Araştırma Makalesi
BibTex RIS Kaynak Göster

ESTIMATION OF PAIN THRESHOLD FROM EEG SIGNALS OF SUBJECTS IN PHYSICAL THERAPY USING LONG-SHORT-TERM MEMORY DEEP LEARNING MODEL

Yıl 2021, , 447 - 460, 31.08.2021
https://doi.org/10.17482/uumfd.883100

Öz

Pain is a natural stimulation to protect the whole body. An overreaction to pain can damage the tissues. Therefore, it is important to know the angle at which pain is felt when routinely measuring joint range of motion during the first examination. Detection of pain with the change in characteristics of electroencephalogram signals at the moments when pain occurs is the novelty of this study. The characteristics of the signal with power band changes were obtained by frequency analysis of the electroencephalogram signals. Pain was detected by classifying these characteristics with the Long Short Term Memory deep learning model. Validation of the model was performed with records obtained from 43 volunteer subjects with a 14-channel wireless Emotive brand electroencephalogram device. 96.1% success in binary classification as with pain or without pain and 89.6% success in multi-class classification as with high pain, low pain and without pain was achieved. This success is a quality that can support specialists in diagnosis and treatment by determining the threshold where pain occurs during the first physical therapy examination from the electroencephalogram signals.

Kaynakça

  • Camfferman, D., Moseley, G. L., Gertz, K., Pettet, M. W., Jensen, M. P. (2017) Waking EEG cortical markers of chronic pain and sleepiness, Pain Medicine, 18(10), 1921-1931. doi:10.1093/pm/pnw294
  • Cao Z, Lai K.L., Lin C.T., Chuang C.H., Chou C.C., Wang S.J. (2018) Exploring the complexity of resting state EEG before migraine attacks, Cephalalgia, 38 (7): 1296-1306. doi:10.1177/0333102417733953
  • Cao, T., Liu, D., Wang, Q., Tao, L., Sun, J. (2020) Frequency-Domain EEG Analysis for Sudden Pain Perception, IEEE International Conference on Artificial Intelligence and Information Systems, Dalian, China , 434-440. doi:10.1109/ICAIIS49377.2020.9194928
  • Chen, Z., Zhang, Q., Tong, A. P. S., Manders, T. R., Wang, J. (2017) Deciphering neuronal population codes for acute thermal pain, Journal of neural engineering, 14(3), 036023. doi:10.1088/1741-2552/aa644d
  • Das, P. and Babadi, B. (2020) Multitaper spectral analysis of neuronal spiking activity driven by latent stationary processes, Signal Processing, 170, 107429. doi:10.1016/j.sigpro.2019.107429
  • Emotiv, E. P. O. C. (2014). Brain-Computer Interface and scientific contextual EEG. EMOTIV EPOC and testbench specifications,” EMOTIV Systems. Available at: http://emotiv.com/files/Emotiv-EPOC-Product-Sheet-2014.pdf. [Access:18-Tem 2020].
  • Ertam, F. (2019) An effective gender recognition approach using voice data via deeper LSTM networks. Applied Acoustics, 156, 351-358. doi:10.1016/j.apacoust.2019.07.033
  • Gross, J., Schnitzler, A., Timmermann, L., Ploner, M. (2007) Gamma oscillations in human primary somatosensory cortex reflect pain perception, PLoS Biol, 5(5), e133. doi:10.1371/journal.pbio.0050133
  • Homan, R. W., Herman, J., Purdy, P. (1987) Cerebral location of international 10–20 system electrode placement, Electroencephalography and clinical neurophysiology, 66(4), 376-382. doi:10.1016/0013-4694(87)90206-9
  • Hu, X., Yuan, S., Xu, F., Leng, Y., Yuan, K., & Yuan, Q. (2020) Scalp EEG classification using deep Bi-LSTM network for seizure detection, Computers in Biology and Medicine, 124, 103919. doi:10.1016/j.compbiomed.2020.103919
