Araştırma Makalesi
BibTex RIS Kaynak Göster

Beton Dayanımının ve Kirişlerdeki Çekme Donatısı Oranının Orta Yükseklikli Betonarme Binaların Sismik Davranışı Üzerine Etkisinin Belirlenmesi için Artımsal Dinamik Analiz

Yıl 2021, , 283 - 300, 30.04.2021
https://doi.org/10.17482/uumfd.831375

Öz

Artımsal Dinamik Analiz (ADA), sismik yükler altında yapısal performansı değerlendirmek için birkaç farklı biçimde yaygın olarak kullanılan parametrik bir sonuç analizi yöntemidir. Bu yöntem, seçilmiş olan bir grup sismik kayıtın ölçeklenerek yapısal sisteme etki ettirilerek, bu etki altında, elastik tepkiden genel dinamik yapısal stabiliteye ulaşmayı öneren bir analiz türüdür. Bu çalışmada çekme donatısı oranı ve beton dayanımının orta yükseklikli betonarme yapıların sismik davranışı üzerine etkisi incelenmiştir. Sayısal çalışma olarak 5 açıklıklı, 5 ve 7 katlı iki farklı sayısal model oluşturulmuştur. Her bir model için üç farklı çekme donatısı oranı ve iki farklı beton sınıfı seçilmiştir. Çekme donatısı oranları, basınç bölgesindeki donatının yarısı, bir katı ve iki katı olarak belirlenmiştir. Sayısal modeller artımsal dinamik yük altında analiz edilmiştir. Bu analiz için on bir farklı sismik kayıt kullanılmıştır. Bu kayıtlar 0.2g’den 1.2g’ye kadar 0.2g artımlar ile ölçeklenmiştir. Yapılan artımsal dinamik analizler sonucunda yapısal sistemlerin taban kesme kuvvetleri ve karşılık gelen çatı katı deplasmanları karşılaştırılmıştır. Elde edilen analiz sonuçlarına göre kirişlerde çekme donatısı oranını arttırmak çatı katı deplasmanını düşürmese de katlar arası göreli ötelenmeyi azaltmıştır, böylelikle hasar seviyesini azaltacağı için hasar oranını düşürmektedir.

