Araştırma Makalesi
BibTex RIS Kaynak Göster

limit state sensitivity analysis of gravity type quaywalls according to AYGM Technical Code for Coastal and Port Structures in Seismic Zones (2008)

Yıl 2017, Cilt: 22 Sayı: 2, 201 - 218, 21.09.2017
https://doi.org/10.17482/uumfd.297866

Öz

In this study, stability of a monoblock gravity type quaywall was
studied based on the traditional pseudo-static approach as suggested by AYGM
Technical Code for Coastal and Port Structures in Seismic Zones (2008).
Sensitivity of design parameters to the stability of a generalized structure is
analyzed. Variability of the critical structure dimensions to the variability
of the design parameters in terms of sliding and overturning is studied.
Controlled (CD) and Minimum Damage (MD) performance levels were considered in
the evaluation of the results. Results indicated that overturning criteria
limits the structure dimensions for relatively small horizontal seismic
coefficient (kh) values, while the structure dimensions are limited
by the sliding criteria for relatively high values of kh. Friction
coefficient is found to be effective on the critical failure mode. Higher
values of friction coefficient causes a transition from overturning mode to
sliding mode at higher values of kh which results with smaller
structure dimensions.

Kaynakça

  • 1. Ahmad S.M. and Choudhury D. (2009) Seismic design factor for sliding of waterfront retaining wall, Proceeding of the Institution of Civil Engineers, Geotechnical Engineering, 162, 269-276.
  • 2. Choudhury D., Nimbalkar S.S. (2006) Pseudo-dynamic approach of seismic active earth pressure behind retaining wall, Geotechnical and Geological Engineering, 24, 1103-1113.
  • 3. Choudhury D., Ahmad S.M. (2007) Stability of waterfront retaining wall subjected to pseudo-static earthquake forces, Ocean Engineering, 34, 1947- 1957.
  • 4. Choudhury D., Ahmad S.M. (2008) Stability of waterfront retaining wall subjected to pseudo-dynamic earthquake forces, Journal of Waterway, Port, Coastal, Ocean Engineering, ASCE, 134, 252-262.
  • 5. EN 1998-5:2005, (2005). Eurocode 8 - Design of structures for earthquake resistance - Part 5: Foundations, retaining structures and geotechnical aspects, CEN, Bruxelles, Belgium.
  • 6. EPPO, (2000). Earthquake planning and protection organization, Greek Seismic Code EAK2000 (amended in 2003), Athens, Greece (in Greek).
  • 7. Italian Government Ministry of Infrastructures, (2008). Italian code for structural design (Norme tecniche per le costruzioni) (In Italian), Official Bullettin no. 29.
  • 8. Mononobe, N. and Matsuo, H. (1929) On the determination of earth pressures during earthquakes, Proc. of the World Engineering Congress, Tokyo-Japan, 9, 179–187.
  • 9. Newmark N. M. (1965) Effects of earthquakes on dams and embankments, Geotechnique, 15 (2), 139–160.
  • 10. OCDI the Overseas Coastal Area Development Institute of Japan, (2009). Technical standards and commentaries for port and harbor facilities in Japan, Tokyo, Japan.
  • 11. Okabe S. (1924) General theory of earth pressure and seismic stability of retaining wall and dam, Journal of the Japanese Society of Civil Engineers, 10 (5), 1277-1323.
  • 12. PIANC Permanent International Navigation Association, (2001). Seismic design guidelines for port structures, A.A. Balkema Publishers, Rotterdam, the Netherlands.
  • 13. Shukha R., Baker R. (2008) Design implications of the vertical pseudo-static coefficient in slope analysis, Computers and Geotechnics, 35, 86–96.
  • 14. Türkiye Cumhuriyeti Ulaştırma, Denizcilik ve Haberleşme Bakanlığı Altyapı Yatırımları Genel Müdürlüğü (AYGM), (2008). Kıyı ve Liman Yapıları, Demiryolları, Hava Meydanları İnşaatlarına İlişkin Deprem Teknik Yönetmeliği, Ankara, Türkiye.
  • 15. USACE, US Army Corps of Engineers, (1989). Engineering and design of retaining and flood walls. EM 1110-2-2502.
  • 16. Westergaard H . M. (1933) Water pressures on dams during earthquakes, Transactions of the American Society of Civil Engineers (ASCE), 98 (2), 418-433.
  • 17. Yuksel Y., Alpar Ş.B., Yalciner A., Cevik E., Ozguven O., Celikoglu Y. (2003) Effects of the eastern Marmara earthquake on marine structures and coastal areas, Proceedings of The Institution of Civil Engineers-Water and Maritime Engineering, 156, 147-163.

