BibTex RIS Kaynak Göster

Evaluation of Empirical Modelling Techniques for the Estimation of Sediment Amount in Rivers

Yıl 2016, Cilt: 21 Sayı: 2, 309 - 318, 12.12.2016
https://doi.org/10.17482/uumfd.276942

Öz

The sediment transport processes of streams have
been the subject of research for many years. Sediment amount carried by a river is strongly correlated with the
river’s flow rate and sediment concentration. This study aims to represent this
correlation and to estimate the sediment amount using four different modelling
techniques: MLR, PLS, SVM, and ANN. Records
of river flow, sediment concentration and sediment amount obtained from the
Göksu River,
located in the
Eastern Mediterranean region of Turkey, are used
as input data in the models.
The aim of is this study is to evaluate the
effectiveness of ANN modelling in the estimation of sediment amount carried by
river flow. Fifty percent of the data are used
as training set to develop the models. The other half of the data is used for
verification set. The performance of the four models is evaluated by
determination coefficient of prediction set (r2pred). The
results indicate that ANN is the most effective method (r2pred
= 0.94), followed by SVM (r2pred = 0.72). MLR and PLS
methods are the least effective techniques (r2pred =
0.67) for estimating sediment amount in the Göksu River. Therefore, ANN
approach is further studied to propose the best configuration for the
prediction of river sediment amount.

Kaynakça

  • Abrahart, R.J. and White, S.M. (2001). Modelling sediment transfer in Malawi: Comparing backpropagation neural network solutions against a multiple linear regression benchmark using small data sets, Physics and Chemistry of the Earth (B), 26(1), 19-24. doi: 10.1016/S1464-1909(01)85008-5
  • Arı Güner, H.A., Yüksel, Y. and Çevik, E.Ö. (2013). Longshore sediment transport-field data and estimations using neural networks, numerical model, and empirical models, Journal of Coastal Research, 29(2), 311 – 324. doi: http://dx.doi.org/10.2112/JCOASTRES-D-11-00074.1
  • Bhattacharya, B., Price, R.K. and Solomatine, D.P. (2005). Data-driven modelling in the context of sediment transport, Physics and Chemistry of the Earth, 30(4), 297–302. doi: 10.1016/j.pce.2004.12.001
  • Dietrich, C.R., Green, T.R. and Jakeman, A.J. (1999). An analytical model for stream sediment transport: application to Murray and Murrumbidgee river reaches, Australia, Hydrological Processes, 13(5), 763-776. doi: 10.1002/(SICI)1099-1085(19990415)13:5<763::AID-HYP779>3.0.CO;2-C
  • Engelund, F. and Fredsoe, J. (1976). A sediment transport model for straight alluvial channels, Nordic Hydrology, 7(5), 293-306.
  • Jarritt, N.P. and Lawrence, D.S.L. (2007). Fine sediment delivery and transfer in lowland catchments: Modelling suspended sediment concentrations in response to hydrological forcing, Hydrological Processes, 21(20), 2729-2744. doi: 10.1002/hyp.6402
  • Kettner, A.J. and Syvitski, J.P.M. (2008). HydroTrend v.3.0: A climate-driven hydrological transport model that simulates discharge and sdiment load leaving a river system, Computers & Geosciences, 34(10), 1170-1183. doi:10.1016/j.cageo.2008.02.008
  • Kisi, O. (2012). Modeling discharge-suspended sediment relationship using least square support vector machine, Journal of Hydrology, 456–457, 110–120. doi:10.1016/j.jhydrol.2012.06.019
  • Krause, P., Boyle, D.P. and Base, F. (2005). Comparison of different efficiency criteria for hydrological model assessment, Advances in Geosciences, 5, 89–97. doi:10.5194/adgeo-5-89-20051
  • MDM (Molegro Data Modeller) User Manual, 2013. http://www.clcbio.com/files/usermanuals/MDM_manual.pdf (last accessed in June 2016)
  • Nelson, P.A., Smith, J.A. and Miller, A.J. (2006). Evolution of channel morphology and hydrologic response in an urbanizing drainage basin, Earth Surface Processes and Landforms, 31(9), 1063-1079. doi: 10.1002/esp.1308
  • Roy, K., Kar, S. and Ambure, P. (2015). On a simple approach for determining applicability domain of QSAR models, Chemometrics and Intelligent Laboratory Systems, 145, 22-29. doi: http://dx.doi.org/10.1016/j.chemolab.2015.04.013
  • Shi, Z.H., Ai, L., Li X., Huang, X.D., Wu, G.L. and Liao, W. (2013). Partial least-squares regression for linking land-cover patterns to soil erosion and sediment yield in watersheds, Journal of Hydrology, 498, 165–176. doi:10.1016/j.jhydrol.2013.06.031
  • Sinnakaudan, S. K., Ghani, A. A., Ahmad, M. S. S. and Zakaria N. A. (2006). Multiple linear regression model for total bed material load prediction, Journal of Hydraulic Engineering, 132(5), 521-528. doi: 10.1061/(ASCE)0733-9429(2006)132:5(521)
  • Tayfur, G. (2002). Artificial neural networks for sheet sediment transport, Hydrological Sciences, 47(6), 879-892. doi: 10.1080/02626660209492997
  • Van Maanen, B., Coco, G., Bryan, K. R. and Ruessink, B. G. (2010). The use of artificial neural networks to analyze and predict alongshore sediment transport, Nonlinear Processes in Geophysics, 17(5), 395–404. doi:10.5194/npg-17-395-2010
  • Yang, C.T., Marsooli, R. and Aalami, M.T. (2009). Evaluation of total load sediment transport formulas using ANN, International Journal of Sediment Research, 24(3), 274-286. doi: 10.1016/S1001-6279(10)60003-0
  • Yenigün, K., Bilgehan, M., Gerger, R. and Mutlu, M. (2010). A comparative study on prediction of sediment yield in the Euphrates basin, International Journal of the Physical Sciences, 5(5), 518-534. doi: 2B15E0C25933
  • Yitian, L. and Gu, R.R. (2003). Modeling flow and sediment transport in a river system using an Artificial Neural Network, Environmental Management, 31(1), 122–134. doi: 10.1007/s00267-002-2862-9