Kaynakça

  • Ashour, S. A., (2000) Effect of compressive strength and tensile reinforcement ratio on flexural behavior of high-strength concrete beams, Engineering structures, 22(5), 413-423.
  • Duan, H. & Hueste, M. B. D., (2012) Seismic performance of a reinforced concrete frame building in China, Engineering Structures, 41, 77–89.
  • Fantilli, A. P., Ferretti, D., Iori, I., & Vallini, P., (1999), Behaviour of R/C elements in bending and tension: the problem of minimum reinforcement ratio, European Structural Integrity Society, 99-125.
  • Ghatte, H. F. (2019) Evaluation of reinforcing bars ratio effects on scc beam-column joint performance, Uludağ University Journal of The Faculty of Engineering, 24(3), 141-152.
  • Jouneghani, H. G., & Haghollahi, A. (2020) Assessing the seismic behavior of steel moment frames equipped by elliptical brace through incremental dynamic analysis (IDA), Earthquake Engineering and Engineering Vibration, 19, 435-449.
  • Karabulut, A., (2011) TDY2007 Yönetmeliği ve FEMA 440 raporunda tanimlanan doğrusal olmayan analiz yöntemlerinin mevcut betonarme binalar için karşilaştirilmasi. İstanbul Teknik Üniversitesi, Yüksek Lisans Tezi.
  • Kordtabar, B., & Dehestani, M. (2020). Effect of corrosion in reinforced concrete frame components on pushover behavior and ductility of frame. Structural Concrete.
  • Kwon, O. S., Kim, E., (2010) Case study: Analytical investigation on the failure of a two-story RC building damaged during the 2007 Pisco-Chincha earthquake, Engineering Structures, 32, 1876-1887.
  • Lee, T., Pan, & A. D., (2003) Estimating the relationship between tension reinforcement and ductility of reinforced concrete beam sections, Engineering Structures. 25(8), 1057-1067.
  • Mander, J. B., Priestley., M. J. N., & Park, R., (1988) Theoretical stress-strain model for confined concrete, Journal of Structural Engineering (ASCE), 1804–1826.
  • Martineau, M. O., Lopez, A. F., & Vielma, J. C. (2020). Effect of Earthquake Ground Motion Duration on the Seismic Response of a Low-Rise RC Building. Advances in Civil Engineering, 2020.
  • Mwafy, A., & Khalifa, S. (2017). Effect of vertical structural irregularity on seismic design of tall buildings. The Structural Design of Tall and Special Buildings, 26(18), e1399.
  • Nazari, Y. R., & Saatcioglu, M. (2017). Seismic vulnerability assessment of concrete shear wall buildings through fragility analysis. Journal of Building Engineering, 12, 202-209.
  • Onat, O. (2019). Experimental damage evaluation of prototype infill wall based on forced vibration test. Adv Concr Constr, 8(2), 77-90. doi.org/10.12989/acc.2019.8.2.077
  • Onat, O., Correia, A. A., Lourenço, P. B., & Koçak, A., (2018) Assessment of the combined in‐plane and out‐of‐plane behavior of brick infill walls within reinforced concrete frames under seismic loading, Earthquake Engineering & Structural Dynamics, 47(14), 2821-2839.
  • Onat, O., Lourenco, P. B., & Kocak, A. (2016) Nonlinear analysis of RC structure with massive infill wall exposed to shake table, Earthquake and Structures, 10(4), 811-828.
  • Onat, O., Lourenco, P. B., & Kocak, A. (2015) Experimental and numerical analysis of RC structure with two leaf cavity wall subjected to shake table, Structural Engineering & Mechanics, 55(5), 1037-1055.
  • Onat, O., Lourenço, P. B., & Koçak, A. (2017), Structural model calibration of RC structure with two-leaf cavity brick infill wall by deterministic approach, Građevinar, 69(03), 171-181.
  • Onat, O., Yön, B., & Calayır, Y. (2018), Seismic assessment of existing RC buildings before and after shear-wall retrofitting, Građevinar, 70(08), 703-712.
  • Öncü, M. E., & Yön, M. Ş. (2016). Assessment of nonlinear static and incremental dynamic analyses for RC structures. Computers and Concrete, 18(6), 1195.
  • Rizwan, M., Ahmad, N., & Khan, A. N. (2020, November). Seismic performance assessment of reinforced concrete moment resisting frame with low strength concrete. In Structures. Elsevier.
  • Rodrigues, H., (2012) Biaxial seismic behaviour of reinforced concrete columns, PhD Thesis, Universidade de Aveiro, Portugal
  • SeismoStruct v7- A computer program developed for the accurate analytical assessment of structures, subjected to earthquake strong motion. Available online: www.seismosoft.com [May 8, 2019]
  • Theriault, M., & Benmokrane, B., (1998) Effects of FRP reinforcement ratio and concrete strength on flexural behavior of concrete beams, Journal of composites for construction, 2(1), 7-16.
  • Turkey Ministry of Environment and Urbanization, (2018) Turkish Building Earthquake Code, Ankara, Turkey.
  • Vamvatsikos, D., & Cornell, C. A., (2002) Incremental dynamic analysis, Earthquake Engineering & Structural Dynamics, 31(3), 491-514.
  • Vamvatsikos, D., & Cornell, C. A., (2004) Applied incremental dynamic analysis, Earthquake Spectra, 20(2), 523-553.
  • Wu, C., Pan, Z., Jin, C., & Meng, S. (2020). Evaluation of deformation-based seismic performance of RECC frames based on IDA method. Engineering Structures, 211, 110499.
  • Yön, B., (2016) An evaluation of the seismic response of symmetric steel space buildings, Steel and Composite Structures, 20(2), 399-412.
  • Yön, B., Öncü, M. E., & Calayır, Y., (2014) Effects of seismic zones and site conditions on response of RC buildings, Gradevinar, 67(6), 585-596.
  • Yön, B., & Calayır, Y. (2015). The soil effect on the seismic behaviour of reinforced concrete buildings. Earthquakes and structures, 8(1), 133-152.
  • Yön, B. (2020). Seismic vulnerability assessment of RC buildings according to the 2007 and 2018 Turkish seismic codes. Earthquakes and Structures, 18(6), 709-718.

