Derleme
BibTex RIS Kaynak Göster

YÜKSEK MUKAVEMETLİ ÇELİKLERDE LAZER KAYNAĞI UYGULAMALARI

Yıl 2021, , 1139 - 1158, 31.12.2021
https://doi.org/10.17482/uumfd.960795

Öz

Lazer uygulamaları, gün geçtikçe kullanımı yaygınlaşan, mühendislikten tıbba kadar geniş yelpazede kendine yer bulan, yüksek teknoloji içeren işlemlerdir. Metal endüstrisinde ise lazer; kesme, yüzey işleme, sertleştirme, kaplama ve kaynak işlemlerinde sıklıkla kullanılmaktadır. Bu çalışmada, lazer kaynağının diğer kaynak türlerine göre önemli avantajlarını ortaya koymak için literatürdeki mevcut çalışmalar incelenmiş ve analiz edilmiştir. Günümüzde otomotiv sanayi için büyük önem arz eden yüksek mukavemetli çeliklerin birleştirilmesi işleminde lazer kaynağı kullanılmaktadır. Yüksek mukavemetli çeliklerin birleştirme işlemi esnasında yaşanan bazı sorunlar vardır ve bu sorunları gidermek için lazer kaynak parametrelerinin optimizasyonu oldukça önemlidir. Bu çalışmada, önceki araştırmacıların yapmış olduğu yüksek mukavemetli çeliklerin kaynak işleminde işlem parametreleri, işlemde oluşan kusurlar, içyapılar, deneysel çalışmalar irdelenmiştir.

