Araştırma Makalesi
BibTex RIS Kaynak Göster

LASTİK TOZU KAYNAKLI KİRLİLİĞİN TOPRAK AZOT PROSESLERİNE ETKİSİ: ARITMA ÇAMURU İLE BİYOSTİMÜLASYON ÇALIŞMASI

Yıl 2021, , 849 - 864, 31.12.2021
https://doi.org/10.17482/uumfd.983858

Öz

Son yıllarda, artan trafik yükü ile birlikte lastik tozu, toprak ortamındaki kirlenmeye önemli ölçüde katkı sağlamaktadır. Bu nedenle, bu inkübasyon çalışması, sürtünme sonucu toz haline gelerek yol kenarlarındaki topraklara karışan araç lastik tozlarının, toprak verimliliğinde önemli bir indikatör olan azot dönüşüm süreçlerine etkisini ortaya koymak amacıyla yapılmıştır. Farklı lastik tozu seviyelerinin (%1,%5 ve %10) toprak azot proseslerine etkisini belirlemek için 100 g toprak örneği ve ıslah amacıyla kirletilen topraklara 100 ton ha-1 (40 g kg-1) dozunda uygulanan atık su arıtma çamurlu örnekler 15, 30 ve 45 gün boyunca inkübe edilmiştir. Sonuçlar, lastik tozunun neden olduğu antropojenik stresin belirlenmesinde topraktaki azot proseslerinin biyoindikatör olarak kullanılabileceğini göstermiştir. İnkübasyonun sonunda arginin amonifikasyon oranı, nitrifikasyon potansiyeli, amonyum azotu, nitrat azotu seviyeleri yüksek orandaki (%10) lastik tozu ile kirlenmesi sonucunda %48, %40, %47 ve %33 oranında azalmıştır. Organik azotun mineralizasyonu değerlendirildiğinde, temiz toprağın organik azot mineralizasyon değeri inkübasyon sonunda %90 olarak hesaplanırken, %10 lastik tozu ile kirlenen toprakta ise %22 olarak hesaplanmıştır. Bu durum lastik tozu kirliliğinin, toprakların azot mineralizasyonunu önemli ölçüde azalttığını göstermektedir. Bu çalışmayla, lastik tozu kirliliğinin bitkilerin azot kullanım verimini sınırlayabileceği ve böylece toprak ekosistemlerinin verimliliğini azaltacağı sonucuna varılmıştır.