  • Kara, A. Uzun-Kısa Süreli Bellek Ağı Kullanarak Global Güneş Işınımı Zaman Serileri Tahmini, Gazi Üniversitesi Fen Bilimleri Dergisi Part C: Tasarım ve Teknoloji, 7(4), 882-892. doi:10.29109/gujsc.571831
  • Kim, H., Neubert, J. K., Rowan, J. S., Brahim, J. S., Iadarola, M. J., Dionne, R. A. (2004) Comparison of experimental and acute clinical pain responses in humans as pain phenotypes, The Journal of Pain, 5(7), 377-384. doi:10.1016/j.jpain.2004.06.003
  • Kisler, L. B., Kim, J. A., Hemington, K. S., Rogachov, A., Cheng, J. C., Bosma, R. L., Davis, K. D. (2020) Abnormal alpha band power in the dynamic pain connectome is a marker of chronic pain with a neuropathic component, NeuroImage: Clinical, 102241. doi:10.1016/j.nicl.2020.102241
  • Li, J., Dimitrakopoulos, G. N., Thangavel, P., Chen, G., Sun, Y., Guo, Z., Bezerianos, A. (2019). What Are Spectral and Spatial Distributions of EEG-EMG Correlations in Overground Walking? An Exploratory Study, IEEE Access, 7, 143935-143946. doi:10.1016/j.nicl.2020.102241
  • Li, M. W., Geng, J., Hong, W. C., Zhang, L. D. (2019) Periodogram estimation based on LSSVR-CCPSO compensation for forecasting ship motion. Nonlinear Dynamics, 97(4), 2579-2594. doi:10.1007/s11071-019-05149-5
  • Nath, D., Singh, M., Sethia, D., Kalra, D., & Indu, S. (2020) An Efficient Approach to EEG-Based Emotion Recognition using LSTM Network, 16th IEEE International Colloquium on Signal Processing & Its Applications, Langkawi Island, Malaysia, 88-92. doi:10.1109/CSPA48992.2020.9068691
  • Özmen, N. G., Durmuş, E., Sadreddini, Z. (2017) Müzik Sınıflandırması Beyin Bilgisayar Arayüzü Uygulamaları İçin Bir Alternatif Olabilir Mi?, Uludağ University Journal of the Faculty of Engineering, 22(2), 11-22. doi:10.17482/uumfd.335419
  • Panavaranan, P. and Wongsawat, Y. (2013) EEG-based pain estimation via fuzzy logic and polynomial kernel support vector machine, 6th Biomedical Engineering International Conference, Amphur Muang, Krabi, Thailand, 1-4. doi:10.1109/BMEiCon.2013.6687668
  • Prichep, L. S., Shah, J., Merkin, H., Hiesiger, E. M. (2018) Exploration of the pathophysiology of chronic pain using quantitative EEG source localization, Clinical EEG and Neuroscience, 49(2), 103-113. doi:10.1177/1550059417736444
  • Saeedi, A., Saeedi, M., Maghsoudi, A., & Shalbaf, A. (2020) Major depressive disorder diagnosis based on effective connectivity in EEG signals: A convolutional neural network and long short-term memory approach, Cognitive Neurodynamics, 1-14. doi:10.1007/s11571-020-09619-0
  • Schulz, E., May E.S., Postorino, M., Tiemann, L., Nickel, M.M., Witkovsky, V., Schmidt, P., Gross, J., Ploner, M. (2015) Prefrontal gamma oscillations encode tonic pain in humans, Cereb Cortex, 25 (11) 4407–4414. doi:10.1093/cercor/bhv043
  • Vanneste, S., Song, J. J., De Ridder, D. (2018) Thalamocortical dysrhythmia detected by machine learning, Nature communications, 9(1), 1-13. doi:10.1038/s41467-018-02820-0
  • Veerbeek, J. M., Wegen, E., Peppen, R., Wees, P. J., Hendriks, E., Rietberg, M., Kwakkel, G. (2014) What is the evidence for physical therapy poststroke? A systematic review and meta-analysis, PloS one, 9(2), e87987. doi:10.1371/journal.pone.0087987
  • Yu, M., Sun, Y., Zhu, B., Zhu, L., Lin, Y., Tang, X, Dong, M. (2020) Diverse frequency band-based convolutional neural networks for tonic cold pain assessment using EEG, Neurocomputing, 378, 270-282. doi:10.1016/j.neucom.2019.10.023

Fizik Tedavide Hastaların EEG Sinyallerinden Ağrı Eşiğinin Uzun Kısa Süreli Hafıza Derin Öğrenme Modeliyle Kestirimi