Kaynakça

  • 1. Agarwal,G., Gao, H., Amirthalingam, M., Hermans, M. (2018) Study of solidification cracking susceptibility during laser welding in an advanced high strength automotive steel, Metals, 2018, 8, 673; doi:10.3390/met8090673
  • 2. Alves, P.H.O.M., Lima, M.S.F., Raabe, D., Sandim, H.R.Z. (2018) Laser beam welding of dual-phase DP1000 steel, Journal of Materials Processing Technology, 252 (2018) 498–510, doi:10.1016/j.jmatprotec.2017.10.008
  • 3. Anawa E.M., Olabi, A.G. (2008) Optimization of tensile strength of ferritic/austenitic laser welded components, Optics and Lasers in Engineering, 46 (2008) 571–577, doi:10.1016/j.optlaseng.2008.04.014
  • 4. Behera, A. (2020) Optimization of process parameters in laser welding of dis-similar materials, Materials Today; Proceedings 33 (2020) 5765-5769, doi:10.1016/j.matpr.2020.07.148
  • 5. Benyounis, K.Y., Olabi, A.G., Hashmi, M.S.J. (2008) Multi-response optimization of co2 laser-welding process of austenitic stainless steel, Optics and laser technology, 40, 2008, 76-87, doi:10.1016/j.optlastec.2007.03.009
  • 6. Çakmakkaya, M., Çolak, F., Kara, R., Karaağaçlı, A. (2020) Lazer kaynak yöntemiyle birleştirilen otomotiv endüstrisinde kullanılan farklı tür çeliklerin kaynak dikiş geometrisi ve nüfuziyetine kaynak parametrelerinin etkisi, Journal of Materials and Mechatronics A, 1(1), 1-11.
  • 7. Di, H., Sun, Q., Wang, X., Li, J. (2017) Microstructure and properties in dissimilar/similar weld joints between DP780 and DP980 steels processed by fiber laser welding, Journal of Materials Science & Technology, Volume 33, Issue 12, 1561-1571, doi:10.1016/j.jmst.2017.09.001
  • 8. Dong, D., Liu, Y., Yang, Y., Li, J., Ma, M., Jiang, T. (2014) Microstructure and dynamic tensile behavior of DP600 dualphase steel joint by laser welding, Materials Science & Engineering A, 594 (2014) 17–25, doi:10.1016/j.msea.2013.11.047
  • 9. Dong, D., Liu, Y., Wang, L., Yang, Y., Jiang, D., Yang R., Zhang W. (2016) Microstructure and deformation behaviour of laser welded dissimilar dual phase steel joints, Science and Technology of Welding and Joining, 21:2, 75-82, doi:10.1179/1362171815Y.0000000067
  • 10. Evin, E., Tomas, M. (2017) The influence of laser welding on the mechanical properties of dual phase and trip steels, Metals, 7, 239; doi:10.3390/met7070239
  • 11. Farabi, N., Chen, D.L., Zhou, Y. (2011) Microstructure and mechanical properties of laser welded dissimilar DP600/DP980 dual-phase steel joints, Journal of Alloys and Compounds, 509 (2011) 982–989, doi:10.1016/j.jallcom.2010.08.158
  • 12. Fernandes, F.A.O., Oliveira, D.F., Pereira, A.B. (2017) Optimal parameters for laser welding of advanced high-strength steels used in the automotive industry, Manufacturing Engineering Society International Conference 2017, MESIC 2017, 28-30 June 2017, Vigo (Pontevedra), Spain, Procedia Manufacturing, 219-226, doi:10.1016/j.promfg.2017.09.052
  • 13. Ferreira, C.C.A., Braga, V., Siqueira, R.H.M., Carvalho, S.M.C., Lima, M.S.F (2020) Laser beam welding of DP980 dual phase steel at high temperatures, Optics and Laser Technology, 124 (2020) 105964, doi:10.1016/j.optlastec.2019.105964
  • 14. Gong, H., Wang, S., Knysh, P., Korkolis, Y.P. (2016) Experimental investigation of the mechanical response of laser-welded dissimilar blanks from advanced- and ultra-high-strength steels, Materials and Design, 90 (2016) 1115–1123, doi:10.1016/j.matdes.2015.11.057
  • 15. Gu, Z., Yu, S., Han, L., Xu, H. (2012) Influence of welding speed on microstructures and properties of ultra-high strength steel sheets in laser welding, ISIJ International, Vol. 52 (2012), No. 3, 483–487, doi:10.2355/isijinternational.52.483
  • 16. Guo, W., Wan, Z., Peng, P., Jia, Q., Zou, G., Peng, Y. (2018) Microstructure and mechanical properties of fiber laser welded QP980 steel, Journal of Materials Processing Technology, 256 (2018) 229–238, doi:10.1016/j.jmatprotec.2018.02.015
  • 17. Huan P., Wang, X., Yang, L., Zheng, Z., Hu, Z., Zhang, M., C., C. (2019) Effect of martensite content on failure behavior of laser welded dual-phase steel joints during deformation, Journal of Materials Engineering and Performance, Volume 28, Issue 3, pp.1801-1809, doi:10.1007/s11665-019-03941-3
  • 18. Huetter, J. 2015. Audi: Aluminum helped cut 716.5 pounds out of 2017 Q7 on sale soon. Erişim Adresi: http://www.repairerdrivennews.com/2015/12/28/audi-aluminum-helped-cut-716-5-pounds-out-of-2017-q7-on-sale-soon/ (Erişim Tarihi: 15.04.2021).