Kaynakça

  • 1. Abdelal, A.T., Arginine Catabolism by Microorganisms, Annu. Rev. Microbiol. 33,139–168, 1979.
  • 2. Adams, G.O., Fufeyin, P.T., Okoro, S.E., Bioremediation, Biostimulation and Bioaugmention: A Review. International Journal Of Environmental Bioremediation & Biodegradation, 3(1), 28-39, 2015.
  • 3. Alef, K., Kleiner, D. Arginine Ammonification, A Simple Method to Estimate Microbial Activity Potentials in Soil, Soil Biol. Biochem. 18, 233–235, 1986.
  • 4. Amoo, A.E., Babalola, O.O., Ammonia-Oxidizing Microorganisms: Key Players in The Promotion of Plant Growth. Journal of Soil Science and Plant Nutrition, 17 (4), 935-947, 2017.
  • 5. Azubuike, C.C., Chikere, C.B., Okpokwasili, G.C., Bioremediation Techniques–Classification Based on Site Of Application: Principles, Advantages, Limitations and Prospects. World J Microbiol Biotechnol 32, 180, 2016.
  • 6. Bremner, J.M., Mulvaney, C.S. Nitrogen-Total, İn: A.L. Page, R.H. Miller, D.R. Keeney (Eds.), (1982). Methods of Soil Analysis. Part 2. Chemical And Microbiological Properties, Asa And Sssa, Agronomy Monograph No. 9, Madison, Wı, Pp. 595–624,
  • 7. Cassel, D.K., Nielsen D.R., Field Capacity and Availablewater Capacity, İn: A. Klute (Ed.), Methods Of Oil Analysis, Part 1. Physical And Mineralogical Methods, Asa And Sssa, Agronomy Monograph No 9, Madison, WI, Pp. 901–926, 1986.
  • 8. Cataldo, D.A, Haroon, M., Schrader, L.E., Young, V.L., Rapid Colorimetric Determination of Nitrate in Plant Tissue By Nitration of Salicylic Acid, Commun. Soil Sci. Plan 6, 71–80, 1975.
  • 9. Dave, G., Ecotoxicological Risk Assessment and Management of Tire Wear Particles. In: Férard Jf., Blaise C. (Eds) Encyclopedia Of Aquatic Ecotoxicology. Springer, Dordrecht., 2013.
  • 10. Dindar, E., Topaç Şağban, F. O., Uçaroğlu, S., Başkaya, H. S., Biostimulation of Azo Dye-Contaminated Soils by Food Industry Sludge. Soil and Sediment Contamination, 19, 436–454, 2010.
  • 11. Dindar, E., Topaç Şağban, F.O., Başkaya, H.S. Biodegradation of Used Engine Oil in a Wastewater Sludge-Amended Agricultural Soil. Turk J Agric For 40, 631-641, 2016.
  • 12. Dindar, E., Topaç Şağban, F.O., Başkaya, H.S., Arıtma Çamuru Uygulanan Topraklarda Sulamadan Kaynaklanan Kirliliğin Azot Mineralizasyonuna Etkisi. Ekoloji, 17, 66, 31-38, 2008.
  • 13. Esperschuetz, J., Bulman, S., Anderson, C., Lense, O., Horswell, J., Dickinson ,N., Robınson, B.H. Production of Biomass Crops Using Biowastes on Low-Fertility Soil: 2. Effect of Biowastes on Nitrogen Transformation Processes. Journal of Environmental Quality, 45, 1970–1978, 2016.
  • 14. Franco-Otero, V.G., Soler-Rovıra, P., Hernández, D., López-De-Sá, E.G., Plaza, C. Short-Term Effects of Organic Municipal Wastes on Wheat Yield, Microbial Biomass, Microbial Activity, and Chemical Properties of Soil. Biol Fertil Soils 48, 205–216, 2012.
  • 15. Ghaly, A.E., Ramakrishnan, V.V., Nitrogen Sources and Cycling in The Ecosystem and its Role in Air, Water and Soil Pollution: A Critical Review J Pollut Eff Cont, 3, 2, 2015.
  • 16. Gualtieri M., Andrioletti M., Mantecca P., Vismara C., Camatini M. Impact of Tire Debris on in Vitro and in Vivo Systems. Part. Fibre Toxicol. 2,1, 2005.
  • 17. Hanan, E.J., Schımel, J.P., Dowdy, K., Carla, M.D.A. Effects of Substrate Supply, pH, and Char on Net Nitrogen Mineralization and Nitrification Along a Wildfire-Structured Age Gradient in Chaparral Soil Biology & Biochemistry 95, 87-99, 2016.
  • 18. Hart, S.C., Stark, J.M., Davidson, E.A., Firestone, M.K., Nitrogen Mineralisation, Immobilization, and Nitrification, In: R.W. Weaver, J.S. Angle, B.S. Bottomley (Eds.), Methods Of Soil Analysis. Part 2. Microbiological and Biochemical Properties, Asa and Sssa, Book Series No. 5, Madison, WI, Pp. 985–1018, 1994.
  • 19. Harter, J., Krause, H., Schuettler, S., Ruser, R., Fromme, M., Scholten, T., Kappler, A., Behrens, S. Linking N2O Emissions From Biochar-Amended Soil to The Structure and Function of The N-Cycling Microbial Community. The Isme Journal 8, 660–674, 2014.
  • 20. Hernandez, T., Moral R, Perez-Espinosa, A., Moreno-Caselles, J., Perez-Murcia, M.D., Garcia, C., Nitrogen mineralisation potential in calcareous soils amended with sewage sludge. Bioresource Technology 83, 213-219, 2002.
  • 21. Hollister, C., Ammonium, Nitrate and Phosphate Sorption to Water-Rinsed and Non-Rinsed Biochars. Master’s Thesis: Cornell University, Department of Civil And Environmental Engineering, 2011.
  • 22. Hu, X. F., Jiang, Y., Shu, Y., Hu, X., Liu, L., Luo, F., Effects of Mining Wastewater Discharges on Heavy Metal Pollution and Soilenzyme Activity of The Paddy Fields.J. Geochem. Explor. 147, 139–150, 2014.
  • 23. Jan Kole, P., Löhr, A.J., Van Belleghem, F.G.A.J., Ragas, A.M.J. Wear and Tear of Tyres: A Stealthy Source of Microplastics In The Environment. Int. J. Environ. Res. Public Health, 14,1265, 2017.