INCREMENTAL DYNAMIC ANALYSIS OF MID-RISE RC BUILDINGS TO ASSESS EFFECT OF CONCRETE STRENGTH AND TENSION REINFORCEMENT RATIO IN BEAM

Yıl 2021, , 283 - 300, 30.04.2021
https://doi.org/10.17482/uumfd.831375

Öz

IDA is a parametric analysis method that has used commonly in several different forms to assess the structural performance under seismic loadings. This paper focuses on the effect of tension reinforcement ratio and concrete strength to performance of reinforced concrete (RC) structures. For numerical analysis, two RC frame type structures were selected. One of them is 5 stories other of them is 7 stories. Two different concrete class, C20 and C25, were considered and three tension reinforcement ratios were considered for analyses. Tension reinforcement ratios were determined half of the compressive reinforcement, equal to compressive reinforcement and double of compressive reinforcement ratio. Incremental dynamic analyses (IDA) were performed on these buildings. In this study to execute IDA, eleven seismic acceleration benchmark records were multiplied with various scaling factors from 0.2 to 1.2. Maximum base shear and corresponding roof displacement responses obtained from IDA curves were generated according to these responses. IDA curves were compared with each other by using suitable graphs. According to analyses results, increasing tension reinforcement of beam elements has not any effect on maximum roof displacement. Whereas, increasing of tension reinforcement decreased interstorey drift ratio. This result limited the damage due to decreased interstorey drift ratio.

