Araştırma Makalesi
BibTex RIS Kaynak Göster

BİYOMEDİKAL UYGULAMALAR İÇİN POLİSAKKARİT ESASLI NANOLİFLİ YÜZEY ÜRETİMİ VE ÇAPRAZ BAĞLANMASI

Yıl 2017, Cilt: 22 Sayı: 3, 127 - 144, 28.12.2017
https://doi.org/10.17482/uumfd.309657

Öz

Polisakkarit esaslı polimerler,
biyomedikal uygulamalarda yaygın olarak kullanılmaktadır. Bu çalışmada; polisakkarit
hyaluronik asit, karboksimetil selüloz ve sodyum alginat polimerleri
kullanılarak elektro çekim yöntemiyle nanolifli yüzey üretimi gerçekleştirilmiştir.
Üretilen nanolifli yüzeye, suya dayanımını geliştirmek amacıyla,
1-etil-3-(3-dimetilaminopropil) karbodiimid hidroklorit ve N-hidroksisülfosüksinimit
karışımı
ile çapraz bağlama işlemi uygulanmıştır. Nanolifli yüzey, çapraz bağlama işlemi
öncesi ve sonrasında, taramalı elektron mikroskobu, fourier transform infrared
spektrometresi, atomik kuvvet mikroskobu, BET analizi ve suya dayanım testi ile
karakterize edilmiştir. Sonuçlar; çapraz bağlama işlemi ile lifli yapının
deformasyona uğramadan nanolifli yüzeyin suya dayanıklı hale geldiğini
göstermiştir.