  • 24. Jones, D.L., Magthab, E.A., Gleeson, D.B.,. Hill, P.W, Sánchez-Rodríguez, A.R., Roberts, P., Ge T., Murphy, D.V. Microbial Competition For Nitrogen and Carbon Is as Intense in the Subsoil Asin The Topsoil. Soil Biology and Biochemistry 117, 72–82, 2018.
  • 25. Keeney, D.R, Nelson, D.W., Nitrogen-Inorganic Forms, In:A.L. Page, R.H. Miller, D.R. Keeney (Eds.), Methods of Soil Analysis. Part 2. Chemical And Microbiological Properties, Asa and Sssa, Agronomy Monograph No. 9, Madison, Wı, , Pp. 643–693, 1982.
  • 26. Li, Y ., Chapmanc, S.J., Nicold, G.W., Yao, H., Nitrification and Nitrifiers in Acidic Soils. Soil Biology and Biochemistry 116, 290–301, 2018.
  • 27. Lobos, Ortega I., Alfaro, M., Martinez-Lagos, J., Soil Nitrogen Contribution to Grasslands and Its Implication For Nitrogen Use Efficiency. Journal of Soil Science and Plant Nutrition. 16, 310-322, 2016.
  • 28. Lu, Q., He, Z.L., Stoffella, P.J., Land Application of Biosolids In The Usa: A Review. Applied and Environmental Soil Science, Article Id 201462, 11 Pages, 2012.
  • 29. Mantecca, P., Gualtıeri, M., Andrioletti, M., Bacchetta, R., Vismara, C., Vailati, G., Camatini, M. Tire Debris Organic Extract Affects Xenopus Development. Environ. Int. 33, 642–648, 2007.
  • 30. Mc Lean, E.O., Soil Ph And Lime Requirement, İn: A.L. Page, R.H. Miller, D.R. Keeney (Eds.), Methods Of Soil Analysis. Part 2. Chemical And Microbiological Properties, Asa And Sssa, Agronomy Monograph No. 9, Madison, WI, Pp.199–224, 1982.
  • 31. Meyer, C., Stitt, M., Nitrate Reductase And Signalling. In: Lea Pj, Morotgaudry Jf (Eds.) Plant Nitrogen, Springer, New York, Usa, Pp 37-59, 2001.
  • 32. Nelson, D.W., Sommers, L.E., Total Carbon, Organic Carbon And Organic Matter, In: A.L. Page, R.H. Miller, D.R. Keeney (Eds.), Methods Of Soil Analysis. Part 2. Chemical And Microbiological Properties, Asa And Sssa, Agronomymonograph No. 9, Madison, WI, , Pp. 539–579, 1982.
  • 33. Norton, J., Ouyang, Y., Controls and Adaptive Management of Nitrification in Agricultural Soils. Front Microbiol., 10, 1931, 2019.
  • 34. Pajares, S., Bohannan, B.J.M., Ecology Of Nitrogen Fixing, Nitrifying, and Denitrifying Microorganisms İn Tropical Forest Soils. Front Microbiol. 7, 1045, 2016.
  • 35. Rhoades, D., Soluble Salts, İn: A.L. Page, R.H. Miller, D.R. Keeney (Eds.), Methods of Soil Analysis. Part 2. Chemical And Microbiological Properties, Asa and Sssa, Agronomy Monograph No. 9, Madison, WI, Pp. 167–179, 1982.
  • 36. Rigby, H., Clarke, B.O., Pritchard, D.L., Meehan, B., Beshah, F., Smith, S.R., Porter N.A., A Critical Review of Nitrogen Mineralization in Biosolids-Amended Soil, The Associated Fertilizer Value for Crop Production and Potential For Emissions to The Environment. Science of The Total Environment, 541, 1310–1338, 2016.
  • 37. Sagban, F.O., Impacts of Wastewater Sludge Amendments in Restoring Nitrogen Cycle In P-Nitrophenol Contaminated Soil. Journal of Environmental Sciences, 23(4) 616–623, 2011.
  • 38. Sahrawat, K.L., Nitrogen Mineralization İn Lowland Rice Soils: The Role of Organic Matter Quantity and Quality Archives of Agronomy and Soil Science, 56, 3, 337–353, 2010.
  • 39. Schloter, M., Dilly, O., Munch, J.C., Indicators for evaluating soil quality. Agric. Ecosyst. Environ. 98, 255-262, 2003.
  • 40. Shinggu, D.Y.. Ogugbuaja, V.O., Toma, I., Barminas, J.T., Determination of Heavy Metal Pollutants in Street Dust of Yola, Adamawa State, Nigeria. African Journal of Pure and Applied Chemistry Vol. 4 (1), Pp. 017-021, 2010.
  • 41. Sommer, F., Dietze, V. Baum, A. Sauer, J. Gilge, S. Maschowski, C. Gieré R., Tire Abrasion as a Major Source of Microplastics in The Environment. Aerosol Air Quality Res., 18, 2014–2028, 2018.
  • 42. Topac, F.O, Dindar, E., Ucaroglu, S., Baskaya, H.S., Effect of a Sulfonated Azo Dye and Sulfanilic Acid on Nitrogen Transformation Processes in Soil. Journal Of Hazardous Materials, 170, 1006–1013, 2009.
  • 43. Wagner, S., Huffer, T., Klockner, P., Wehrhahn, M., Hofmann, T., Reemtsma, T., Tire Wear Particles in The Aquatic Environment - A Review on Generation, Analysis, Occurrence, Fate And Effects. Water Research, 139, 2018.
  • 44. Wang, J., Feng, X., Anderson, C.W.N., Xıng, Y., Shang, L., Remediation of Mercury Contaminated Sites - A Review. J Hazard Mater 221-222: 1–18, 2012.
  • 45. Wei, X, Gao, B, Wang, P, Zhou, H, Jin, Lu., Pollution Characteristics and Health Risk Assessment of Heavy Metals in Street Dusts From Different Functional Areas in Beijing, China. Ecotoxicology And Environmental Safety 112, 186–192, 2015.
  • 46. Wolıńska, A., Szafranek-Nakonıeczna, A., Banach, A., Błaszczyk, M., Stępnıewska, Z., The Impact of Agricultural Soil Usage on Activity and Abundance of Ammonifying Bacteria in Selected Soils From Poland. Springer Plus 5, 565, 2016.
  • 47. Yao, Hy, Campbell, Cd, Qiao, X., Soil pH Controls Nitrification and Carbon Substrate Utilization More Than Urea or Charcoal in Some Highly Acidic Soils. Biology and Fertility of Soils 47, 515–522, 2011.