Kaynakça

  • Ashour, S. A., (2000) Effect of compressive strength and tensile reinforcement ratio on flexural behavior of high-strength concrete beams, Engineering structures, 22(5), 413-423.
  • Duan, H. & Hueste, M. B. D., (2012) Seismic performance of a reinforced concrete frame building in China, Engineering Structures, 41, 77–89.
  • Fantilli, A. P., Ferretti, D., Iori, I., & Vallini, P., (1999), Behaviour of R/C elements in bending and tension: the problem of minimum reinforcement ratio, European Structural Integrity Society, 99-125.
  • Ghatte, H. F. (2019) Evaluation of reinforcing bars ratio effects on scc beam-column joint performance, Uludağ University Journal of The Faculty of Engineering, 24(3), 141-152.
  • Jouneghani, H. G., & Haghollahi, A. (2020) Assessing the seismic behavior of steel moment frames equipped by elliptical brace through incremental dynamic analysis (IDA), Earthquake Engineering and Engineering Vibration, 19, 435-449.
  • Karabulut, A., (2011) TDY2007 Yönetmeliği ve FEMA 440 raporunda tanimlanan doğrusal olmayan analiz yöntemlerinin mevcut betonarme binalar için karşilaştirilmasi. İstanbul Teknik Üniversitesi, Yüksek Lisans Tezi.
  • Kordtabar, B., & Dehestani, M. (2020). Effect of corrosion in reinforced concrete frame components on pushover behavior and ductility of frame. Structural Concrete.
  • Kwon, O. S., Kim, E., (2010) Case study: Analytical investigation on the failure of a two-story RC building damaged during the 2007 Pisco-Chincha earthquake, Engineering Structures, 32, 1876-1887.
  • Lee, T., Pan, & A. D., (2003) Estimating the relationship between tension reinforcement and ductility of reinforced concrete beam sections, Engineering Structures. 25(8), 1057-1067.
  • Mander, J. B., Priestley., M. J. N., & Park, R., (1988) Theoretical stress-strain model for confined concrete, Journal of Structural Engineering (ASCE), 1804–1826.
  • Martineau, M. O., Lopez, A. F., & Vielma, J. C. (2020). Effect of Earthquake Ground Motion Duration on the Seismic Response of a Low-Rise RC Building. Advances in Civil Engineering, 2020.
  • Mwafy, A., & Khalifa, S. (2017). Effect of vertical structural irregularity on seismic design of tall buildings. The Structural Design of Tall and Special Buildings, 26(18), e1399.
  • Nazari, Y. R., & Saatcioglu, M. (2017). Seismic vulnerability assessment of concrete shear wall buildings through fragility analysis. Journal of Building Engineering, 12, 202-209.
  • Onat, O. (2019). Experimental damage evaluation of prototype infill wall based on forced vibration test. Adv Concr Constr, 8(2), 77-90. doi.org/10.12989/acc.2019.8.2.077
  • Onat, O., Correia, A. A., Lourenço, P. B., & Koçak, A., (2018) Assessment of the combined in‐plane and out‐of‐plane behavior of brick infill walls within reinforced concrete frames under seismic loading, Earthquake Engineering & Structural Dynamics, 47(14), 2821-2839.
  • Onat, O., Lourenco, P. B., & Kocak, A. (2016) Nonlinear analysis of RC structure with massive infill wall exposed to shake table, Earthquake and Structures, 10(4), 811-828.
  • Onat, O., Lourenco, P. B., & Kocak, A. (2015) Experimental and numerical analysis of RC structure with two leaf cavity wall subjected to shake table, Structural Engineering & Mechanics, 55(5), 1037-1055.
  • Onat, O., Lourenço, P. B., & Koçak, A. (2017), Structural model calibration of RC structure with two-leaf cavity brick infill wall by deterministic approach, Građevinar, 69(03), 171-181.
  • Onat, O., Yön, B., & Calayır, Y. (2018), Seismic assessment of existing RC buildings before and after shear-wall retrofitting, Građevinar, 70(08), 703-712.
  • Öncü, M. E., & Yön, M. Ş. (2016). Assessment of nonlinear static and incremental dynamic analyses for RC structures. Computers and Concrete, 18(6), 1195.
  • Rizwan, M., Ahmad, N., & Khan, A. N. (2020, November). Seismic performance assessment of reinforced concrete moment resisting frame with low strength concrete. In Structures. Elsevier.
  • Rodrigues, H., (2012) Biaxial seismic behaviour of reinforced concrete columns, PhD Thesis, Universidade de Aveiro, Portugal
  • SeismoStruct v7- A computer program developed for the accurate analytical assessment of structures, subjected to earthquake strong motion. Available online: www.seismosoft.com [May 8, 2019]
  • Theriault, M., & Benmokrane, B., (1998) Effects of FRP reinforcement ratio and concrete strength on flexural behavior of concrete beams, Journal of composites for construction, 2(1), 7-16.
  • Turkey Ministry of Environment and Urbanization, (2018) Turkish Building Earthquake Code, Ankara, Turkey.
  • Vamvatsikos, D., & Cornell, C. A., (2002) Incremental dynamic analysis, Earthquake Engineering & Structural Dynamics, 31(3), 491-514.
  • Vamvatsikos, D., & Cornell, C. A., (2004) Applied incremental dynamic analysis, Earthquake Spectra, 20(2), 523-553.
  • Wu, C., Pan, Z., Jin, C., & Meng, S. (2020). Evaluation of deformation-based seismic performance of RECC frames based on IDA method. Engineering Structures, 211, 110499.
  • Yön, B., (2016) An evaluation of the seismic response of symmetric steel space buildings, Steel and Composite Structures, 20(2), 399-412.
  • Yön, B., Öncü, M. E., & Calayır, Y., (2014) Effects of seismic zones and site conditions on response of RC buildings, Gradevinar, 67(6), 585-596.
  • Yön, B., & Calayır, Y. (2015). The soil effect on the seismic behaviour of reinforced concrete buildings. Earthquakes and structures, 8(1), 133-152.
  • Yön, B. (2020). Seismic vulnerability assessment of RC buildings according to the 2007 and 2018 Turkish seismic codes. Earthquakes and Structures, 18(6), 709-718.
Toplam 32 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular İnşaat Mühendisliği
Bölüm Araştırma Makaleleri
Yazarlar

Onur Onat 0000-0001-5284-2005

Burak Yön 0000-0001-5155-6963

Yayımlanma Tarihi 30 Nisan 2021
Gönderilme Tarihi 25 Kasım 2020
Kabul Tarihi 7 Şubat 2021
Yayımlandığı Sayı Yıl 2021