Yıl 2021, , 447 - 460, 31.08.2021
https://doi.org/10.17482/uumfd.883100

Öz

Ağrı, tüm vücudu korumak için doğal bir uyarıdır. Bu uyarıya karşı gösterilecek aşırı reaksiyon, dokuda hasarlara neden olmaktadır. İlk muayenede rutin olarak eklem hareket açıklığı (EHA) ölçümünde ağrının hissedildiği açının bilinmesi önemlidir. Ağrının oluştuğu anlardaki EEG sinyallerindeki güç değişimi ile ağrının tespiti bu çalışmanın yeniliğidir. EEG sinyallerinin frekans analizi ile güç bandı değişimleri ile sinyale ait özellikler elde edilmiştir. Bu özellikler LSTM derin öğrenme modeli ile sınıflandırılarak ağrı tespit edilmiştir. Modelin doğrulanması bu çalışma kapsamında 43 gönüllü hastadan, 14 kanallı kablosuz Emotive marka EEG cihazıyla alınan kayıtlar ile yapılmıştır. İkili sınıflandırmada %96,1 çoklu sınıflandırmada ise %89,6’lik başarı elde edilmiştir. Bu başarı, ilk fizik tedavi muayenesi sırasında ağrının oluştuğu eşiğin EEG sinyallerinden belirlemesiyle uzmanları tanı ve tedavide destekleyebilecek bir niteliktir.