Kaynakça

  • Amiraliyan, N., Nouri, M. ve Kish, M. H. (2009) Effects of some electrospinning parameters on morphology of natural silk-based nanofibers, Journal of Applied Polymer Science, 113(1), 226-234. doi:10.1002/app.29808
  • Aytar, P., Buruk, Y. ve Çabuk, A. (2013) Streptecoccus equi ile hyaluronik asit üretiminde optimum koşulların plackett-burman yöntemi ile belirlenmesi, Elektronik Mikrobiyoloji Dergisi, 11(1), 28-35.
  • Baji, A., Mai, Y. W., Wong, S. C., Abtahi, M. ve Chen, P. (2010) Electrospinning of polymer nanofibers: effects on oriented morphology, structures and tensile properties, Composites Science and Technology, 70, 703-718. doi: 10.1016/j.compscitech.2010.01.010
  • Bhattarai, N., Li, Z., Edmondson, D. ve Zhang, M. (2006) Alginate based nanofibrous scaffolds: structural, mechanical, and biological properties. Advanced Materials, 18(11), 1463-1467. doi: 10.1002/adma.200502537
  • Collins, M. N. ve Birkinshaw, C. (2007) Comparison of the effectiveness of four different crosslinking agents with hyaluronic acid hydrogel films for tissue-culture applications, Journal of Applied Polymer Science, 104(5), 3183-3191. doi: 10.1002/app.25993
  • Collins, M. N. ve Birkinshaw, C. (2013) Hyaluronic acid based scaffolds for tissue engineering-a review, Carbohydrate Polymers, 92(2), 1262-1279. doi: 10.1016/ j.carbpol.2012.10.028
  • Coşkun, G., Karaca, E., Özyurtlu, M., Özbek, S., Yermezler, A. ve Çavuşoğlu, İ. (2014) Histological evaluation of wound healing performance of electrospun poly(vinyl alcohol)/sodium alginate as wound dressing in vivo, Bio-medical Materials and Engineering, 24(2), 1527-1536. doi: 10.3233/BME-130956
  • Coşkun Üstündağ, G. (2009). Elektrospinning yöntemi ile biyomedikal kullanıma yönelik nanolif yüzey üretimi ve uygulaması, Yüksek Lisans Tezi, U.Ü. Fen Bilimleri Enstitüsü, Bursa.
  • Deitzel, J. M., Kleinmeyer, J., Harris, D. E. A. ve Tan, N. B. (2001) The effect of processing variables on the morphology of electrospun nanofibers and textiles, Polymer, 42(1), 261-272. doi: 10.1016/S0032-3861(00)00250-0
  • Diraçoğlu, D. (2007) Osteoartritte intraartiküler hyalüronik asit tedavisi-eğitim, Türkish Journal of Physical Medicine and Rehabilitation, 53, 154-159.
  • Fang, D., Liu, Y., Jiang, S., Nie, J. ve Ma, G. (2011) Effect of intermolecular interaction on electrospinning of sodium alginate, Carbohydrate Polymers, 85(1), 276-279. doi: 10.1016/j. carbpol.2011.01.054
  • Frenot, A., Henriksson, M. W. ve Walkenström, P. (2007) Electrospinning of cellulose based nanofibers, Journal of Applied Polymer Science, 103(3), 1473-1482. doi: 10.1002/app.24912
  • G-Biosciences, (2016). Protein Cross-Linkers. Erişim adresi: http://www.gbiosciences.com/Protein-Research/Cross-Linking-Modification/Protein-Cross-Linkers (Erişim tarihi: 19.07.2016).
  • Jeong, S. I., Krebs, M. D., Bonino, C. A., Khan, S. A. ve Alsberg, E. (2010a) Electrospun alginate nanofibers with controlled cell adhesion for tissue engineering, Macromolecular Bioscience, 10(8), 934-943. doi: 10.1002/mabi.201000046
  • Jeong, S. I., Krebs, M. D., Bonino, C. A., Samorezov, J. E., Khan, S. A. ve Alsberg, E. (2010b) Electrospun chitosan-alginate nanofibers with in situ polyelectrolyte complexation for use as tissue engineering scaffolds, Tissue Engineering Part A, 17(1-2), 59-70. doi: 10.1089/ten.tea.2010.0086
  • Ji, Y., Ghosh, K., Li, B., Sokolov, J. C., Clark, R. A. ve Rafailovich, M. H. (2006a) Dual-syringe reactive electrospinning of cross-linked hyaluronic acid hydrogel nanofibers for tissue engineering applications, Macromolecular Bioscience, 6(10), 811-817. doi: 10.1002/ mabi.200600132
  • Ji, Y., Ghosh, K., Shu, X. Z., Li, B., Sokolov, J. C., Prestwich, G. D. ve Rafailovich, M. H. (2006b) Electrospun three-dimensional hyaluronic acid nanofibrous scaffolds, Biomaterials, 27(20), 3782-3792. doi:
  • Kırcı, H. (2001) Selüloz türevleri ve kullanım yerleri, Fen ve Mühendislik Dergisi, 4(2), 119-130.
  • Kim, T. G., Chung, H. J. ve Park, T. G. (2008a) Macroporous and nanofibrous hyaluronic acid/collagen hybrid scaffold fabricated by concurrent electrospinning and deposition/leaching of salt particles, Acta Biomaterialia, 4(6), 1611-1619. doi: 10.1016/j.actbio.2008.06.008
  • Kim, J. K., Srinivasan, P., Kim, J. H., Choi, J. I., Park, H. J., Byun, M. W., Lee, J. W. (2008b) Structural and antioxidant properties of gamma irradiated hyaluronic acid, Food Chemistry, 109(4), 763-770. doi:10.1016/j.foodchem.2008.01.038
