
Mahboub, C., Moummi, N., Moummi, A., Youcef-Ali, S. (2011). Effect of the angle of attack on the wind convection coefficient, Solar Energy, 85, 776–780.
doi: 10.1016/j.solener.2011.01.008
Mekhilef, S., Saidur, R., & Kamalisarvestani, M. (2012). Effect of dust, humidity and air velocity on efficiency of photovoltaic cells, Renewable and sustainable energy reviews, 16,
2920-2925. doi: 10.1016/j.rser.2012.02.012
Meral, M.E. ve Dinçer, F. (2011). A review of the factors affecting operation and efficiency of photovoltaic based electricity generation systems, Renewable and Sustainable Energy Reviews, 15, 2176–2184. doi: 10.1016/j.rser.2011.01.010
Oda Raporu, (2018). Türkiye’nin Enerji Görünümü , MMO, 691, Ankara.
Paudyal, B.R., Shakya, S.R.(2016). Dust accumulation effects on efficiency of solar PV modules for off grid purpose: A case study of Kathmandu, Solar Energy ,135, 103–110. doi: 10.1016/j.solener.2016.05.046
Poulek, V., Matuska, T., Libra, M., Kachalouski, E., Sedlacek, J. (2018). Influence of increased temperature on energy production of roof integrated PV panels, Energy &
Buildings 166, 418–425. doi: 10.1016/j.enbuild.2018.01.063
Ross Jr, R. G. (1976). Interface design considerations for terrestrial solar cell modules. In 12th Photovoltaic Specialists Conference (pp. 801-806).
Skoplaki, E., Boudouvis, A. G., Palyvos, J. A. (2008). A simple correlation for the operating temperature of photovoltaic modules of arbitrary mounting. Solar Energy
Materials and Solar Cells, 92(11), 1393-1402. doi: 10.1016/j.solmat.2008.05.016
Sungur, C. (2009). Multi-axes sun-tracking system with PLC control for photovoltaic panels in Turkey, Renewable Energy, 34(4), 1119-1125. doi: 10.1016/j.renene.2008.06.020
Şenpinar, A., Cebeci, M. (2012). Evaluation of power output for fixed and two-axis tracking PV arrays. Applied Energy, 92, 677-685. doi: 10.1016/j.apenergy.2011.07.043
Tripanagnostopoulos, Y., Souliotis, M., Battisti, R., Corrado, A. (2005). Energy, cost and LCA results of PV and hybrid PV/T solar systems, Progress in Photovoltaics: Research and applications, 13(3), 235-250.
Ulgen, K., Hepbasli, A. (2003). Comparison of the diffuse fraction of Daily and monthly global radiation for Izmir, Turkey, Energy Sources, 25, 637–49.
doi: 10.1080/00908310390212444
Vasel, A., Lakovidis, F. (2017). The effect of wind direction on the performance of solar PV plants. Energy Conversion and Management, 153, 455–461.
doi: 10.1016/j.enconman.2017.09.077
Yıldırım, E., Aktacir, M. A. (2019). Binaya entegre fotovoltaik sistemlerde azimut ve eğim açısı etkilerinin incelenmesi, Journal of the Faculty of Engineering & Architecture of Gazi
University, 34(2), 609-619. doi: 10.17341/gummfd.42149
Yiğit, A., Arslanoğlu, N., & Eker, B. S. (2019). FOTOVOLTAİK SİSTEMLERİN PROJELENDİRME, KURULUM VE İŞLETİLMESİNDE ÖNEMLİ FAKTÖRLER. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi, 24(3), 483-490. https://doi.org/10.17482/uumfd.562016
AMA
Yiğit A, Arslanoğlu N, Eker BS. FOTOVOLTAİK SİSTEMLERİN PROJELENDİRME, KURULUM VE İŞLETİLMESİNDE ÖNEMLİ FAKTÖRLER. UUJFE. Aralık 2019;24(3):483-490. doi:10.17482/uumfd.562016
Chicago
Yiğit, Abdulvahap, Nurullah Arslanoğlu, ve Buket Seçil Eker. “FOTOVOLTAİK SİSTEMLERİN PROJELENDİRME, KURULUM VE İŞLETİLMESİNDE ÖNEMLİ FAKTÖRLER”. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi 24, sy. 3 (Aralık 2019): 483-90. https://doi.org/10.17482/uumfd.562016.
EndNote
Yiğit A, Arslanoğlu N, Eker BS (01 Aralık 2019) FOTOVOLTAİK SİSTEMLERİN PROJELENDİRME, KURULUM VE İŞLETİLMESİNDE ÖNEMLİ FAKTÖRLER. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi 24 3 483–490.
IEEE
A. Yiğit, N. Arslanoğlu, ve B. S. Eker, “FOTOVOLTAİK SİSTEMLERİN PROJELENDİRME, KURULUM VE İŞLETİLMESİNDE ÖNEMLİ FAKTÖRLER”, UUJFE, c. 24, sy. 3, ss. 483–490, 2019, doi: 10.17482/uumfd.562016.
ISNAD
Yiğit, Abdulvahap vd. “FOTOVOLTAİK SİSTEMLERİN PROJELENDİRME, KURULUM VE İŞLETİLMESİNDE ÖNEMLİ FAKTÖRLER”. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi 24/3 (Aralık 2019), 483-490. https://doi.org/10.17482/uumfd.562016.
JAMA
Yiğit A, Arslanoğlu N, Eker BS. FOTOVOLTAİK SİSTEMLERİN PROJELENDİRME, KURULUM VE İŞLETİLMESİNDE ÖNEMLİ FAKTÖRLER. UUJFE. 2019;24:483–490.
MLA
Yiğit, Abdulvahap vd. “FOTOVOLTAİK SİSTEMLERİN PROJELENDİRME, KURULUM VE İŞLETİLMESİNDE ÖNEMLİ FAKTÖRLER”. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi, c. 24, sy. 3, 2019, ss. 483-90, doi:10.17482/uumfd.562016.
Vancouver
Yiğit A, Arslanoğlu N, Eker BS. FOTOVOLTAİK SİSTEMLERİN PROJELENDİRME, KURULUM VE İŞLETİLMESİNDE ÖNEMLİ FAKTÖRLER. UUJFE. 2019;24(3):483-90.
30.03.2021- Nisan 2021 (26/1) sayımızdan itibaren TR-Dizin yeni kuralları gereği, dergimizde basılacak makalelerde, ilk gönderim aşamasında Telif Hakkı Formu yanısıra, Çıkar Çatışması Bildirim Formu ve Yazar Katkısı Bildirim Formu da tüm yazarlarca imzalanarak gönderilmelidir. Yayınlanacak makalelerde de makale metni içinde "Çıkar Çatışması" ve "Yazar Katkısı" bölümleri yer alacaktır. İlk gönderim aşamasında doldurulması gereken yeni formlara "Yazım Kuralları" ve "Makale Gönderim Süreci" sayfalarımızdan ulaşılabilir. (Değerlendirme süreci bu tarihten önce tamamlanıp basımı bekleyen makalelerin yanısıra değerlendirme süreci devam eden makaleler için, yazarlar tarafından ilgili formlar doldurularak sisteme yüklenmelidir). Makale şablonları da, bu değişiklik doğrultusunda güncellenmiştir. Tüm yazarlarımıza önemle duyurulur.
Bursa Uludağ Üniversitesi, Mühendislik Fakültesi Dekanlığı, Görükle Kampüsü, Nilüfer, 16059 Bursa. Tel: (224) 294 1907, Faks: (224) 294 1903, e-posta: mmfd@uludag.edu.tr