Kaynakça

  • Camfferman, D., Moseley, G. L., Gertz, K., Pettet, M. W., Jensen, M. P. (2017) Waking EEG cortical markers of chronic pain and sleepiness, Pain Medicine, 18(10), 1921-1931. doi:10.1093/pm/pnw294
  • Cao Z, Lai K.L., Lin C.T., Chuang C.H., Chou C.C., Wang S.J. (2018) Exploring the complexity of resting state EEG before migraine attacks, Cephalalgia, 38 (7): 1296-1306. doi:10.1177/0333102417733953
  • Cao, T., Liu, D., Wang, Q., Tao, L., Sun, J. (2020) Frequency-Domain EEG Analysis for Sudden Pain Perception, IEEE International Conference on Artificial Intelligence and Information Systems, Dalian, China , 434-440. doi:10.1109/ICAIIS49377.2020.9194928
  • Chen, Z., Zhang, Q., Tong, A. P. S., Manders, T. R., Wang, J. (2017) Deciphering neuronal population codes for acute thermal pain, Journal of neural engineering, 14(3), 036023. doi:10.1088/1741-2552/aa644d
  • Das, P. and Babadi, B. (2020) Multitaper spectral analysis of neuronal spiking activity driven by latent stationary processes, Signal Processing, 170, 107429. doi:10.1016/j.sigpro.2019.107429
  • Emotiv, E. P. O. C. (2014). Brain-Computer Interface and scientific contextual EEG. EMOTIV EPOC and testbench specifications,” EMOTIV Systems. Available at: http://emotiv.com/files/Emotiv-EPOC-Product-Sheet-2014.pdf. [Access:18-Tem 2020].
  • Ertam, F. (2019) An effective gender recognition approach using voice data via deeper LSTM networks. Applied Acoustics, 156, 351-358. doi:10.1016/j.apacoust.2019.07.033
  • Gross, J., Schnitzler, A., Timmermann, L., Ploner, M. (2007) Gamma oscillations in human primary somatosensory cortex reflect pain perception, PLoS Biol, 5(5), e133. doi:10.1371/journal.pbio.0050133
  • Homan, R. W., Herman, J., Purdy, P. (1987) Cerebral location of international 10–20 system electrode placement, Electroencephalography and clinical neurophysiology, 66(4), 376-382. doi:10.1016/0013-4694(87)90206-9
  • Hu, X., Yuan, S., Xu, F., Leng, Y., Yuan, K., & Yuan, Q. (2020) Scalp EEG classification using deep Bi-LSTM network for seizure detection, Computers in Biology and Medicine, 124, 103919. doi:10.1016/j.compbiomed.2020.103919
  • Kara, A. Uzun-Kısa Süreli Bellek Ağı Kullanarak Global Güneş Işınımı Zaman Serileri Tahmini, Gazi Üniversitesi Fen Bilimleri Dergisi Part C: Tasarım ve Teknoloji, 7(4), 882-892. doi:10.29109/gujsc.571831
  • Kim, H., Neubert, J. K., Rowan, J. S., Brahim, J. S., Iadarola, M. J., Dionne, R. A. (2004) Comparison of experimental and acute clinical pain responses in humans as pain phenotypes, The Journal of Pain, 5(7), 377-384. doi:10.1016/j.jpain.2004.06.003
  • Kisler, L. B., Kim, J. A., Hemington, K. S., Rogachov, A., Cheng, J. C., Bosma, R. L., Davis, K. D. (2020) Abnormal alpha band power in the dynamic pain connectome is a marker of chronic pain with a neuropathic component, NeuroImage: Clinical, 102241. doi:10.1016/j.nicl.2020.102241
  • Li, J., Dimitrakopoulos, G. N., Thangavel, P., Chen, G., Sun, Y., Guo, Z., Bezerianos, A. (2019). What Are Spectral and Spatial Distributions of EEG-EMG Correlations in Overground Walking? An Exploratory Study, IEEE Access, 7, 143935-143946. doi:10.1016/j.nicl.2020.102241
  • Li, M. W., Geng, J., Hong, W. C., Zhang, L. D. (2019) Periodogram estimation based on LSSVR-CCPSO compensation for forecasting ship motion. Nonlinear Dynamics, 97(4), 2579-2594. doi:10.1007/s11071-019-05149-5
  • Nath, D., Singh, M., Sethia, D., Kalra, D., & Indu, S. (2020) An Efficient Approach to EEG-Based Emotion Recognition using LSTM Network, 16th IEEE International Colloquium on Signal Processing & Its Applications, Langkawi Island, Malaysia, 88-92. doi:10.1109/CSPA48992.2020.9068691
  • Özmen, N. G., Durmuş, E., Sadreddini, Z. (2017) Müzik Sınıflandırması Beyin Bilgisayar Arayüzü Uygulamaları İçin Bir Alternatif Olabilir Mi?, Uludağ University Journal of the Faculty of Engineering, 22(2), 11-22. doi:10.17482/uumfd.335419
  • Panavaranan, P. and Wongsawat, Y. (2013) EEG-based pain estimation via fuzzy logic and polynomial kernel support vector machine, 6th Biomedical Engineering International Conference, Amphur Muang, Krabi, Thailand, 1-4. doi:10.1109/BMEiCon.2013.6687668
  • Prichep, L. S., Shah, J., Merkin, H., Hiesiger, E. M. (2018) Exploration of the pathophysiology of chronic pain using quantitative EEG source localization, Clinical EEG and Neuroscience, 49(2), 103-113. doi:10.1177/1550059417736444
  • Saeedi, A., Saeedi, M., Maghsoudi, A., & Shalbaf, A. (2020) Major depressive disorder diagnosis based on effective connectivity in EEG signals: A convolutional neural network and long short-term memory approach, Cognitive Neurodynamics, 1-14. doi:10.1007/s11571-020-09619-0
  • Schulz, E., May E.S., Postorino, M., Tiemann, L., Nickel, M.M., Witkovsky, V., Schmidt, P., Gross, J., Ploner, M. (2015) Prefrontal gamma oscillations encode tonic pain in humans, Cereb Cortex, 25 (11) 4407–4414. doi:10.1093/cercor/bhv043
  • Vanneste, S., Song, J. J., De Ridder, D. (2018) Thalamocortical dysrhythmia detected by machine learning, Nature communications, 9(1), 1-13. doi:10.1038/s41467-018-02820-0
  • Veerbeek, J. M., Wegen, E., Peppen, R., Wees, P. J., Hendriks, E., Rietberg, M., Kwakkel, G. (2014) What is the evidence for physical therapy poststroke? A systematic review and meta-analysis, PloS one, 9(2), e87987. doi:10.1371/journal.pone.0087987
  • Yu, M., Sun, Y., Zhu, B., Zhu, L., Lin, Y., Tang, X, Dong, M. (2020) Diverse frequency band-based convolutional neural networks for tonic cold pain assessment using EEG, Neurocomputing, 378, 270-282. doi:10.1016/j.neucom.2019.10.023
Toplam 24 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Elektrik Mühendisliği
Bölüm Araştırma Makaleleri
Yazarlar

Kutay Güneç 0000-0002-9801-9222

Ömer Kasım 0000-0003-4021-5412

Mustafa Tosun 0000-0001-7167-4561

Emine Büyükköroğlu 0000-0002-3246-4964

Yayımlanma Tarihi 31 Ağustos 2021
Gönderilme Tarihi 19 Şubat 2021
Kabul Tarihi 28 Haziran 2021
Yayımlandığı Sayı Yıl 2021