An Experimental Study on the Effect of Vehicle Tire Dust on the Nitrogen Processes of Agricultural Soil: Biostimulation with Wastewater Sludge

Yıl 2021, , 849 - 864, 31.12.2021
https://doi.org/10.17482/uumfd.983858

Öz

With the increasing number of vehicles in the last few decades, tire dust has became the source of a significant contribution of pollutants into the soil. In this study, it is aimed to reveal the effects of vehicle tires which are pulverized by the effect of friction and reached to the roadside soils, on nitrogen processes by a laboratory incubation study. To determine the effect of different tire dust levels (1%, 5%, and 10% mg kg-1 dry soil) and 100 ton ha-1 dose of wastewater sludge on soil nitrogen processes, 100 g soil portions were put into plastic pots, and soil moisture was brought to 70% of its field capacity with distilled water. Samples were then incubated under controlled conditions in the dark at 28 °C for 15, 30 and 45 days. The results indicated that nitrogen processes in the soil could be used as bioindicators of anthropogenic stress caused by tire dust. It was found that arginine ammonification rate, nitrification potential, ammonium, and nitrate nitrogen levels decreased by 48%, 40%, 47% and 33% in the presence of tire dust (10% mg kg1 dry soil). In addition, tire dust application at dose of 10% showed an inhibition effect on organic N mineralization values in soil (clean soil: 90%, contaminated soil: 22%). This shows that tire dust pollution significantly reduces nitrogen mineralization of soils. The study was concluded that tire dust pollution might limit the nitrogen use-efficiency of plants, thus further decreasing the fertility of soil ecosystems.  