AYGM KIYI VE LİMAN YAPILARI İNŞAATLARINA İLİŞKİN DEPREM TEKNİK YÖNETMELİĞİNE (2008) GÖRE AĞIRLIK TİPİ RIHTIM DUVARLARININ LİMİT DURUM DUYARLILIK ANALİZİ

Yıl 2017, Cilt: 22 Sayı: 2, 201 - 218, 21.09.2017
https://doi.org/10.17482/uumfd.297866

Öz

Bu çalışmada ağırlık tipi monoblok bir rıhtım
yapısının kayma ve devrilmeye karşı güvenliği, AYGM Kıyı ve Liman Yapıları,
Demiryolları, Hava Meydanları İnşaatlarına İlişkin Deprem Teknik Yönetmeliğince
(2008) tanımlanan geleneksel pseudo-statik analiz yöntemi kullanılarak
değerlendirilmiştir. Basitleştirilmiş ağırlık tipi bir rıhtım yapısının tasarım
parametrelerine olan hassasiyetinin ortaya konulması amaçlanmıştır. Sistemin
devrilme ve kayma güvenlikleri açısından limit boyutlarının tasarım
parametrelerinin değişimi ile değişkenliği incelenmiştir. Değerlendirmeler hem
Kontrollü Hasar (KH) hem de Minimum Hasar (MH) performans düzeyleri için
yapılmıştır. Sonuçlar göstermiştir ki; düşük eşdeğer deprem ivme katsayısı (kh)
değerlerinde yapı boyutunu belirleyen etki devrilme güvenliği olurken, kh
yükseldikçe kayma güvenliği belirleyici olmaktadır. Sürtünme katsayısının
kritik yıkılma modunun değişimini etkilediği, yüksek sürtünme katsayısının daha
yüksek kh değerlerinde devrilme modundan kayma moduna geçişe sebep
olduğu ve bunun sonucunda yapı boyutlarının küçüldüğü görülmüştür.