  • Koral Koç, S. ve Hockenberger, A. (2009) Bazı tekstil liflerinin yüzeylerinin atomik kuvvet mikroskobu ile nano boyutta incelenmesi, Tekstil ve Mühendis Dergisi, 15(69-70), 1-6.
  • Kriegel, C., Arrechi, A., Kit, K., Mcclements, D.J. ve Weiss, J. (2008) Fabrication, functionalization, and application of electrospun biopolymer nanofibers, Critical Reviews in Food Science and Nutrition, 48(8), 775-797. doi: 10.1080/10408390802241325
  • Kumar, A. (2010) Nanofibers, Intech, Croatia.
  • Li, J., He, A., Zheng, J. ve Han, C. C. (2006) Gelatin and gelatin-hyaluronic acid nanofibrous membranes produced by electrospinning of their aqueous solutions, Biomacromolecules, 7(7), 2243-2247. doi: 10.1021/bm0603342
  • Liu, Y., Ma, G., Fang, D., Xu, J., Zhang, H. ve Nie, J. (2011) Effects of solution properties and electric field on the electrospinning of hyaluronic acid, Carbohydrate Polymers, 83(2), 1011-1015. doi: 10.1016/j.carbpol.2010.08.061
  • Lu, J. W., Zhu, Y. L., Guo, Z. X., Hu, P. ve Yu, J. (2006) Electrospinning of sodium alginate with poly(ethylene oxide), Polymer, 47(23), 8026-8031. doi: 10.1016/j.polymer.2006.09.027
  • Lu, P. L., Lai, J. Y., Ma, D. H. K., Hsiue, G. H. (2008) Carbodiimide cross-linked hyaluronic acid hydrogels as cell sheet delivery vehicles: characterization and interaction with corneal endothelial cells, Journal of Biomaterials Science:Polymer Edition, 19(1), 1-18. doi: 10.1163/156856208783227695
  • Ma, G., Fang, D., Liu, Y., Zhu, X. ve Nie, J. (2012) Electrospun sodium alginate/poly(ethylene oxide) core–shell nanofibers scaffolds potential for tissue engineering applications, Carbohydrate Polymers, 87(1), 737-743. doi: 10.1016/j.carbpol.2011.08.055
  • Price, R. D., Berry, M. G. ve Navsaria, H. A. (2007) Hyaluronic acid: the scientific and clinical evidence, Journal of Plastic, Reconstructive & Aesthetic Surgery, 60(10), 1110-1119. doi: 10.1016/j.bjps.2007.03.005
  • Qin, Y. (2008) Alginate fibres: an overview of the production processes and applications in wound management, Polymer International, 57(2), 171-180. doi: 10.1002/pi.2296
  • Qiu, X. ve Hu, S. (2013) Smart materials based on cellulose: a review of the preparations, properties and applications, Materials, 6(3), 738-781. doi: 10.3390/ma6030738
  • Qiu, L., Shao, Z. Q., Liu, M. L. ve Liu, Y. H. (2014a) Electrospinning carboxymethyl cellulose lithium (CMC-Li) nano composite material for high-rate lithium-ion battery, Advanced Materials Research, 924, 69-72. doi: 10.4028/www.scientific.net/AMR.924.69
  • Qiu, L., Shao, Z., Liu, M., Wang, J., Li, P. ve Zhao, M. (2014b) Synthesis and electrospinning carboxymethyl cellulose lithium (CMC-Li) modified 9, 10-anthraquinone (AQ) high-rate lithium-ion battery, Carbohydrate Polymers, 102, 986-992. doi: 10.1016/j.carbpol.2013.09.105
  • Qiu, L., Shao, Z., Wang, D., Wang, F., Wang, W. ve Wang, J. (2014c) Carboxymethyl cellulose lithium (CMC-Li) as a novel binder and its electrochemical performance in lithium-ion batteries, Cellulose, 21(4), 2789-2796. doi: 10.1007/s10570-014-0274-7
  • Qiu, L., Shao, Z., Xiang, P., Wang, D., Zhou, Z., Wang, F. ve Wang, J. (2014d) Study on novel functional materials carboxymethyl cellulose lithıum (CMC-Li) improve high-performance lithium-ion battery, Carbohydrate Polymers, 110, 121-127. doi: 10.1016/j.carbpol.2014.03.052
  • Qiu, L., Shao, Z., Yang, M., Wang, W., Wang, F., Wan, J. ve Duan, H. (2014e) Study on effects of carboxymethyl cellulose lithium (CMC-Li) synthesis and electrospinning on high-rate lithium ion batteries, Cellulose, 21(1), 615-626. doi: 10.1007/s10570-013-0108-z
  • Ramakrishna, S., Fujihara, K., Teo, W. E., Lim, T. C. ve Ma, Z. (2005) An Introduction to Electrospinning and Nanofibers, World Scientific Publishing Co., Singapore.
  • Safi, S., Morshed, M., Hosseini Ravandi, S. A. ve Ghiaci, M. (2007) Study of electrospinning of sodium alginate, blended solutions of sodium alginate/poly(vinyl alcohol) and sodium alginate/poly(ethylene oxide), Journal of Applied Polymer Science, 104(5), 3245-3255. doi: 10.1002/app.25696
  • Shalumon, K. T., Anulekha, K. H., Nair, S. V., Nair, S. V., Chennazhi, K. P. ve Jayakumar, R. (2011) Sodium alginate/poly(vinyl alcohol)/nano ZNO composite nanofibers for antibacterial wound dressings, International Journal of Biological Macromolecules, 49(3), 247-254. doi: 10.1016/j.ijbiomac.2011.04.005