Kaynakça

  • 1. Abdelal, A.T., Arginine Catabolism by Microorganisms, Annu. Rev. Microbiol. 33,139–168, 1979.
  • 2. Adams, G.O., Fufeyin, P.T., Okoro, S.E., Bioremediation, Biostimulation and Bioaugmention: A Review. International Journal Of Environmental Bioremediation & Biodegradation, 3(1), 28-39, 2015.
  • 3. Alef, K., Kleiner, D. Arginine Ammonification, A Simple Method to Estimate Microbial Activity Potentials in Soil, Soil Biol. Biochem. 18, 233–235, 1986.
  • 4. Amoo, A.E., Babalola, O.O., Ammonia-Oxidizing Microorganisms: Key Players in The Promotion of Plant Growth. Journal of Soil Science and Plant Nutrition, 17 (4), 935-947, 2017.
  • 5. Azubuike, C.C., Chikere, C.B., Okpokwasili, G.C., Bioremediation Techniques–Classification Based on Site Of Application: Principles, Advantages, Limitations and Prospects. World J Microbiol Biotechnol 32, 180, 2016.
  • 6. Bremner, J.M., Mulvaney, C.S. Nitrogen-Total, İn: A.L. Page, R.H. Miller, D.R. Keeney (Eds.), (1982). Methods of Soil Analysis. Part 2. Chemical And Microbiological Properties, Asa And Sssa, Agronomy Monograph No. 9, Madison, Wı, Pp. 595–624,
  • 7. Cassel, D.K., Nielsen D.R., Field Capacity and Availablewater Capacity, İn: A. Klute (Ed.), Methods Of Oil Analysis, Part 1. Physical And Mineralogical Methods, Asa And Sssa, Agronomy Monograph No 9, Madison, WI, Pp. 901–926, 1986.
  • 8. Cataldo, D.A, Haroon, M., Schrader, L.E., Young, V.L., Rapid Colorimetric Determination of Nitrate in Plant Tissue By Nitration of Salicylic Acid, Commun. Soil Sci. Plan 6, 71–80, 1975.
  • 9. Dave, G., Ecotoxicological Risk Assessment and Management of Tire Wear Particles. In: Férard Jf., Blaise C. (Eds) Encyclopedia Of Aquatic Ecotoxicology. Springer, Dordrecht., 2013.
  • 10. Dindar, E., Topaç Şağban, F. O., Uçaroğlu, S., Başkaya, H. S., Biostimulation of Azo Dye-Contaminated Soils by Food Industry Sludge. Soil and Sediment Contamination, 19, 436–454, 2010.
  • 11. Dindar, E., Topaç Şağban, F.O., Başkaya, H.S. Biodegradation of Used Engine Oil in a Wastewater Sludge-Amended Agricultural Soil. Turk J Agric For 40, 631-641, 2016.
  • 12. Dindar, E., Topaç Şağban, F.O., Başkaya, H.S., Arıtma Çamuru Uygulanan Topraklarda Sulamadan Kaynaklanan Kirliliğin Azot Mineralizasyonuna Etkisi. Ekoloji, 17, 66, 31-38, 2008.
  • 13. Esperschuetz, J., Bulman, S., Anderson, C., Lense, O., Horswell, J., Dickinson ,N., Robınson, B.H. Production of Biomass Crops Using Biowastes on Low-Fertility Soil: 2. Effect of Biowastes on Nitrogen Transformation Processes. Journal of Environmental Quality, 45, 1970–1978, 2016.
  • 14. Franco-Otero, V.G., Soler-Rovıra, P., Hernández, D., López-De-Sá, E.G., Plaza, C. Short-Term Effects of Organic Municipal Wastes on Wheat Yield, Microbial Biomass, Microbial Activity, and Chemical Properties of Soil. Biol Fertil Soils 48, 205–216, 2012.
  • 15. Ghaly, A.E., Ramakrishnan, V.V., Nitrogen Sources and Cycling in The Ecosystem and its Role in Air, Water and Soil Pollution: A Critical Review J Pollut Eff Cont, 3, 2, 2015.
  • 16. Gualtieri M., Andrioletti M., Mantecca P., Vismara C., Camatini M. Impact of Tire Debris on in Vitro and in Vivo Systems. Part. Fibre Toxicol. 2,1, 2005.
  • 17. Hanan, E.J., Schımel, J.P., Dowdy, K., Carla, M.D.A. Effects of Substrate Supply, pH, and Char on Net Nitrogen Mineralization and Nitrification Along a Wildfire-Structured Age Gradient in Chaparral Soil Biology & Biochemistry 95, 87-99, 2016.