  • 19. Herd, R.M., Dover, J.S., Arndt, K.A. (1997) Basic laser principles, Dermatologic Clinics, 15(3), 355-372, doi: 10.1016/s0733-8635(05)70446-0
  • 20. Hazretinezhad, M., Arab, N.B.M., Sufizadeh, A.R., Torkamany, M.J. (2012) Mechanical and metallurgical properties of pulsed neodymium-doped yttrium aluminum garnet laser welding of dual phase steels, Materials and Design, 33 (2012) 83–87, doi:10.1016/j.matdes.2011.06.070
  • 21. Indhu, R., Divya, S., Tak, M., Soundarapandian, S. (2018) Microstructure development in Pulsed Laser Welding of Dual Phase Steel to Aluminium Alloy, Procedia Manufacturing, 26 (2018) 495-202, doi:10.1016/j.promfg.2018.07.058
  • 22. Iordachescu, D., Blasco, M., Lopez, R., Cuesta, A., Iordachescu, M., Ocaña, J. L. 2011. Development of robotized laser welding applications for joining thin sheets, Proceedings of 2011 International Conference on Optimization of the Robots and Manipulators (Optirob), 26–28
  • 23. Jia, Q., Guo, W., Li, W., Zhu, Y., Peng, P., Zou, G. (2016) Microstructure and tensile behavior of fiber laser-welded blanks of DP600 and DP980 steels, Journal of Material Processing Technology, 236(2016), 73-83, doi:10.1016/j.jmatprotec.2016.05.011
  • 24. Jia, Q., Guo, W., Li, W., Peng, P., Zhu, Y., Peng, Y., Tian, Z. (2017) Experimental and numerical study on local mechanical properties and failure analysis of laser welded DP980 steels, Materials Science & Engineering A, 680 (2017) 378–387, doi:10.1016/j.msea.2016.10.121
  • 25. Jia, Q., Guo, W., Wan, Z., Peng, Y., Zou, G., Tian, Z., Zhou, Y.N. (2018) Microstructure and mechanical properties of laser welded dissimilar joints between QP and boron alloyed martensitic steels, Journal of Materials Processing Tech., 259 (2018) 58–67, doi:10.1016/j.jmatprotec.2018.04.020
  • 26. Khan, M.M.A., Romoli, L., Fiaschi, M., Dini, G., Sarri, F. (2011) Experimental design approach to the process parameter optimization for laser welding of martensitic stainless steels in a constrained overlap configuration, Optics and laser technology 43, 2011, 158-172, doi:10.1016/j.optlastec.2010.06.006
  • 27. Kim, C.H., Choi, J.K., Kang, M.J., Park, Y.D., 2010. A study on the co2 laser welding characteristics of high strength steel up to 1500 mpa for automotive application. Journal of Achievements in Materials and Manufacturing Engineering. 39, 79–786
  • 28. Kim, H.J., Keoleian, G.A., Skerlos, S.J. (2010) Economic assessment of greenhouse gas emissions reduction by vehicle lightweighting using aluminum and high-strength steel, Journal of Industrial Ecology, 64-80, doi:10.1111/j.1530-9290.2010.00288.x
  • 29. Kökey, C., Sezgin, S., Niyazi, Ç., İrizalp, S.G., Saklakoğlu, İ.E. (2016) İnce paslanmaz çelik sacların fiber lazer ile kaynak edilebilirliğinin incelenmesi, Mühendis ve Makina, 57(624), 65-72
  • 30. Köse, C., Kaçar, R. (2015) Kaynak ilerleme hızının AISI 316L paslanmaz çelik lazer kaynaklı birleştirmelerinin mekanik ve mikroyapı özelliklerine etkisi, Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi, 30(2), 225- 235, doi:10.17341/gummfd.49344
  • 31. Lakshminarayana P.V.S., Gautam, J.S., Mastanaiah, P., Reddy, G.M., Rao, K.B.S. (2018) Influence of beam power and traverse speed in fibre laser welding of dual phase steel (590) on depth of weld zone penetration, Microstructure and Hardness, Materials Today: Proceedings 5 (2018), 17132–17138, doi:10.1016/j.matpr.2018.04.121
  • 32. Li, W., Ma, L., Peng, P., Jia, Q., Wan, Z., Zhu, Y., Guo, W. (2018) Microstructural evolution and deformation behavior of fiber laser welded QP980 steel joint, Materials Science & Engineering A, 124-133, doi:10.1016/j.msea.2018.01.050
  • 33. Öztürk, E., Arıkan, H., Toros, S., Kayrıcı, M. (2019) Co2 lazer yöntemi ile birleştirilmiş çift fazlı çeliklerin mekanik özelliklerinin belirlenmesi, Fourth International Iron and Steel Symposium (UDCS'19)
  • 34. Palanivel, R., Dinaharan, I., Laubscher, R.F. (2020) Microstructure and mechanical behavior of Nd:YAG laser beam welded high strength low alloy steel joints, International Journal for Light and Electron Optics, 208 (2020) 164050, doi:10.1016/j.ijleo.2019.164050
  • 35. Püskülcü, G., Koçlular, F. (2009) Lazer kaynak yöntemi ve uygulamaları, Mühendis ve Makina, 50(599), 8-17
  • 36. Qiu, X.G., Chen, W.L. (2007) The study on numerical simulation of the laser tailorwelded blanks stamping. J. Mater. Process. Technol. 187-188, 128–131 doi:10.1016/j.jmatprotec.2006.11.128
  • 37. Rashid, M.S. (1981) Dual phase steels, Annual Reviews Material Science, (11), 245-266, doi:10.1146/annurev.ms.11.080181.001333