Kaynakça

  • 1. Ahmad S.M. and Choudhury D. (2009) Seismic design factor for sliding of waterfront retaining wall, Proceeding of the Institution of Civil Engineers, Geotechnical Engineering, 162, 269-276.
  • 2. Choudhury D., Nimbalkar S.S. (2006) Pseudo-dynamic approach of seismic active earth pressure behind retaining wall, Geotechnical and Geological Engineering, 24, 1103-1113.
  • 3. Choudhury D., Ahmad S.M. (2007) Stability of waterfront retaining wall subjected to pseudo-static earthquake forces, Ocean Engineering, 34, 1947- 1957.
  • 4. Choudhury D., Ahmad S.M. (2008) Stability of waterfront retaining wall subjected to pseudo-dynamic earthquake forces, Journal of Waterway, Port, Coastal, Ocean Engineering, ASCE, 134, 252-262.
  • 5. EN 1998-5:2005, (2005). Eurocode 8 - Design of structures for earthquake resistance - Part 5: Foundations, retaining structures and geotechnical aspects, CEN, Bruxelles, Belgium.
  • 6. EPPO, (2000). Earthquake planning and protection organization, Greek Seismic Code EAK2000 (amended in 2003), Athens, Greece (in Greek).
  • 7. Italian Government Ministry of Infrastructures, (2008). Italian code for structural design (Norme tecniche per le costruzioni) (In Italian), Official Bullettin no. 29.
  • 8. Mononobe, N. and Matsuo, H. (1929) On the determination of earth pressures during earthquakes, Proc. of the World Engineering Congress, Tokyo-Japan, 9, 179–187.
  • 9. Newmark N. M. (1965) Effects of earthquakes on dams and embankments, Geotechnique, 15 (2), 139–160.
  • 10. OCDI the Overseas Coastal Area Development Institute of Japan, (2009). Technical standards and commentaries for port and harbor facilities in Japan, Tokyo, Japan.
  • 11. Okabe S. (1924) General theory of earth pressure and seismic stability of retaining wall and dam, Journal of the Japanese Society of Civil Engineers, 10 (5), 1277-1323.
  • 12. PIANC Permanent International Navigation Association, (2001). Seismic design guidelines for port structures, A.A. Balkema Publishers, Rotterdam, the Netherlands.
  • 13. Shukha R., Baker R. (2008) Design implications of the vertical pseudo-static coefficient in slope analysis, Computers and Geotechnics, 35, 86–96.
  • 14. Türkiye Cumhuriyeti Ulaştırma, Denizcilik ve Haberleşme Bakanlığı Altyapı Yatırımları Genel Müdürlüğü (AYGM), (2008). Kıyı ve Liman Yapıları, Demiryolları, Hava Meydanları İnşaatlarına İlişkin Deprem Teknik Yönetmeliği, Ankara, Türkiye.
  • 15. USACE, US Army Corps of Engineers, (1989). Engineering and design of retaining and flood walls. EM 1110-2-2502.
  • 16. Westergaard H . M. (1933) Water pressures on dams during earthquakes, Transactions of the American Society of Civil Engineers (ASCE), 98 (2), 418-433.
  • 17. Yuksel Y., Alpar Ş.B., Yalciner A., Cevik E., Ozguven O., Celikoglu Y. (2003) Effects of the eastern Marmara earthquake on marine structures and coastal areas, Proceedings of The Institution of Civil Engineers-Water and Maritime Engineering, 156, 147-163.
Toplam 17 adet kaynakça vardır.

Ayrıntılar

Konular Mühendislik
Bölüm Araştırma Makaleleri
Yazarlar

Burak Aydoğan

Yayımlanma Tarihi 21 Eylül 2017
Gönderilme Tarihi 14 Mart 2017
Kabul Tarihi 25 Ağustos 2017
Yayımlandığı Sayı Yıl 2017 Cilt: 22 Sayı: 2