  • Shelke, N. B., James, R., Laurencin, C. T. ve Kumbar, S. G. (2014) Polysaccharide biomaterials for drug delivery and regenerative engineering, Polymers for Advanced Technologies, 25(5), 448-460. doi: 10.1002/pat.3266
  • Sigma-Aldrich, (2016). Carboxymethylcellulose sodium salt. Erişim adresi: http://www.sigmaaldrich.com/catalog/product/sigma/c5678 (Erişim tarihi: 27.01.2016).
  • Singh, A. V., Vyas, V., Patil, R., Sharma, V., Scopelliti, P. E., Bongiorno, G. ve Milani, P. (2011) Quantitative characterization of the influence of the nanoscale morphology of nanostructured surfaces on bacterial adhesion and biofilm formation, PLoS One, 6(9), e25029. doi: 10.1371/journal.pone.0025029
  • Sinha, M. K., Das, B. R., Srivastava, A. ve Saxena, A. K. (2013) Needleless electrospinning and coating of poly vinyl alcohol with cross-linking agent via in-situ technique, International Journal of Textile and Fashion Technology, 3(5), 29-38.
  • Steele, J. A. M., Halle, J. P., Poncelet, D. ve Neufeld, R. J. (2014) Therapeutic cell encapsulation techniques and applications in diabetes, Advanced Drug Delivery Reviews, 67-68, 74-83. doi: 10.1016/j.addr.2013.09.015
  • Stijnman, A. C., Bodnar, I. ve Tromp, R. H. (2011) Electrospinning of food-grade polysaccharides, Food Hydrocolloids, 25(5), 1393-1398. doi: 10.1016/j.foodhyd.2011. 01.005
  • Svidronova, B. (2014). Crosslinking of polysaccharide microfibers, MSc Thesis, Brno University of Technology, Brno.
  • Şafak, Ş. (2016). Biyobozunur polimerlerden elektro çekim yöntemiyle üretilen nanolifli yüzeylerin cerrahi adezyon bariyeri olarak kullanımlarının araştırılması, Doktora Tezi, U.Ü. Fen Bilimleri Enstitüsü, Bursa.
  • Tarun, K. ve Gobi, N. (2012) Calcium alginate/PVA blended nano fibre matrix for wound dressing, Indian Journal of Fibre & Textile Research, 37, 127-132.
  • ThermoFisher Scientific, (2016). NHS (N-hydroxysuccinimide). Erişim adresi: https://www.thermofisher.com/order/catalog/product/24500 (Erişim tarihi: 12.04.2016).
  • Tomihata, K. ve Ikada, Y. (1997) Crosslinking of hyaluronic acid with water-soluble carbodiimide, Journal of Biomedical Materials Research, 37(2), 243-251. doi: 10.1002/(SICI)1097-4636(199711)37:23.0.CO;2-F
  • Tong, Q., Xiao, Q., Lim, L. T. (2008) Preparation and properties of pullulan–alginate–carboxymethylcellulose blend films, Food Research International, 41(10), 1007-1014. doi: 10.1016/j.foodres.2008.08.005
  • Uppal, R., Ramaswamy, G. N., Arnold, C., Goodband, R. ve Wang, Y. (2011) Hyaluronic acid nanofiber wound dressing-production, characterization, and in vivo behavior, Journal of Biomedical Materials Research Part B:Applied Biomaterials, 97(1), 20-29. doi: 10.1002/jbm.b.31776
  • Wysocka, K., Ulatowska-Jarza, A., Bauer, J., Holowacz, I., Savu, B., Stanciu, G. ve Podbielska, H. (2008) AFM examination of sol-gel matrices doped with photosensitizers, Optica Applicata, 38(1), 127-136.
  • Xiao, C., Weng, L., Zhang, L. (2002) Improvement of physical properties of crosslinked alginate and carboxymethyl konjac glucomannan blend films, Journal of Applied Polymer Science, 84(13), 2554-2560. doi: 10.1002/app.10582
  • Xie, L., Shao, Z. Q. ve Lu, S. Y. (2012) Preparation of AlNPs/CMCN composite nanofibers by electrospinning, Applied Mechanics and Materials, 130-134, 1266-1269. doi: 10.4028/www.scientific.net/AMM.130-134.1266
  • Xu, S., Li, J., He, A., Liu, W., Jiang, X., Zheng, J., Han, C. C., Hsiao, B. S., Chu, B. ve Fang, D. (2009) Chemical crosslinking and biophysical properties of electrospun hyaluronic acid based ultra-thin fibrous membranes, Polymer, 50(15), 3762-3769. doi: 10.1016/j.polymer.2009.06.009
  • Yang, D., Li, Y. ve Nie, J. (2007) Preparation of gelatin/PVA nanofibers and their potential application in controlled release of drugs, Carbohydrate Polymers, 69(3), 538-543. doi: 10.1016/j.carbpol.2007.01.008
  • Yao, C., Li, X. ve Song, T. (2007) Fabrication of zein/hyaluronic acid fibrous membranes by electrospinning, Journal of Biomaterials Science, Polymer Edition, 18(6), 731-742. doi: 10.1163/156856207781034070
  • Zhang, X., Reagan, R. M. ve Kaplan, D. L. (2009) Electrospun silk biomaterial scaffolds for regenerative medicine, Advanced Drug Delivery Reviews, 61(12), 988-1006. doi: 10.1016/j.addr.2009.07.005
  • Zhang, X. X., Sun, J., Wang, J. J. ve Dai, L. X. (2013) Preparation and characterization of pH-responsive poly(vinyl-alcohol)/sodium carboxymethyl cellulose nanofibers, Advanced Materials Research, 796, 132-135. doi: 10.4028/www.scientific.net/AMR.796.132