  • 38. Rossini M., Russo, P. R., Cortese, L., Matteis, P., Firrao, D. (2015) Investigation on dissimilar laser welding of advanced high strength steel sheets for the automotive industry, Materials Science & Engineering A, doi:10.1016/j.msea.2015.01.037
  • 39. Saha D.C., Westerbaan, D., Nayak, S.S., Biro, E., Gerlich, A.P., Zhou, Y. (2014) Microstructure-properties correlation in fiber laser welding of dual-phase and HSLA steels, Materials Science & Engineering A, 607 (2014), 445–453, doi:10.1016/j.msea.2014.04.034
  • 40. Salminen, A., Farrokhi, F., Unt, A., Poutiainen, I. (2016) Effect of optical parameters on fiber laser welding of ultrahigh strength steels and weld mechanical properties at subzero temperatures, Journal of Laser Applications, 28, 022415 (2016), doi:10.2351/1.4943914
  • 41. Saravanan, S., Sivagurumanikandan, N., Raghukandan, K. (2021) Effect of process parameters in microstructural and mechanical properties of Nd: YAG laser welded super duplex stainless steel, Materials Today: Proceedings, 39 (2021) 1248–1253, doi:10.1016/j.matpr.2020.04.101
  • 42. Taşkın, M. Çalıgülü, U. (2009) AISI430/1010 Çelik çiftinin lazer kaynağında kaynak gücünün birleşmeye etkisi, Fırat Üniversitesi Mühendislik Bilimleri Dergisi, 21(1), 11-22
  • 43. Tunçel, O. Aydın, H., Çetin, Ş. (2021) Microstructure and mechanical properties of similar and dissimilar laser welds of DP600 and DP1000 steel sheets used in the automotive industry, Turkish Journal of Engineering, 2021, 5(1), 08-14, doi:10.31127/tuje.649975
  • 44. Tunçel, O., Aydın, H. (2019) Tensile properties of pulsed Nd:YAG laser welded dissimilar DP600-DP1000 steel sheets, Alternative Energy Sources, Materials & Technologies (AESMT’19), Volume 1, 111 – 112, 2019
  • 45. Tunçel, O., Aydın, H., Çetin, Ş. (2020a) Microstructural and mechanical properties of nd:yag laser welded dissimilar DP600-DP1000 steel sheets, Afyon Kocatepe Üniversitesi Fen ve Mühendislik Bilimleri Dergisi, (2020) 015901 (155-164), doi:10.35414/akufemubid.620768
  • 46. Tunçel, O., Aydın, H., (2020b) A Comparison of tensile properties of single-sided and double-sided laser welded DP600 steel sheets, Materials Science (Medžıagotyra), Vol. 26, No. 2. 2020, doi:10.5755/j01.ms.26.2.21374
  • 47. Tunçel, O., Aydın, H., Çetin, Ş. (2018) Nd:Yag lazer kaynağı ile birleştirilen DP600 çeliğinde darbe süresinin mikroyapı ve mekanik özelliklerine etkisi, 9th International Automotive Technologies Congress, OTEKON 2018
  • 48. Uzun, R.O., Keleş, Ö. (2012) Lazerle kaynak işleminde parametrelerin kaynak kalitesi üzerindeki etkilerinin incelenmesi, Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi, 27(3), 509-517
  • 49. Wang C., Mi, G., Zhang, X. (2021) Welding stability and fatigue performance of laser welded low alloy high strength steel with 20 mm thickness, Optics and Laser Technology, 139 (2021) 106941, doi:10.1016/j.optlastec.2021.106941
  • 50. Wang, X., Sun, Q., Zheng, Z., Di, H. (2017) Microstructure and fracture behavior of laser welded joints of DP steels with different heat inputs, Materials Science & Engineering A, 699 (2017) 18–25, doi:10.1016/j.msea.2017.05.078
  • 51. Wang, J., Yang, L., Sun, M., Liu, T., Li, H. (2016) Effect of energy input on the microstructure and properties of butt joints in DP1000 steel laser welding, Materials and Design, 90 (2016) 642–649, doi:10.1016/j.matdes.2015.11.006
  • 52. Xia, M., Biro, E., Tian, Z., Zhou, Y.N. (2008) Effects of heat ınput and martensite on haz softening in laser welding of dual phase steels, ISIJ International, Vol. 48 (2008), No. 6, 809–814, doi:10.2355/isijinternational.48.809
  • 53. Xia, M. Tian, Z., Zhao, L., Zhou, Y.N. (2008) Metallurgical and mechanical properties of fusion zones of trıp steels in laser welding, ISIJ International, Vol. 48 (2008), No. 4, pp. 483–488, doi:10.2355/isijinternational.48.483
  • 54. Xue, X., Pereira, A.B., Amorim, J., Liao, J. (2017) Effects of pulsed nd:yag laser welding parameters on penetration and microstructure characterization of a DP1000 steel butt joint, Metals, 2017, 7, 292; doi:10.3390/met7080292
  • 55. Xu, W., Westerbaan, D., Nayak, S.S., Chen, D.L., Goodwin, F., Biro, E., Zhou, Y. (2012) Microstructure and fatigue performance of single and multiple linear fiber laser welded DP980 dual-phase steel, Materials Science and Engineering A, 553 (2012) 51– 58, doi:10.1016/j.msea.2012.05.091
  • 56. Yüce, C., Tutar, M., Karpat, F., Yavuz, N. (2016) The optimization of process parameters and microstructural characterization of fiber laser welded dissimilar hsla and mart steel joints, Metals, 6, 245, doi:10.3390/met6100245