NEHİRLERDE SEDİMENT MİKTARININ BELİRLENMESİNDE AMPİRİK MODELLEME TEKNİKLERİNİN DEĞERLENDİRİLMESİ

Yıl 2016, Cilt: 21 Sayı: 2, 309 - 318, 12.12.2016
https://doi.org/10.17482/uumfd.276942

Öz

Nehirlerdeki sediment taşınım süreçleri uzun
yıllardır önemli bir araştırma konusu olmuştur. Nehirlerde taşınan sediment
miktarı, nehrin akımı ve sediment konsantrasyonu ile güçlü bir ilişki
içerisindedir. Bu çalışma, bu ilişkiyi göstermeyi ve dört farklı modelleme
tekniği olan MLR, PLS, SVM ve ANN
metotlarını kullanarak sediment miktarını hesaplamayı amaçlamaktadır.
Türkiye’nin Doğu Akdeniz bölgesinde yer alan Göksu Nehri’ne ait akım, sediment
konsantrasyonu ve sediment miktarı modellerde girdi verisi olarak
kullanılmıştır. Bu çalışmanın amacı, nehir akımıyla taşınan sediment miktarının
tahmin edilmesinde ANN modelleme tekniğinin etkisini değerlendirmektir.
Verilerin yüzde ellisi modelin geliştirilmesi için öğrenme seti olarak, kalan
veriler ise modelin validasyonu  için
test seti olarak kullanılmıştır. Test setinin belirleme katsayısı (r2pred) dikkate alınarak dört
modelin performansı değerlendirilmiştir. Sonuçlar ANN’nin en etkili yöntem
olduğunu (r2pred = 0.94) ve onu SVM’nin takip ettiğini (r2pred=0.72)
göstermektedir. MLR ve PLS ise Göksu Nehri’ndeki sediment miktarının
belirlenmesinde en az etkili yöntemlerdir 
(r2pred = 0.67). Bu nedenle, nehirdeki sediment
miktarını tahmin etmek için en etkili yöntem, ANN’nin farklı konfigürasyonları çalışılarak
araştırılmıştır.