Production and Crosslinking of Polysaccharide Based Nanofibrous Mat for Biomedical Applications

Yıl 2017, Cilt: 22 Sayı: 3, 127 - 144, 28.12.2017
https://doi.org/10.17482/uumfd.309657

Öz

Polysaccharide based polymers are widely used in
biomedical applications. In this study, nanofibrous mat was produced from
hyaluronic acid, carboxymethyl cellulose and sodium alginate polysaccharide polymers
via electrospinning method. Resultant nanofibrous mat was crosslinked with 1-etil-3-(3-dimethylaminopropyl)
carbodiimide hydrochloride and N-hydroxysulfosuccinimide
solution to develop its water resistance. Before and after the crosslinking
process, nanofibrous mat was characterized by scanning electron microscope,
fourier transform infrared spectrometry, atomic force microscope, BET analysis and
water resistance test. The results
indicated that the nanofibrous mat was become resistant to water without any
deformation of nanofibrous structure with the crosslinking application.

Kaynakça

  • Amiraliyan, N., Nouri, M. ve Kish, M. H. (2009) Effects of some electrospinning parameters on morphology of natural silk-based nanofibers, Journal of Applied Polymer Science, 113(1), 226-234. doi:10.1002/app.29808
  • Aytar, P., Buruk, Y. ve Çabuk, A. (2013) Streptecoccus equi ile hyaluronik asit üretiminde optimum koşulların plackett-burman yöntemi ile belirlenmesi, Elektronik Mikrobiyoloji Dergisi, 11(1), 28-35.
  • Baji, A., Mai, Y. W., Wong, S. C., Abtahi, M. ve Chen, P. (2010) Electrospinning of polymer nanofibers: effects on oriented morphology, structures and tensile properties, Composites Science and Technology, 70, 703-718. doi: 10.1016/j.compscitech.2010.01.010
  • Bhattarai, N., Li, Z., Edmondson, D. ve Zhang, M. (2006) Alginate based nanofibrous scaffolds: structural, mechanical, and biological properties. Advanced Materials, 18(11), 1463-1467. doi: 10.1002/adma.200502537
  • Collins, M. N. ve Birkinshaw, C. (2007) Comparison of the effectiveness of four different crosslinking agents with hyaluronic acid hydrogel films for tissue-culture applications, Journal of Applied Polymer Science, 104(5), 3183-3191. doi: 10.1002/app.25993
  • Collins, M. N. ve Birkinshaw, C. (2013) Hyaluronic acid based scaffolds for tissue engineering-a review, Carbohydrate Polymers, 92(2), 1262-1279. doi: 10.1016/ j.carbpol.2012.10.028
  • Coşkun, G., Karaca, E., Özyurtlu, M., Özbek, S., Yermezler, A. ve Çavuşoğlu, İ. (2014) Histological evaluation of wound healing performance of electrospun poly(vinyl alcohol)/sodium alginate as wound dressing in vivo, Bio-medical Materials and Engineering, 24(2), 1527-1536. doi: 10.3233/BME-130956
  • Coşkun Üstündağ, G. (2009). Elektrospinning yöntemi ile biyomedikal kullanıma yönelik nanolif yüzey üretimi ve uygulaması, Yüksek Lisans Tezi, U.Ü. Fen Bilimleri Enstitüsü, Bursa.
  • Deitzel, J. M., Kleinmeyer, J., Harris, D. E. A. ve Tan, N. B. (2001) The effect of processing variables on the morphology of electrospun nanofibers and textiles, Polymer, 42(1), 261-272. doi: 10.1016/S0032-3861(00)00250-0
  • Diraçoğlu, D. (2007) Osteoartritte intraartiküler hyalüronik asit tedavisi-eğitim, Türkish Journal of Physical Medicine and Rehabilitation, 53, 154-159.
  • Fang, D., Liu, Y., Jiang, S., Nie, J. ve Ma, G. (2011) Effect of intermolecular interaction on electrospinning of sodium alginate, Carbohydrate Polymers, 85(1), 276-279. doi: 10.1016/j. carbpol.2011.01.054
  • Frenot, A., Henriksson, M. W. ve Walkenström, P. (2007) Electrospinning of cellulose based nanofibers, Journal of Applied Polymer Science, 103(3), 1473-1482. doi: 10.1002/app.24912
  • G-Biosciences, (2016). Protein Cross-Linkers. Erişim adresi: http://www.gbiosciences.com/Protein-Research/Cross-Linking-Modification/Protein-Cross-Linkers (Erişim tarihi: 19.07.2016).
  • Jeong, S. I., Krebs, M. D., Bonino, C. A., Khan, S. A. ve Alsberg, E. (2010a) Electrospun alginate nanofibers with controlled cell adhesion for tissue engineering, Macromolecular Bioscience, 10(8), 934-943. doi: 10.1002/mabi.201000046
  • Jeong, S. I., Krebs, M. D., Bonino, C. A., Samorezov, J. E., Khan, S. A. ve Alsberg, E. (2010b) Electrospun chitosan-alginate nanofibers with in situ polyelectrolyte complexation for use as tissue engineering scaffolds, Tissue Engineering Part A, 17(1-2), 59-70. doi: 10.1089/ten.tea.2010.0086
  • Ji, Y., Ghosh, K., Li, B., Sokolov, J. C., Clark, R. A. ve Rafailovich, M. H. (2006a) Dual-syringe reactive electrospinning of cross-linked hyaluronic acid hydrogel nanofibers for tissue engineering applications, Macromolecular Bioscience, 6(10), 811-817. doi: 10.1002/ mabi.200600132
  • Ji, Y., Ghosh, K., Shu, X. Z., Li, B., Sokolov, J. C., Prestwich, G. D. ve Rafailovich, M. H. (2006b) Electrospun three-dimensional hyaluronic acid nanofibrous scaffolds, Biomaterials, 27(20), 3782-3792. doi:
  • Kırcı, H. (2001) Selüloz türevleri ve kullanım yerleri, Fen ve Mühendislik Dergisi, 4(2), 119-130.
  • Kim, T. G., Chung, H. J. ve Park, T. G. (2008a) Macroporous and nanofibrous hyaluronic acid/collagen hybrid scaffold fabricated by concurrent electrospinning and deposition/leaching of salt particles, Acta Biomaterialia, 4(6), 1611-1619. doi: 10.1016/j.actbio.2008.06.008
  • Kim, J. K., Srinivasan, P., Kim, J. H., Choi, J. I., Park, H. J., Byun, M. W., Lee, J. W. (2008b) Structural and antioxidant properties of gamma irradiated hyaluronic acid, Food Chemistry, 109(4), 763-770. doi:10.1016/j.foodchem.2008.01.038
  • Koral Koç, S. ve Hockenberger, A. (2009) Bazı tekstil liflerinin yüzeylerinin atomik kuvvet mikroskobu ile nano boyutta incelenmesi, Tekstil ve Mühendis Dergisi, 15(69-70), 1-6.
  • Kriegel, C., Arrechi, A., Kit, K., Mcclements, D.J. ve Weiss, J. (2008) Fabrication, functionalization, and application of electrospun biopolymer nanofibers, Critical Reviews in Food Science and Nutrition, 48(8), 775-797. doi: 10.1080/10408390802241325
  • Kumar, A. (2010) Nanofibers, Intech, Croatia.
  • Li, J., He, A., Zheng, J. ve Han, C. C. (2006) Gelatin and gelatin-hyaluronic acid nanofibrous membranes produced by electrospinning of their aqueous solutions, Biomacromolecules, 7(7), 2243-2247. doi: 10.1021/bm0603342
  • Liu, Y., Ma, G., Fang, D., Xu, J., Zhang, H. ve Nie, J. (2011) Effects of solution properties and electric field on the electrospinning of hyaluronic acid, Carbohydrate Polymers, 83(2), 1011-1015. doi: 10.1016/j.carbpol.2010.08.061
  • Lu, J. W., Zhu, Y. L., Guo, Z. X., Hu, P. ve Yu, J. (2006) Electrospinning of sodium alginate with poly(ethylene oxide), Polymer, 47(23), 8026-8031. doi: 10.1016/j.polymer.2006.09.027
  • Lu, P. L., Lai, J. Y., Ma, D. H. K., Hsiue, G. H. (2008) Carbodiimide cross-linked hyaluronic acid hydrogels as cell sheet delivery vehicles: characterization and interaction with corneal endothelial cells, Journal of Biomaterials Science:Polymer Edition, 19(1), 1-18. doi: 10.1163/156856208783227695
  • Ma, G., Fang, D., Liu, Y., Zhu, X. ve Nie, J. (2012) Electrospun sodium alginate/poly(ethylene oxide) core–shell nanofibers scaffolds potential for tissue engineering applications, Carbohydrate Polymers, 87(1), 737-743. doi: 10.1016/j.carbpol.2011.08.055
  • Price, R. D., Berry, M. G. ve Navsaria, H. A. (2007) Hyaluronic acid: the scientific and clinical evidence, Journal of Plastic, Reconstructive & Aesthetic Surgery, 60(10), 1110-1119. doi: 10.1016/j.bjps.2007.03.005
  • Qin, Y. (2008) Alginate fibres: an overview of the production processes and applications in wound management, Polymer International, 57(2), 171-180. doi: 10.1002/pi.2296
  • Qiu, X. ve Hu, S. (2013) Smart materials based on cellulose: a review of the preparations, properties and applications, Materials, 6(3), 738-781. doi: 10.3390/ma6030738
  • Qiu, L., Shao, Z. Q., Liu, M. L. ve Liu, Y. H. (2014a) Electrospinning carboxymethyl cellulose lithium (CMC-Li) nano composite material for high-rate lithium-ion battery, Advanced Materials Research, 924, 69-72. doi: 10.4028/www.scientific.net/AMR.924.69
  • Qiu, L., Shao, Z., Liu, M., Wang, J., Li, P. ve Zhao, M. (2014b) Synthesis and electrospinning carboxymethyl cellulose lithium (CMC-Li) modified 9, 10-anthraquinone (AQ) high-rate lithium-ion battery, Carbohydrate Polymers, 102, 986-992. doi: 10.1016/j.carbpol.2013.09.105
  • Qiu, L., Shao, Z., Wang, D., Wang, F., Wang, W. ve Wang, J. (2014c) Carboxymethyl cellulose lithium (CMC-Li) as a novel binder and its electrochemical performance in lithium-ion batteries, Cellulose, 21(4), 2789-2796. doi: 10.1007/s10570-014-0274-7
  • Qiu, L., Shao, Z., Xiang, P., Wang, D., Zhou, Z., Wang, F. ve Wang, J. (2014d) Study on novel functional materials carboxymethyl cellulose lithıum (CMC-Li) improve high-performance lithium-ion battery, Carbohydrate Polymers, 110, 121-127. doi: 10.1016/j.carbpol.2014.03.052
  • Qiu, L., Shao, Z., Yang, M., Wang, W., Wang, F., Wan, J. ve Duan, H. (2014e) Study on effects of carboxymethyl cellulose lithium (CMC-Li) synthesis and electrospinning on high-rate lithium ion batteries, Cellulose, 21(1), 615-626. doi: 10.1007/s10570-013-0108-z
  • Ramakrishna, S., Fujihara, K., Teo, W. E., Lim, T. C. ve Ma, Z. (2005) An Introduction to Electrospinning and Nanofibers, World Scientific Publishing Co., Singapore.
  • Safi, S., Morshed, M., Hosseini Ravandi, S. A. ve Ghiaci, M. (2007) Study of electrospinning of sodium alginate, blended solutions of sodium alginate/poly(vinyl alcohol) and sodium alginate/poly(ethylene oxide), Journal of Applied Polymer Science, 104(5), 3245-3255. doi: 10.1002/app.25696