Laser Welding Applications on High Strength Steels

Yıl 2021, , 1139 - 1158, 31.12.2021
https://doi.org/10.17482/uumfd.960795

Öz

Laser applications are high-tech processes that are becoming widespread day by day and find a place in a wide range from engineering to medicine. Laser in metal industry; It is frequently used in cutting, surface treatment, hardening, coating and welding processes. In this study, in order to reveal the important advantages of laser welding over other welding types, published researchs in the literature have been examined and analyzed. Laser welding is used in the assembly of high strength steels, which are of great importance for the automotive industry today. There are some problems experienced during the joining process of high strength steels and optimization of laser welding parameters is very important to solve these problems. In this study, the process parameters in the welding process of the high strength steels made by the previous researchers, the defects in the process, microstructure of material, and experimental studies are reviewed.

Kaynakça

  • 1. Agarwal,G., Gao, H., Amirthalingam, M., Hermans, M. (2018) Study of solidification cracking susceptibility during laser welding in an advanced high strength automotive steel, Metals, 2018, 8, 673; doi:10.3390/met8090673
  • 2. Alves, P.H.O.M., Lima, M.S.F., Raabe, D., Sandim, H.R.Z. (2018) Laser beam welding of dual-phase DP1000 steel, Journal of Materials Processing Technology, 252 (2018) 498–510, doi:10.1016/j.jmatprotec.2017.10.008
  • 3. Anawa E.M., Olabi, A.G. (2008) Optimization of tensile strength of ferritic/austenitic laser welded components, Optics and Lasers in Engineering, 46 (2008) 571–577, doi:10.1016/j.optlaseng.2008.04.014
  • 4. Behera, A. (2020) Optimization of process parameters in laser welding of dis-similar materials, Materials Today; Proceedings 33 (2020) 5765-5769, doi:10.1016/j.matpr.2020.07.148
  • 5. Benyounis, K.Y., Olabi, A.G., Hashmi, M.S.J. (2008) Multi-response optimization of co2 laser-welding process of austenitic stainless steel, Optics and laser technology, 40, 2008, 76-87, doi:10.1016/j.optlastec.2007.03.009
  • 6. Çakmakkaya, M., Çolak, F., Kara, R., Karaağaçlı, A. (2020) Lazer kaynak yöntemiyle birleştirilen otomotiv endüstrisinde kullanılan farklı tür çeliklerin kaynak dikiş geometrisi ve nüfuziyetine kaynak parametrelerinin etkisi, Journal of Materials and Mechatronics A, 1(1), 1-11.
  • 7. Di, H., Sun, Q., Wang, X., Li, J. (2017) Microstructure and properties in dissimilar/similar weld joints between DP780 and DP980 steels processed by fiber laser welding, Journal of Materials Science & Technology, Volume 33, Issue 12, 1561-1571, doi:10.1016/j.jmst.2017.09.001
  • 8. Dong, D., Liu, Y., Yang, Y., Li, J., Ma, M., Jiang, T. (2014) Microstructure and dynamic tensile behavior of DP600 dualphase steel joint by laser welding, Materials Science & Engineering A, 594 (2014) 17–25, doi:10.1016/j.msea.2013.11.047
  • 9. Dong, D., Liu, Y., Wang, L., Yang, Y., Jiang, D., Yang R., Zhang W. (2016) Microstructure and deformation behaviour of laser welded dissimilar dual phase steel joints, Science and Technology of Welding and Joining, 21:2, 75-82, doi:10.1179/1362171815Y.0000000067
  • 10. Evin, E., Tomas, M. (2017) The influence of laser welding on the mechanical properties of dual phase and trip steels, Metals, 7, 239; doi:10.3390/met7070239
  • 11. Farabi, N., Chen, D.L., Zhou, Y. (2011) Microstructure and mechanical properties of laser welded dissimilar DP600/DP980 dual-phase steel joints, Journal of Alloys and Compounds, 509 (2011) 982–989, doi:10.1016/j.jallcom.2010.08.158
  • 12. Fernandes, F.A.O., Oliveira, D.F., Pereira, A.B. (2017) Optimal parameters for laser welding of advanced high-strength steels used in the automotive industry, Manufacturing Engineering Society International Conference 2017, MESIC 2017, 28-30 June 2017, Vigo (Pontevedra), Spain, Procedia Manufacturing, 219-226, doi:10.1016/j.promfg.2017.09.052
  • 13. Ferreira, C.C.A., Braga, V., Siqueira, R.H.M., Carvalho, S.M.C., Lima, M.S.F (2020) Laser beam welding of DP980 dual phase steel at high temperatures, Optics and Laser Technology, 124 (2020) 105964, doi:10.1016/j.optlastec.2019.105964
  • 14. Gong, H., Wang, S., Knysh, P., Korkolis, Y.P. (2016) Experimental investigation of the mechanical response of laser-welded dissimilar blanks from advanced- and ultra-high-strength steels, Materials and Design, 90 (2016) 1115–1123, doi:10.1016/j.matdes.2015.11.057
  • 15. Gu, Z., Yu, S., Han, L., Xu, H. (2012) Influence of welding speed on microstructures and properties of ultra-high strength steel sheets in laser welding, ISIJ International, Vol. 52 (2012), No. 3, 483–487, doi:10.2355/isijinternational.52.483
  • 16. Guo, W., Wan, Z., Peng, P., Jia, Q., Zou, G., Peng, Y. (2018) Microstructure and mechanical properties of fiber laser welded QP980 steel, Journal of Materials Processing Technology, 256 (2018) 229–238, doi:10.1016/j.jmatprotec.2018.02.015