  • 18. Hart, S.C., Stark, J.M., Davidson, E.A., Firestone, M.K., Nitrogen Mineralisation, Immobilization, and Nitrification, In: R.W. Weaver, J.S. Angle, B.S. Bottomley (Eds.), Methods Of Soil Analysis. Part 2. Microbiological and Biochemical Properties, Asa and Sssa, Book Series No. 5, Madison, WI, Pp. 985–1018, 1994.
  • 19. Harter, J., Krause, H., Schuettler, S., Ruser, R., Fromme, M., Scholten, T., Kappler, A., Behrens, S. Linking N2O Emissions From Biochar-Amended Soil to The Structure and Function of The N-Cycling Microbial Community. The Isme Journal 8, 660–674, 2014.
  • 20. Hernandez, T., Moral R, Perez-Espinosa, A., Moreno-Caselles, J., Perez-Murcia, M.D., Garcia, C., Nitrogen mineralisation potential in calcareous soils amended with sewage sludge. Bioresource Technology 83, 213-219, 2002.
  • 21. Hollister, C., Ammonium, Nitrate and Phosphate Sorption to Water-Rinsed and Non-Rinsed Biochars. Master’s Thesis: Cornell University, Department of Civil And Environmental Engineering, 2011.
  • 22. Hu, X. F., Jiang, Y., Shu, Y., Hu, X., Liu, L., Luo, F., Effects of Mining Wastewater Discharges on Heavy Metal Pollution and Soilenzyme Activity of The Paddy Fields.J. Geochem. Explor. 147, 139–150, 2014.
  • 23. Jan Kole, P., Löhr, A.J., Van Belleghem, F.G.A.J., Ragas, A.M.J. Wear and Tear of Tyres: A Stealthy Source of Microplastics In The Environment. Int. J. Environ. Res. Public Health, 14,1265, 2017.
  • 24. Jones, D.L., Magthab, E.A., Gleeson, D.B.,. Hill, P.W, Sánchez-Rodríguez, A.R., Roberts, P., Ge T., Murphy, D.V. Microbial Competition For Nitrogen and Carbon Is as Intense in the Subsoil Asin The Topsoil. Soil Biology and Biochemistry 117, 72–82, 2018.
  • 25. Keeney, D.R, Nelson, D.W., Nitrogen-Inorganic Forms, In:A.L. Page, R.H. Miller, D.R. Keeney (Eds.), Methods of Soil Analysis. Part 2. Chemical And Microbiological Properties, Asa and Sssa, Agronomy Monograph No. 9, Madison, Wı, , Pp. 643–693, 1982.
  • 26. Li, Y ., Chapmanc, S.J., Nicold, G.W., Yao, H., Nitrification and Nitrifiers in Acidic Soils. Soil Biology and Biochemistry 116, 290–301, 2018.
  • 27. Lobos, Ortega I., Alfaro, M., Martinez-Lagos, J., Soil Nitrogen Contribution to Grasslands and Its Implication For Nitrogen Use Efficiency. Journal of Soil Science and Plant Nutrition. 16, 310-322, 2016.
  • 28. Lu, Q., He, Z.L., Stoffella, P.J., Land Application of Biosolids In The Usa: A Review. Applied and Environmental Soil Science, Article Id 201462, 11 Pages, 2012.
  • 29. Mantecca, P., Gualtıeri, M., Andrioletti, M., Bacchetta, R., Vismara, C., Vailati, G., Camatini, M. Tire Debris Organic Extract Affects Xenopus Development. Environ. Int. 33, 642–648, 2007.
  • 30. Mc Lean, E.O., Soil Ph And Lime Requirement, İn: A.L. Page, R.H. Miller, D.R. Keeney (Eds.), Methods Of Soil Analysis. Part 2. Chemical And Microbiological Properties, Asa And Sssa, Agronomy Monograph No. 9, Madison, WI, Pp.199–224, 1982.
  • 31. Meyer, C., Stitt, M., Nitrate Reductase And Signalling. In: Lea Pj, Morotgaudry Jf (Eds.) Plant Nitrogen, Springer, New York, Usa, Pp 37-59, 2001.
  • 32. Nelson, D.W., Sommers, L.E., Total Carbon, Organic Carbon And Organic Matter, In: A.L. Page, R.H. Miller, D.R. Keeney (Eds.), Methods Of Soil Analysis. Part 2. Chemical And Microbiological Properties, Asa And Sssa, Agronomymonograph No. 9, Madison, WI, , Pp. 539–579, 1982.