Kaynakça

  • Abrahart, R.J. and White, S.M. (2001). Modelling sediment transfer in Malawi: Comparing backpropagation neural network solutions against a multiple linear regression benchmark using small data sets, Physics and Chemistry of the Earth (B), 26(1), 19-24. doi: 10.1016/S1464-1909(01)85008-5
  • Arı Güner, H.A., Yüksel, Y. and Çevik, E.Ö. (2013). Longshore sediment transport-field data and estimations using neural networks, numerical model, and empirical models, Journal of Coastal Research, 29(2), 311 – 324. doi: http://dx.doi.org/10.2112/JCOASTRES-D-11-00074.1
  • Bhattacharya, B., Price, R.K. and Solomatine, D.P. (2005). Data-driven modelling in the context of sediment transport, Physics and Chemistry of the Earth, 30(4), 297–302. doi: 10.1016/j.pce.2004.12.001
  • Dietrich, C.R., Green, T.R. and Jakeman, A.J. (1999). An analytical model for stream sediment transport: application to Murray and Murrumbidgee river reaches, Australia, Hydrological Processes, 13(5), 763-776. doi: 10.1002/(SICI)1099-1085(19990415)13:5<763::AID-HYP779>3.0.CO;2-C
  • Engelund, F. and Fredsoe, J. (1976). A sediment transport model for straight alluvial channels, Nordic Hydrology, 7(5), 293-306.
  • Jarritt, N.P. and Lawrence, D.S.L. (2007). Fine sediment delivery and transfer in lowland catchments: Modelling suspended sediment concentrations in response to hydrological forcing, Hydrological Processes, 21(20), 2729-2744. doi: 10.1002/hyp.6402
  • Kettner, A.J. and Syvitski, J.P.M. (2008). HydroTrend v.3.0: A climate-driven hydrological transport model that simulates discharge and sdiment load leaving a river system, Computers & Geosciences, 34(10), 1170-1183. doi:10.1016/j.cageo.2008.02.008
  • Kisi, O. (2012). Modeling discharge-suspended sediment relationship using least square support vector machine, Journal of Hydrology, 456–457, 110–120. doi:10.1016/j.jhydrol.2012.06.019
  • Krause, P., Boyle, D.P. and Base, F. (2005). Comparison of different efficiency criteria for hydrological model assessment, Advances in Geosciences, 5, 89–97. doi:10.5194/adgeo-5-89-20051
  • MDM (Molegro Data Modeller) User Manual, 2013. http://www.clcbio.com/files/usermanuals/MDM_manual.pdf (last accessed in June 2016)
  • Nelson, P.A., Smith, J.A. and Miller, A.J. (2006). Evolution of channel morphology and hydrologic response in an urbanizing drainage basin, Earth Surface Processes and Landforms, 31(9), 1063-1079. doi: 10.1002/esp.1308
  • Roy, K., Kar, S. and Ambure, P. (2015). On a simple approach for determining applicability domain of QSAR models, Chemometrics and Intelligent Laboratory Systems, 145, 22-29. doi: http://dx.doi.org/10.1016/j.chemolab.2015.04.013
  • Shi, Z.H., Ai, L., Li X., Huang, X.D., Wu, G.L. and Liao, W. (2013). Partial least-squares regression for linking land-cover patterns to soil erosion and sediment yield in watersheds, Journal of Hydrology, 498, 165–176. doi:10.1016/j.jhydrol.2013.06.031
  • Sinnakaudan, S. K., Ghani, A. A., Ahmad, M. S. S. and Zakaria N. A. (2006). Multiple linear regression model for total bed material load prediction, Journal of Hydraulic Engineering, 132(5), 521-528. doi: 10.1061/(ASCE)0733-9429(2006)132:5(521)
  • Tayfur, G. (2002). Artificial neural networks for sheet sediment transport, Hydrological Sciences, 47(6), 879-892. doi: 10.1080/02626660209492997
  • Van Maanen, B., Coco, G., Bryan, K. R. and Ruessink, B. G. (2010). The use of artificial neural networks to analyze and predict alongshore sediment transport, Nonlinear Processes in Geophysics, 17(5), 395–404. doi:10.5194/npg-17-395-2010
  • Yang, C.T., Marsooli, R. and Aalami, M.T. (2009). Evaluation of total load sediment transport formulas using ANN, International Journal of Sediment Research, 24(3), 274-286. doi: 10.1016/S1001-6279(10)60003-0
  • Yenigün, K., Bilgehan, M., Gerger, R. and Mutlu, M. (2010). A comparative study on prediction of sediment yield in the Euphrates basin, International Journal of the Physical Sciences, 5(5), 518-534. doi: 2B15E0C25933
  • Yitian, L. and Gu, R.R. (2003). Modeling flow and sediment transport in a river system using an Artificial Neural Network, Environmental Management, 31(1), 122–134. doi: 10.1007/s00267-002-2862-9
Toplam 19 adet kaynakça vardır.