  • Shalumon, K. T., Anulekha, K. H., Nair, S. V., Nair, S. V., Chennazhi, K. P. ve Jayakumar, R. (2011) Sodium alginate/poly(vinyl alcohol)/nano ZNO composite nanofibers for antibacterial wound dressings, International Journal of Biological Macromolecules, 49(3), 247-254. doi: 10.1016/j.ijbiomac.2011.04.005
  • Shelke, N. B., James, R., Laurencin, C. T. ve Kumbar, S. G. (2014) Polysaccharide biomaterials for drug delivery and regenerative engineering, Polymers for Advanced Technologies, 25(5), 448-460. doi: 10.1002/pat.3266
  • Sigma-Aldrich, (2016). Carboxymethylcellulose sodium salt. Erişim adresi: http://www.sigmaaldrich.com/catalog/product/sigma/c5678 (Erişim tarihi: 27.01.2016).
  • Singh, A. V., Vyas, V., Patil, R., Sharma, V., Scopelliti, P. E., Bongiorno, G. ve Milani, P. (2011) Quantitative characterization of the influence of the nanoscale morphology of nanostructured surfaces on bacterial adhesion and biofilm formation, PLoS One, 6(9), e25029. doi: 10.1371/journal.pone.0025029
  • Sinha, M. K., Das, B. R., Srivastava, A. ve Saxena, A. K. (2013) Needleless electrospinning and coating of poly vinyl alcohol with cross-linking agent via in-situ technique, International Journal of Textile and Fashion Technology, 3(5), 29-38.
  • Steele, J. A. M., Halle, J. P., Poncelet, D. ve Neufeld, R. J. (2014) Therapeutic cell encapsulation techniques and applications in diabetes, Advanced Drug Delivery Reviews, 67-68, 74-83. doi: 10.1016/j.addr.2013.09.015
  • Stijnman, A. C., Bodnar, I. ve Tromp, R. H. (2011) Electrospinning of food-grade polysaccharides, Food Hydrocolloids, 25(5), 1393-1398. doi: 10.1016/j.foodhyd.2011. 01.005
  • Svidronova, B. (2014). Crosslinking of polysaccharide microfibers, MSc Thesis, Brno University of Technology, Brno.
  • Şafak, Ş. (2016). Biyobozunur polimerlerden elektro çekim yöntemiyle üretilen nanolifli yüzeylerin cerrahi adezyon bariyeri olarak kullanımlarının araştırılması, Doktora Tezi, U.Ü. Fen Bilimleri Enstitüsü, Bursa.
  • Tarun, K. ve Gobi, N. (2012) Calcium alginate/PVA blended nano fibre matrix for wound dressing, Indian Journal of Fibre & Textile Research, 37, 127-132.
  • ThermoFisher Scientific, (2016). NHS (N-hydroxysuccinimide). Erişim adresi: https://www.thermofisher.com/order/catalog/product/24500 (Erişim tarihi: 12.04.2016).
  • Tomihata, K. ve Ikada, Y. (1997) Crosslinking of hyaluronic acid with water-soluble carbodiimide, Journal of Biomedical Materials Research, 37(2), 243-251. doi: 10.1002/(SICI)1097-4636(199711)37:23.0.CO;2-F
  • Tong, Q., Xiao, Q., Lim, L. T. (2008) Preparation and properties of pullulan–alginate–carboxymethylcellulose blend films, Food Research International, 41(10), 1007-1014. doi: 10.1016/j.foodres.2008.08.005
  • Uppal, R., Ramaswamy, G. N., Arnold, C., Goodband, R. ve Wang, Y. (2011) Hyaluronic acid nanofiber wound dressing-production, characterization, and in vivo behavior, Journal of Biomedical Materials Research Part B:Applied Biomaterials, 97(1), 20-29. doi: 10.1002/jbm.b.31776
  • Wysocka, K., Ulatowska-Jarza, A., Bauer, J., Holowacz, I., Savu, B., Stanciu, G. ve Podbielska, H. (2008) AFM examination of sol-gel matrices doped with photosensitizers, Optica Applicata, 38(1), 127-136.
  • Xiao, C., Weng, L., Zhang, L. (2002) Improvement of physical properties of crosslinked alginate and carboxymethyl konjac glucomannan blend films, Journal of Applied Polymer Science, 84(13), 2554-2560. doi: 10.1002/app.10582
  • Xie, L., Shao, Z. Q. ve Lu, S. Y. (2012) Preparation of AlNPs/CMCN composite nanofibers by electrospinning, Applied Mechanics and Materials, 130-134, 1266-1269. doi: 10.4028/www.scientific.net/AMM.130-134.1266
  • Xu, S., Li, J., He, A., Liu, W., Jiang, X., Zheng, J., Han, C. C., Hsiao, B. S., Chu, B. ve Fang, D. (2009) Chemical crosslinking and biophysical properties of electrospun hyaluronic acid based ultra-thin fibrous membranes, Polymer, 50(15), 3762-3769. doi: 10.1016/j.polymer.2009.06.009
  • Yang, D., Li, Y. ve Nie, J. (2007) Preparation of gelatin/PVA nanofibers and their potential application in controlled release of drugs, Carbohydrate Polymers, 69(3), 538-543. doi: 10.1016/j.carbpol.2007.01.008
  • Yao, C., Li, X. ve Song, T. (2007) Fabrication of zein/hyaluronic acid fibrous membranes by electrospinning, Journal of Biomaterials Science, Polymer Edition, 18(6), 731-742. doi: 10.1163/156856207781034070
  • Zhang, X., Reagan, R. M. ve Kaplan, D. L. (2009) Electrospun silk biomaterial scaffolds for regenerative medicine, Advanced Drug Delivery Reviews, 61(12), 988-1006. doi: 10.1016/j.addr.2009.07.005
  • Zhang, X. X., Sun, J., Wang, J. J. ve Dai, L. X. (2013) Preparation and characterization of pH-responsive poly(vinyl-alcohol)/sodium carboxymethyl cellulose nanofibers, Advanced Materials Research, 796, 132-135. doi: 10.4028/www.scientific.net/AMR.796.132
Toplam 60 adet kaynakça vardır.