  • 33. Norton, J., Ouyang, Y., Controls and Adaptive Management of Nitrification in Agricultural Soils. Front Microbiol., 10, 1931, 2019.
  • 34. Pajares, S., Bohannan, B.J.M., Ecology Of Nitrogen Fixing, Nitrifying, and Denitrifying Microorganisms İn Tropical Forest Soils. Front Microbiol. 7, 1045, 2016.
  • 35. Rhoades, D., Soluble Salts, İn: A.L. Page, R.H. Miller, D.R. Keeney (Eds.), Methods of Soil Analysis. Part 2. Chemical And Microbiological Properties, Asa and Sssa, Agronomy Monograph No. 9, Madison, WI, Pp. 167–179, 1982.
  • 36. Rigby, H., Clarke, B.O., Pritchard, D.L., Meehan, B., Beshah, F., Smith, S.R., Porter N.A., A Critical Review of Nitrogen Mineralization in Biosolids-Amended Soil, The Associated Fertilizer Value for Crop Production and Potential For Emissions to The Environment. Science of The Total Environment, 541, 1310–1338, 2016.
  • 37. Sagban, F.O., Impacts of Wastewater Sludge Amendments in Restoring Nitrogen Cycle In P-Nitrophenol Contaminated Soil. Journal of Environmental Sciences, 23(4) 616–623, 2011.
  • 38. Sahrawat, K.L., Nitrogen Mineralization İn Lowland Rice Soils: The Role of Organic Matter Quantity and Quality Archives of Agronomy and Soil Science, 56, 3, 337–353, 2010.
  • 39. Schloter, M., Dilly, O., Munch, J.C., Indicators for evaluating soil quality. Agric. Ecosyst. Environ. 98, 255-262, 2003.
  • 40. Shinggu, D.Y.. Ogugbuaja, V.O., Toma, I., Barminas, J.T., Determination of Heavy Metal Pollutants in Street Dust of Yola, Adamawa State, Nigeria. African Journal of Pure and Applied Chemistry Vol. 4 (1), Pp. 017-021, 2010.
  • 41. Sommer, F., Dietze, V. Baum, A. Sauer, J. Gilge, S. Maschowski, C. Gieré R., Tire Abrasion as a Major Source of Microplastics in The Environment. Aerosol Air Quality Res., 18, 2014–2028, 2018.
  • 42. Topac, F.O, Dindar, E., Ucaroglu, S., Baskaya, H.S., Effect of a Sulfonated Azo Dye and Sulfanilic Acid on Nitrogen Transformation Processes in Soil. Journal Of Hazardous Materials, 170, 1006–1013, 2009.
  • 43. Wagner, S., Huffer, T., Klockner, P., Wehrhahn, M., Hofmann, T., Reemtsma, T., Tire Wear Particles in The Aquatic Environment - A Review on Generation, Analysis, Occurrence, Fate And Effects. Water Research, 139, 2018.
  • 44. Wang, J., Feng, X., Anderson, C.W.N., Xıng, Y., Shang, L., Remediation of Mercury Contaminated Sites - A Review. J Hazard Mater 221-222: 1–18, 2012.
  • 45. Wei, X, Gao, B, Wang, P, Zhou, H, Jin, Lu., Pollution Characteristics and Health Risk Assessment of Heavy Metals in Street Dusts From Different Functional Areas in Beijing, China. Ecotoxicology And Environmental Safety 112, 186–192, 2015.
  • 46. Wolıńska, A., Szafranek-Nakonıeczna, A., Banach, A., Błaszczyk, M., Stępnıewska, Z., The Impact of Agricultural Soil Usage on Activity and Abundance of Ammonifying Bacteria in Selected Soils From Poland. Springer Plus 5, 565, 2016.
  • 47. Yao, Hy, Campbell, Cd, Qiao, X., Soil pH Controls Nitrification and Carbon Substrate Utilization More Than Urea or Charcoal in Some Highly Acidic Soils. Biology and Fertility of Soils 47, 515–522, 2011.
Toplam 47 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Çevre Mühendisliği
Bölüm Araştırma Makaleleri
Yazarlar