Ayrıntılar

Konular Mühendislik
Bölüm Araştırma Makaleleri
Yazarlar

Başak Güven

Zeynep Akdoğan Bu kişi benim

Yayımlanma Tarihi 12 Aralık 2016
Gönderilme Tarihi 22 Temmuz 2016
Kabul Tarihi 17 Kasım 2016
Yayımlandığı Sayı Yıl 2016 Cilt: 21 Sayı: 2

Kaynak Göster

APA Güven, B., & Akdoğan, Z. (2016). NEHİRLERDE SEDİMENT MİKTARININ BELİRLENMESİNDE AMPİRİK MODELLEME TEKNİKLERİNİN DEĞERLENDİRİLMESİ. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi, 21(2), 309-318. https://doi.org/10.17482/uumfd.276942
AMA Güven B, Akdoğan Z. NEHİRLERDE SEDİMENT MİKTARININ BELİRLENMESİNDE AMPİRİK MODELLEME TEKNİKLERİNİN DEĞERLENDİRİLMESİ. UUJFE. Kasım 2016;21(2):309-318. doi:10.17482/uumfd.276942
Chicago Güven, Başak, ve Zeynep Akdoğan. “NEHİRLERDE SEDİMENT MİKTARININ BELİRLENMESİNDE AMPİRİK MODELLEME TEKNİKLERİNİN DEĞERLENDİRİLMESİ”. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi 21, sy. 2 (Kasım 2016): 309-18. https://doi.org/10.17482/uumfd.276942.
EndNote Güven B, Akdoğan Z (01 Kasım 2016) NEHİRLERDE SEDİMENT MİKTARININ BELİRLENMESİNDE AMPİRİK MODELLEME TEKNİKLERİNİN DEĞERLENDİRİLMESİ. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi 21 2 309–318.
IEEE B. Güven ve Z. Akdoğan, “NEHİRLERDE SEDİMENT MİKTARININ BELİRLENMESİNDE AMPİRİK MODELLEME TEKNİKLERİNİN DEĞERLENDİRİLMESİ”, UUJFE, c. 21, sy. 2, ss. 309–318, 2016, doi: 10.17482/uumfd.276942.
ISNAD Güven, Başak - Akdoğan, Zeynep. “NEHİRLERDE SEDİMENT MİKTARININ BELİRLENMESİNDE AMPİRİK MODELLEME TEKNİKLERİNİN DEĞERLENDİRİLMESİ”. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi 21/2 (Kasım 2016), 309-318. https://doi.org/10.17482/uumfd.276942.
JAMA Güven B, Akdoğan Z. NEHİRLERDE SEDİMENT MİKTARININ BELİRLENMESİNDE AMPİRİK MODELLEME TEKNİKLERİNİN DEĞERLENDİRİLMESİ. UUJFE. 2016;21:309–318.
MLA Güven, Başak ve Zeynep Akdoğan. “NEHİRLERDE SEDİMENT MİKTARININ BELİRLENMESİNDE AMPİRİK MODELLEME TEKNİKLERİNİN DEĞERLENDİRİLMESİ”. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi, c. 21, sy. 2, 2016, ss. 309-18, doi:10.17482/uumfd.276942.
Vancouver Güven B, Akdoğan Z. NEHİRLERDE SEDİMENT MİKTARININ BELİRLENMESİNDE AMPİRİK MODELLEME TEKNİKLERİNİN DEĞERLENDİRİLMESİ. UUJFE. 2016;21(2):309-18.

DUYURU:

30.03.2021- Nisan 2021 (26/1) sayımızdan itibaren TR-Dizin yeni kuralları gereği, dergimizde basılacak makalelerde, ilk gönderim aşamasında Telif Hakkı Formu yanısıra, Çıkar Çatışması Bildirim Formu ve Yazar Katkısı Bildirim Formu da tüm yazarlarca imzalanarak gönderilmelidir. Yayınlanacak makalelerde de makale metni içinde "Çıkar Çatışması" ve "Yazar Katkısı" bölümleri yer alacaktır. İlk gönderim aşamasında doldurulması gereken yeni formlara "Yazım Kuralları" ve "Makale Gönderim Süreci" sayfalarımızdan ulaşılabilir. (Değerlendirme süreci bu tarihten önce tamamlanıp basımı bekleyen makalelerin yanısıra değerlendirme süreci devam eden makaleler için, yazarlar tarafından ilgili formlar doldurularak sisteme yüklenmelidir).  Makale şablonları da, bu değişiklik doğrultusunda güncellenmiştir. Tüm yazarlarımıza önemle duyurulur.

Bursa Uludağ Üniversitesi, Mühendislik Fakültesi Dekanlığı, Görükle Kampüsü, Nilüfer, 16059 Bursa. Tel: (224) 294 1907, Faks: (224) 294 1903, e-posta: mmfd@uludag.edu.tr