  • 17. Huan P., Wang, X., Yang, L., Zheng, Z., Hu, Z., Zhang, M., C., C. (2019) Effect of martensite content on failure behavior of laser welded dual-phase steel joints during deformation, Journal of Materials Engineering and Performance, Volume 28, Issue 3, pp.1801-1809, doi:10.1007/s11665-019-03941-3
  • 18. Huetter, J. 2015. Audi: Aluminum helped cut 716.5 pounds out of 2017 Q7 on sale soon. Erişim Adresi: http://www.repairerdrivennews.com/2015/12/28/audi-aluminum-helped-cut-716-5-pounds-out-of-2017-q7-on-sale-soon/ (Erişim Tarihi: 15.04.2021).
  • 19. Herd, R.M., Dover, J.S., Arndt, K.A. (1997) Basic laser principles, Dermatologic Clinics, 15(3), 355-372, doi: 10.1016/s0733-8635(05)70446-0
  • 20. Hazretinezhad, M., Arab, N.B.M., Sufizadeh, A.R., Torkamany, M.J. (2012) Mechanical and metallurgical properties of pulsed neodymium-doped yttrium aluminum garnet laser welding of dual phase steels, Materials and Design, 33 (2012) 83–87, doi:10.1016/j.matdes.2011.06.070
  • 21. Indhu, R., Divya, S., Tak, M., Soundarapandian, S. (2018) Microstructure development in Pulsed Laser Welding of Dual Phase Steel to Aluminium Alloy, Procedia Manufacturing, 26 (2018) 495-202, doi:10.1016/j.promfg.2018.07.058
  • 22. Iordachescu, D., Blasco, M., Lopez, R., Cuesta, A., Iordachescu, M., Ocaña, J. L. 2011. Development of robotized laser welding applications for joining thin sheets, Proceedings of 2011 International Conference on Optimization of the Robots and Manipulators (Optirob), 26–28
  • 23. Jia, Q., Guo, W., Li, W., Zhu, Y., Peng, P., Zou, G. (2016) Microstructure and tensile behavior of fiber laser-welded blanks of DP600 and DP980 steels, Journal of Material Processing Technology, 236(2016), 73-83, doi:10.1016/j.jmatprotec.2016.05.011
  • 24. Jia, Q., Guo, W., Li, W., Peng, P., Zhu, Y., Peng, Y., Tian, Z. (2017) Experimental and numerical study on local mechanical properties and failure analysis of laser welded DP980 steels, Materials Science & Engineering A, 680 (2017) 378–387, doi:10.1016/j.msea.2016.10.121
  • 25. Jia, Q., Guo, W., Wan, Z., Peng, Y., Zou, G., Tian, Z., Zhou, Y.N. (2018) Microstructure and mechanical properties of laser welded dissimilar joints between QP and boron alloyed martensitic steels, Journal of Materials Processing Tech., 259 (2018) 58–67, doi:10.1016/j.jmatprotec.2018.04.020
  • 26. Khan, M.M.A., Romoli, L., Fiaschi, M., Dini, G., Sarri, F. (2011) Experimental design approach to the process parameter optimization for laser welding of martensitic stainless steels in a constrained overlap configuration, Optics and laser technology 43, 2011, 158-172, doi:10.1016/j.optlastec.2010.06.006
  • 27. Kim, C.H., Choi, J.K., Kang, M.J., Park, Y.D., 2010. A study on the co2 laser welding characteristics of high strength steel up to 1500 mpa for automotive application. Journal of Achievements in Materials and Manufacturing Engineering. 39, 79–786
  • 28. Kim, H.J., Keoleian, G.A., Skerlos, S.J. (2010) Economic assessment of greenhouse gas emissions reduction by vehicle lightweighting using aluminum and high-strength steel, Journal of Industrial Ecology, 64-80, doi:10.1111/j.1530-9290.2010.00288.x
  • 29. Kökey, C., Sezgin, S., Niyazi, Ç., İrizalp, S.G., Saklakoğlu, İ.E. (2016) İnce paslanmaz çelik sacların fiber lazer ile kaynak edilebilirliğinin incelenmesi, Mühendis ve Makina, 57(624), 65-72
  • 30. Köse, C., Kaçar, R. (2015) Kaynak ilerleme hızının AISI 316L paslanmaz çelik lazer kaynaklı birleştirmelerinin mekanik ve mikroyapı özelliklerine etkisi, Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi, 30(2), 225- 235, doi:10.17341/gummfd.49344
  • 31. Lakshminarayana P.V.S., Gautam, J.S., Mastanaiah, P., Reddy, G.M., Rao, K.B.S. (2018) Influence of beam power and traverse speed in fibre laser welding of dual phase steel (590) on depth of weld zone penetration, Microstructure and Hardness, Materials Today: Proceedings 5 (2018), 17132–17138, doi:10.1016/j.matpr.2018.04.121
  • 32. Li, W., Ma, L., Peng, P., Jia, Q., Wan, Z., Zhu, Y., Guo, W. (2018) Microstructural evolution and deformation behavior of fiber laser welded QP980 steel joint, Materials Science & Engineering A, 124-133, doi:10.1016/j.msea.2018.01.050
  • 33. Öztürk, E., Arıkan, H., Toros, S., Kayrıcı, M. (2019) Co2 lazer yöntemi ile birleştirilmiş çift fazlı çeliklerin mekanik özelliklerinin belirlenmesi, Fourth International Iron and Steel Symposium (UDCS'19)
  • 34. Palanivel, R., Dinaharan, I., Laubscher, R.F. (2020) Microstructure and mechanical behavior of Nd:YAG laser beam welded high strength low alloy steel joints, International Journal for Light and Electron Optics, 208 (2020) 164050, doi:10.1016/j.ijleo.2019.164050
  • 35. Püskülcü, G., Koçlular, F. (2009) Lazer kaynak yöntemi ve uygulamaları, Mühendis ve Makina, 50(599), 8-17
  • 36. Qiu, X.G., Chen, W.L. (2007) The study on numerical simulation of the laser tailorwelded blanks stamping. J. Mater. Process. Technol. 187-188, 128–131 doi:10.1016/j.jmatprotec.2006.11.128