Kaynak Göster

APA Güneç, K., Kasım, Ö., Tosun, M., Büyükköroğlu, E. (2021). ESTIMATION OF PAIN THRESHOLD FROM EEG SIGNALS OF SUBJECTS IN PHYSICAL THERAPY USING LONG-SHORT-TERM MEMORY DEEP LEARNING MODEL. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi, 26(2), 447-460. https://doi.org/10.17482/uumfd.883100
AMA Güneç K, Kasım Ö, Tosun M, Büyükköroğlu E. ESTIMATION OF PAIN THRESHOLD FROM EEG SIGNALS OF SUBJECTS IN PHYSICAL THERAPY USING LONG-SHORT-TERM MEMORY DEEP LEARNING MODEL. UUJFE. Ağustos 2021;26(2):447-460. doi:10.17482/uumfd.883100
Chicago Güneç, Kutay, Ömer Kasım, Mustafa Tosun, ve Emine Büyükköroğlu. “ESTIMATION OF PAIN THRESHOLD FROM EEG SIGNALS OF SUBJECTS IN PHYSICAL THERAPY USING LONG-SHORT-TERM MEMORY DEEP LEARNING MODEL”. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi 26, sy. 2 (Ağustos 2021): 447-60. https://doi.org/10.17482/uumfd.883100.
EndNote Güneç K, Kasım Ö, Tosun M, Büyükköroğlu E (01 Ağustos 2021) ESTIMATION OF PAIN THRESHOLD FROM EEG SIGNALS OF SUBJECTS IN PHYSICAL THERAPY USING LONG-SHORT-TERM MEMORY DEEP LEARNING MODEL. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi 26 2 447–460.
IEEE K. Güneç, Ö. Kasım, M. Tosun, ve E. Büyükköroğlu, “ESTIMATION OF PAIN THRESHOLD FROM EEG SIGNALS OF SUBJECTS IN PHYSICAL THERAPY USING LONG-SHORT-TERM MEMORY DEEP LEARNING MODEL”, UUJFE, c. 26, sy. 2, ss. 447–460, 2021, doi: 10.17482/uumfd.883100.
ISNAD Güneç, Kutay vd. “ESTIMATION OF PAIN THRESHOLD FROM EEG SIGNALS OF SUBJECTS IN PHYSICAL THERAPY USING LONG-SHORT-TERM MEMORY DEEP LEARNING MODEL”. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi 26/2 (Ağustos 2021), 447-460. https://doi.org/10.17482/uumfd.883100.
JAMA Güneç K, Kasım Ö, Tosun M, Büyükköroğlu E. ESTIMATION OF PAIN THRESHOLD FROM EEG SIGNALS OF SUBJECTS IN PHYSICAL THERAPY USING LONG-SHORT-TERM MEMORY DEEP LEARNING MODEL. UUJFE. 2021;26:447–460.
MLA Güneç, Kutay vd. “ESTIMATION OF PAIN THRESHOLD FROM EEG SIGNALS OF SUBJECTS IN PHYSICAL THERAPY USING LONG-SHORT-TERM MEMORY DEEP LEARNING MODEL”. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi, c. 26, sy. 2, 2021, ss. 447-60, doi:10.17482/uumfd.883100.
Vancouver Güneç K, Kasım Ö, Tosun M, Büyükköroğlu E. ESTIMATION OF PAIN THRESHOLD FROM EEG SIGNALS OF SUBJECTS IN PHYSICAL THERAPY USING LONG-SHORT-TERM MEMORY DEEP LEARNING MODEL. UUJFE. 2021;26(2):447-60.

DUYURU:

30.03.2021- Nisan 2021 (26/1) sayımızdan itibaren TR-Dizin yeni kuralları gereği, dergimizde basılacak makalelerde, ilk gönderim aşamasında Telif Hakkı Formu yanısıra, Çıkar Çatışması Bildirim Formu ve Yazar Katkısı Bildirim Formu da tüm yazarlarca imzalanarak gönderilmelidir. Yayınlanacak makalelerde de makale metni içinde "Çıkar Çatışması" ve "Yazar Katkısı" bölümleri yer alacaktır. İlk gönderim aşamasında doldurulması gereken yeni formlara "Yazım Kuralları" ve "Makale Gönderim Süreci" sayfalarımızdan ulaşılabilir. (Değerlendirme süreci bu tarihten önce tamamlanıp basımı bekleyen makalelerin yanısıra değerlendirme süreci devam eden makaleler için, yazarlar tarafından ilgili formlar doldurularak sisteme yüklenmelidir).  Makale şablonları da, bu değişiklik doğrultusunda güncellenmiştir. Tüm yazarlarımıza önemle duyurulur.

Bursa Uludağ Üniversitesi, Mühendislik Fakültesi Dekanlığı, Görükle Kampüsü, Nilüfer, 16059 Bursa. Tel: (224) 294 1907, Faks: (224) 294 1903, e-posta: mmfd@uludag.edu.tr