Kaynak Göster

APA Onat, O., & Yön, B. (2021). INCREMENTAL DYNAMIC ANALYSIS OF MID-RISE RC BUILDINGS TO ASSESS EFFECT OF CONCRETE STRENGTH AND TENSION REINFORCEMENT RATIO IN BEAM. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi, 26(1), 283-300. https://doi.org/10.17482/uumfd.831375
AMA Onat O, Yön B. INCREMENTAL DYNAMIC ANALYSIS OF MID-RISE RC BUILDINGS TO ASSESS EFFECT OF CONCRETE STRENGTH AND TENSION REINFORCEMENT RATIO IN BEAM. UUJFE. Nisan 2021;26(1):283-300. doi:10.17482/uumfd.831375
Chicago Onat, Onur, ve Burak Yön. “INCREMENTAL DYNAMIC ANALYSIS OF MID-RISE RC BUILDINGS TO ASSESS EFFECT OF CONCRETE STRENGTH AND TENSION REINFORCEMENT RATIO IN BEAM”. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi 26, sy. 1 (Nisan 2021): 283-300. https://doi.org/10.17482/uumfd.831375.
EndNote Onat O, Yön B (01 Nisan 2021) INCREMENTAL DYNAMIC ANALYSIS OF MID-RISE RC BUILDINGS TO ASSESS EFFECT OF CONCRETE STRENGTH AND TENSION REINFORCEMENT RATIO IN BEAM. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi 26 1 283–300.
IEEE O. Onat ve B. Yön, “INCREMENTAL DYNAMIC ANALYSIS OF MID-RISE RC BUILDINGS TO ASSESS EFFECT OF CONCRETE STRENGTH AND TENSION REINFORCEMENT RATIO IN BEAM”, UUJFE, c. 26, sy. 1, ss. 283–300, 2021, doi: 10.17482/uumfd.831375.
ISNAD Onat, Onur - Yön, Burak. “INCREMENTAL DYNAMIC ANALYSIS OF MID-RISE RC BUILDINGS TO ASSESS EFFECT OF CONCRETE STRENGTH AND TENSION REINFORCEMENT RATIO IN BEAM”. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi 26/1 (Nisan 2021), 283-300. https://doi.org/10.17482/uumfd.831375.
JAMA Onat O, Yön B. INCREMENTAL DYNAMIC ANALYSIS OF MID-RISE RC BUILDINGS TO ASSESS EFFECT OF CONCRETE STRENGTH AND TENSION REINFORCEMENT RATIO IN BEAM. UUJFE. 2021;26:283–300.
MLA Onat, Onur ve Burak Yön. “INCREMENTAL DYNAMIC ANALYSIS OF MID-RISE RC BUILDINGS TO ASSESS EFFECT OF CONCRETE STRENGTH AND TENSION REINFORCEMENT RATIO IN BEAM”. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi, c. 26, sy. 1, 2021, ss. 283-00, doi:10.17482/uumfd.831375.
Vancouver Onat O, Yön B. INCREMENTAL DYNAMIC ANALYSIS OF MID-RISE RC BUILDINGS TO ASSESS EFFECT OF CONCRETE STRENGTH AND TENSION REINFORCEMENT RATIO IN BEAM. UUJFE. 2021;26(1):283-300.

DUYURU:

30.03.2021- Nisan 2021 (26/1) sayımızdan itibaren TR-Dizin yeni kuralları gereği, dergimizde basılacak makalelerde, ilk gönderim aşamasında Telif Hakkı Formu yanısıra, Çıkar Çatışması Bildirim Formu ve Yazar Katkısı Bildirim Formu da tüm yazarlarca imzalanarak gönderilmelidir. Yayınlanacak makalelerde de makale metni içinde "Çıkar Çatışması" ve "Yazar Katkısı" bölümleri yer alacaktır. İlk gönderim aşamasında doldurulması gereken yeni formlara "Yazım Kuralları" ve "Makale Gönderim Süreci" sayfalarımızdan ulaşılabilir. (Değerlendirme süreci bu tarihten önce tamamlanıp basımı bekleyen makalelerin yanısıra değerlendirme süreci devam eden makaleler için, yazarlar tarafından ilgili formlar doldurularak sisteme yüklenmelidir).  Makale şablonları da, bu değişiklik doğrultusunda güncellenmiştir. Tüm yazarlarımıza önemle duyurulur.

Bursa Uludağ Üniversitesi, Mühendislik Fakültesi Dekanlığı, Görükle Kampüsü, Nilüfer, 16059 Bursa. Tel: (224) 294 1907, Faks: (224) 294 1903, e-posta: mmfd@uludag.edu.tr