  • 37. Rashid, M.S. (1981) Dual phase steels, Annual Reviews Material Science, (11), 245-266, doi:10.1146/annurev.ms.11.080181.001333
  • 38. Rossini M., Russo, P. R., Cortese, L., Matteis, P., Firrao, D. (2015) Investigation on dissimilar laser welding of advanced high strength steel sheets for the automotive industry, Materials Science & Engineering A, doi:10.1016/j.msea.2015.01.037
  • 39. Saha D.C., Westerbaan, D., Nayak, S.S., Biro, E., Gerlich, A.P., Zhou, Y. (2014) Microstructure-properties correlation in fiber laser welding of dual-phase and HSLA steels, Materials Science & Engineering A, 607 (2014), 445–453, doi:10.1016/j.msea.2014.04.034
  • 40. Salminen, A., Farrokhi, F., Unt, A., Poutiainen, I. (2016) Effect of optical parameters on fiber laser welding of ultrahigh strength steels and weld mechanical properties at subzero temperatures, Journal of Laser Applications, 28, 022415 (2016), doi:10.2351/1.4943914
  • 41. Saravanan, S., Sivagurumanikandan, N., Raghukandan, K. (2021) Effect of process parameters in microstructural and mechanical properties of Nd: YAG laser welded super duplex stainless steel, Materials Today: Proceedings, 39 (2021) 1248–1253, doi:10.1016/j.matpr.2020.04.101
  • 42. Taşkın, M. Çalıgülü, U. (2009) AISI430/1010 Çelik çiftinin lazer kaynağında kaynak gücünün birleşmeye etkisi, Fırat Üniversitesi Mühendislik Bilimleri Dergisi, 21(1), 11-22
  • 43. Tunçel, O. Aydın, H., Çetin, Ş. (2021) Microstructure and mechanical properties of similar and dissimilar laser welds of DP600 and DP1000 steel sheets used in the automotive industry, Turkish Journal of Engineering, 2021, 5(1), 08-14, doi:10.31127/tuje.649975
  • 44. Tunçel, O., Aydın, H. (2019) Tensile properties of pulsed Nd:YAG laser welded dissimilar DP600-DP1000 steel sheets, Alternative Energy Sources, Materials & Technologies (AESMT’19), Volume 1, 111 – 112, 2019
  • 45. Tunçel, O., Aydın, H., Çetin, Ş. (2020a) Microstructural and mechanical properties of nd:yag laser welded dissimilar DP600-DP1000 steel sheets, Afyon Kocatepe Üniversitesi Fen ve Mühendislik Bilimleri Dergisi, (2020) 015901 (155-164), doi:10.35414/akufemubid.620768
  • 46. Tunçel, O., Aydın, H., (2020b) A Comparison of tensile properties of single-sided and double-sided laser welded DP600 steel sheets, Materials Science (Medžıagotyra), Vol. 26, No. 2. 2020, doi:10.5755/j01.ms.26.2.21374
  • 47. Tunçel, O., Aydın, H., Çetin, Ş. (2018) Nd:Yag lazer kaynağı ile birleştirilen DP600 çeliğinde darbe süresinin mikroyapı ve mekanik özelliklerine etkisi, 9th International Automotive Technologies Congress, OTEKON 2018
  • 48. Uzun, R.O., Keleş, Ö. (2012) Lazerle kaynak işleminde parametrelerin kaynak kalitesi üzerindeki etkilerinin incelenmesi, Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi, 27(3), 509-517
  • 49. Wang C., Mi, G., Zhang, X. (2021) Welding stability and fatigue performance of laser welded low alloy high strength steel with 20 mm thickness, Optics and Laser Technology, 139 (2021) 106941, doi:10.1016/j.optlastec.2021.106941
  • 50. Wang, X., Sun, Q., Zheng, Z., Di, H. (2017) Microstructure and fracture behavior of laser welded joints of DP steels with different heat inputs, Materials Science & Engineering A, 699 (2017) 18–25, doi:10.1016/j.msea.2017.05.078
  • 51. Wang, J., Yang, L., Sun, M., Liu, T., Li, H. (2016) Effect of energy input on the microstructure and properties of butt joints in DP1000 steel laser welding, Materials and Design, 90 (2016) 642–649, doi:10.1016/j.matdes.2015.11.006
  • 52. Xia, M., Biro, E., Tian, Z., Zhou, Y.N. (2008) Effects of heat ınput and martensite on haz softening in laser welding of dual phase steels, ISIJ International, Vol. 48 (2008), No. 6, 809–814, doi:10.2355/isijinternational.48.809
  • 53. Xia, M. Tian, Z., Zhao, L., Zhou, Y.N. (2008) Metallurgical and mechanical properties of fusion zones of trıp steels in laser welding, ISIJ International, Vol. 48 (2008), No. 4, pp. 483–488, doi:10.2355/isijinternational.48.483
  • 54. Xue, X., Pereira, A.B., Amorim, J., Liao, J. (2017) Effects of pulsed nd:yag laser welding parameters on penetration and microstructure characterization of a DP1000 steel butt joint, Metals, 2017, 7, 292; doi:10.3390/met7080292
  • 55. Xu, W., Westerbaan, D., Nayak, S.S., Chen, D.L., Goodwin, F., Biro, E., Zhou, Y. (2012) Microstructure and fatigue performance of single and multiple linear fiber laser welded DP980 dual-phase steel, Materials Science and Engineering A, 553 (2012) 51– 58, doi:10.1016/j.msea.2012.05.091
  • 56. Yüce, C., Tutar, M., Karpat, F., Yavuz, N. (2016) The optimization of process parameters and microstructural characterization of fiber laser welded dissimilar hsla and mart steel joints, Metals, 6, 245, doi:10.3390/met6100245
Toplam 56 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Makine Mühendisliği
Bölüm Derleme Makaleler
Yazarlar