Efsun Dindar 0000-0002-4572-2512

Yayımlanma Tarihi 31 Aralık 2021
Gönderilme Tarihi 17 Ağustos 2021
Kabul Tarihi 21 Eylül 2021
Yayımlandığı Sayı Yıl 2021

Kaynak Göster

APA Dindar, E. (2021). LASTİK TOZU KAYNAKLI KİRLİLİĞİN TOPRAK AZOT PROSESLERİNE ETKİSİ: ARITMA ÇAMURU İLE BİYOSTİMÜLASYON ÇALIŞMASI. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi, 26(3), 849-864. https://doi.org/10.17482/uumfd.983858
AMA Dindar E. LASTİK TOZU KAYNAKLI KİRLİLİĞİN TOPRAK AZOT PROSESLERİNE ETKİSİ: ARITMA ÇAMURU İLE BİYOSTİMÜLASYON ÇALIŞMASI. UUJFE. Aralık 2021;26(3):849-864. doi:10.17482/uumfd.983858
Chicago Dindar, Efsun. “LASTİK TOZU KAYNAKLI KİRLİLİĞİN TOPRAK AZOT PROSESLERİNE ETKİSİ: ARITMA ÇAMURU İLE BİYOSTİMÜLASYON ÇALIŞMASI”. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi 26, sy. 3 (Aralık 2021): 849-64. https://doi.org/10.17482/uumfd.983858.
EndNote Dindar E (01 Aralık 2021) LASTİK TOZU KAYNAKLI KİRLİLİĞİN TOPRAK AZOT PROSESLERİNE ETKİSİ: ARITMA ÇAMURU İLE BİYOSTİMÜLASYON ÇALIŞMASI. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi 26 3 849–864.
IEEE E. Dindar, “LASTİK TOZU KAYNAKLI KİRLİLİĞİN TOPRAK AZOT PROSESLERİNE ETKİSİ: ARITMA ÇAMURU İLE BİYOSTİMÜLASYON ÇALIŞMASI”, UUJFE, c. 26, sy. 3, ss. 849–864, 2021, doi: 10.17482/uumfd.983858.
ISNAD Dindar, Efsun. “LASTİK TOZU KAYNAKLI KİRLİLİĞİN TOPRAK AZOT PROSESLERİNE ETKİSİ: ARITMA ÇAMURU İLE BİYOSTİMÜLASYON ÇALIŞMASI”. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi 26/3 (Aralık 2021), 849-864. https://doi.org/10.17482/uumfd.983858.
JAMA Dindar E. LASTİK TOZU KAYNAKLI KİRLİLİĞİN TOPRAK AZOT PROSESLERİNE ETKİSİ: ARITMA ÇAMURU İLE BİYOSTİMÜLASYON ÇALIŞMASI. UUJFE. 2021;26:849–864.
MLA Dindar, Efsun. “LASTİK TOZU KAYNAKLI KİRLİLİĞİN TOPRAK AZOT PROSESLERİNE ETKİSİ: ARITMA ÇAMURU İLE BİYOSTİMÜLASYON ÇALIŞMASI”. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi, c. 26, sy. 3, 2021, ss. 849-64, doi:10.17482/uumfd.983858.
Vancouver Dindar E. LASTİK TOZU KAYNAKLI KİRLİLİĞİN TOPRAK AZOT PROSESLERİNE ETKİSİ: ARITMA ÇAMURU İLE BİYOSTİMÜLASYON ÇALIŞMASI. UUJFE. 2021;26(3):849-64.

DUYURU:

30.03.2021- Nisan 2021 (26/1) sayımızdan itibaren TR-Dizin yeni kuralları gereği, dergimizde basılacak makalelerde, ilk gönderim aşamasında Telif Hakkı Formu yanısıra, Çıkar Çatışması Bildirim Formu ve Yazar Katkısı Bildirim Formu da tüm yazarlarca imzalanarak gönderilmelidir. Yayınlanacak makalelerde de makale metni içinde "Çıkar Çatışması" ve "Yazar Katkısı" bölümleri yer alacaktır. İlk gönderim aşamasında doldurulması gereken yeni formlara "Yazım Kuralları" ve "Makale Gönderim Süreci" sayfalarımızdan ulaşılabilir. (Değerlendirme süreci bu tarihten önce tamamlanıp basımı bekleyen makalelerin yanısıra değerlendirme süreci devam eden makaleler için, yazarlar tarafından ilgili formlar doldurularak sisteme yüklenmelidir).  Makale şablonları da, bu değişiklik doğrultusunda güncellenmiştir. Tüm yazarlarımıza önemle duyurulur.

Bursa Uludağ Üniversitesi, Mühendislik Fakültesi Dekanlığı, Görükle Kampüsü, Nilüfer, 16059 Bursa. Tel: (224) 294 1907, Faks: (224) 294 1903, e-posta: mmfd@uludag.edu.tr