Kaynak Göster

APA Aydoğan, B. (2017). AYGM KIYI VE LİMAN YAPILARI İNŞAATLARINA İLİŞKİN DEPREM TEKNİK YÖNETMELİĞİNE (2008) GÖRE AĞIRLIK TİPİ RIHTIM DUVARLARININ LİMİT DURUM DUYARLILIK ANALİZİ. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi, 22(2), 201-218. https://doi.org/10.17482/uumfd.297866
AMA Aydoğan B. AYGM KIYI VE LİMAN YAPILARI İNŞAATLARINA İLİŞKİN DEPREM TEKNİK YÖNETMELİĞİNE (2008) GÖRE AĞIRLIK TİPİ RIHTIM DUVARLARININ LİMİT DURUM DUYARLILIK ANALİZİ. UUJFE. Ağustos 2017;22(2):201-218. doi:10.17482/uumfd.297866
Chicago Aydoğan, Burak. “AYGM KIYI VE LİMAN YAPILARI İNŞAATLARINA İLİŞKİN DEPREM TEKNİK YÖNETMELİĞİNE (2008) GÖRE AĞIRLIK TİPİ RIHTIM DUVARLARININ LİMİT DURUM DUYARLILIK ANALİZİ”. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi 22, sy. 2 (Ağustos 2017): 201-18. https://doi.org/10.17482/uumfd.297866.
EndNote Aydoğan B (01 Ağustos 2017) AYGM KIYI VE LİMAN YAPILARI İNŞAATLARINA İLİŞKİN DEPREM TEKNİK YÖNETMELİĞİNE (2008) GÖRE AĞIRLIK TİPİ RIHTIM DUVARLARININ LİMİT DURUM DUYARLILIK ANALİZİ. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi 22 2 201–218.
IEEE B. Aydoğan, “AYGM KIYI VE LİMAN YAPILARI İNŞAATLARINA İLİŞKİN DEPREM TEKNİK YÖNETMELİĞİNE (2008) GÖRE AĞIRLIK TİPİ RIHTIM DUVARLARININ LİMİT DURUM DUYARLILIK ANALİZİ”, UUJFE, c. 22, sy. 2, ss. 201–218, 2017, doi: 10.17482/uumfd.297866.
ISNAD Aydoğan, Burak. “AYGM KIYI VE LİMAN YAPILARI İNŞAATLARINA İLİŞKİN DEPREM TEKNİK YÖNETMELİĞİNE (2008) GÖRE AĞIRLIK TİPİ RIHTIM DUVARLARININ LİMİT DURUM DUYARLILIK ANALİZİ”. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi 22/2 (Ağustos 2017), 201-218. https://doi.org/10.17482/uumfd.297866.
JAMA Aydoğan B. AYGM KIYI VE LİMAN YAPILARI İNŞAATLARINA İLİŞKİN DEPREM TEKNİK YÖNETMELİĞİNE (2008) GÖRE AĞIRLIK TİPİ RIHTIM DUVARLARININ LİMİT DURUM DUYARLILIK ANALİZİ. UUJFE. 2017;22:201–218.
MLA Aydoğan, Burak. “AYGM KIYI VE LİMAN YAPILARI İNŞAATLARINA İLİŞKİN DEPREM TEKNİK YÖNETMELİĞİNE (2008) GÖRE AĞIRLIK TİPİ RIHTIM DUVARLARININ LİMİT DURUM DUYARLILIK ANALİZİ”. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi, c. 22, sy. 2, 2017, ss. 201-18, doi:10.17482/uumfd.297866.
Vancouver Aydoğan B. AYGM KIYI VE LİMAN YAPILARI İNŞAATLARINA İLİŞKİN DEPREM TEKNİK YÖNETMELİĞİNE (2008) GÖRE AĞIRLIK TİPİ RIHTIM DUVARLARININ LİMİT DURUM DUYARLILIK ANALİZİ. UUJFE. 2017;22(2):201-18.

DUYURU:

30.03.2021- Nisan 2021 (26/1) sayımızdan itibaren TR-Dizin yeni kuralları gereği, dergimizde basılacak makalelerde, ilk gönderim aşamasında Telif Hakkı Formu yanısıra, Çıkar Çatışması Bildirim Formu ve Yazar Katkısı Bildirim Formu da tüm yazarlarca imzalanarak gönderilmelidir. Yayınlanacak makalelerde de makale metni içinde "Çıkar Çatışması" ve "Yazar Katkısı" bölümleri yer alacaktır. İlk gönderim aşamasında doldurulması gereken yeni formlara "Yazım Kuralları" ve "Makale Gönderim Süreci" sayfalarımızdan ulaşılabilir. (Değerlendirme süreci bu tarihten önce tamamlanıp basımı bekleyen makalelerin yanısıra değerlendirme süreci devam eden makaleler için, yazarlar tarafından ilgili formlar doldurularak sisteme yüklenmelidir).  Makale şablonları da, bu değişiklik doğrultusunda güncellenmiştir. Tüm yazarlarımıza önemle duyurulur.

Bursa Uludağ Üniversitesi, Mühendislik Fakültesi Dekanlığı, Görükle Kampüsü, Nilüfer, 16059 Bursa. Tel: (224) 294 1907, Faks: (224) 294 1903, e-posta: mmfd@uludag.edu.tr