Tuncay Alpar 0000-0002-8680-9585

Oktay Çelenk Bu kişi benim 0000-0002-2738-2307

Kadir Çavdar 0000-0001-9126-0315

Yayımlanma Tarihi 31 Aralık 2021
Gönderilme Tarihi 2 Temmuz 2021
Kabul Tarihi 10 Kasım 2021
Yayımlandığı Sayı Yıl 2021

Kaynak Göster

APA Alpar, T., Çelenk, O., & Çavdar, K. (2021). YÜKSEK MUKAVEMETLİ ÇELİKLERDE LAZER KAYNAĞI UYGULAMALARI. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi, 26(3), 1139-1158. https://doi.org/10.17482/uumfd.960795
AMA Alpar T, Çelenk O, Çavdar K. YÜKSEK MUKAVEMETLİ ÇELİKLERDE LAZER KAYNAĞI UYGULAMALARI. UUJFE. Aralık 2021;26(3):1139-1158. doi:10.17482/uumfd.960795
Chicago Alpar, Tuncay, Oktay Çelenk, ve Kadir Çavdar. “YÜKSEK MUKAVEMETLİ ÇELİKLERDE LAZER KAYNAĞI UYGULAMALARI”. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi 26, sy. 3 (Aralık 2021): 1139-58. https://doi.org/10.17482/uumfd.960795.
EndNote Alpar T, Çelenk O, Çavdar K (01 Aralık 2021) YÜKSEK MUKAVEMETLİ ÇELİKLERDE LAZER KAYNAĞI UYGULAMALARI. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi 26 3 1139–1158.
IEEE T. Alpar, O. Çelenk, ve K. Çavdar, “YÜKSEK MUKAVEMETLİ ÇELİKLERDE LAZER KAYNAĞI UYGULAMALARI”, UUJFE, c. 26, sy. 3, ss. 1139–1158, 2021, doi: 10.17482/uumfd.960795.
ISNAD Alpar, Tuncay vd. “YÜKSEK MUKAVEMETLİ ÇELİKLERDE LAZER KAYNAĞI UYGULAMALARI”. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi 26/3 (Aralık 2021), 1139-1158. https://doi.org/10.17482/uumfd.960795.
JAMA Alpar T, Çelenk O, Çavdar K. YÜKSEK MUKAVEMETLİ ÇELİKLERDE LAZER KAYNAĞI UYGULAMALARI. UUJFE. 2021;26:1139–1158.
MLA Alpar, Tuncay vd. “YÜKSEK MUKAVEMETLİ ÇELİKLERDE LAZER KAYNAĞI UYGULAMALARI”. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi, c. 26, sy. 3, 2021, ss. 1139-58, doi:10.17482/uumfd.960795.
Vancouver Alpar T, Çelenk O, Çavdar K. YÜKSEK MUKAVEMETLİ ÇELİKLERDE LAZER KAYNAĞI UYGULAMALARI. UUJFE. 2021;26(3):1139-58.

DUYURU:

30.03.2021- Nisan 2021 (26/1) sayımızdan itibaren TR-Dizin yeni kuralları gereği, dergimizde basılacak makalelerde, ilk gönderim aşamasında Telif Hakkı Formu yanısıra, Çıkar Çatışması Bildirim Formu ve Yazar Katkısı Bildirim Formu da tüm yazarlarca imzalanarak gönderilmelidir. Yayınlanacak makalelerde de makale metni içinde "Çıkar Çatışması" ve "Yazar Katkısı" bölümleri yer alacaktır. İlk gönderim aşamasında doldurulması gereken yeni formlara "Yazım Kuralları" ve "Makale Gönderim Süreci" sayfalarımızdan ulaşılabilir. (Değerlendirme süreci bu tarihten önce tamamlanıp basımı bekleyen makalelerin yanısıra değerlendirme süreci devam eden makaleler için, yazarlar tarafından ilgili formlar doldurularak sisteme yüklenmelidir).  Makale şablonları da, bu değişiklik doğrultusunda güncellenmiştir. Tüm yazarlarımıza önemle duyurulur.

Bursa Uludağ Üniversitesi, Mühendislik Fakültesi Dekanlığı, Görükle Kampüsü, Nilüfer, 16059 Bursa. Tel: (224) 294 1907, Faks: (224) 294 1903, e-posta: mmfd@uludag.edu.tr