Ayrıntılar

Konular Mühendislik
Bölüm Araştırma Makaleleri
Yazarlar

Şerife Şafak Bu kişi benim

Esra Karaca

Yayımlanma Tarihi 28 Aralık 2017
Gönderilme Tarihi 28 Nisan 2017
Kabul Tarihi 5 Ekim 2017
Yayımlandığı Sayı Yıl 2017 Cilt: 22 Sayı: 3

Kaynak Göster

APA Şafak, Ş., & Karaca, E. (2017). BİYOMEDİKAL UYGULAMALAR İÇİN POLİSAKKARİT ESASLI NANOLİFLİ YÜZEY ÜRETİMİ VE ÇAPRAZ BAĞLANMASI. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi, 22(3), 127-144. https://doi.org/10.17482/uumfd.309657
AMA Şafak Ş, Karaca E. BİYOMEDİKAL UYGULAMALAR İÇİN POLİSAKKARİT ESASLI NANOLİFLİ YÜZEY ÜRETİMİ VE ÇAPRAZ BAĞLANMASI. UUJFE. Aralık 2017;22(3):127-144. doi:10.17482/uumfd.309657
Chicago Şafak, Şerife, ve Esra Karaca. “BİYOMEDİKAL UYGULAMALAR İÇİN POLİSAKKARİT ESASLI NANOLİFLİ YÜZEY ÜRETİMİ VE ÇAPRAZ BAĞLANMASI”. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi 22, sy. 3 (Aralık 2017): 127-44. https://doi.org/10.17482/uumfd.309657.
EndNote Şafak Ş, Karaca E (01 Aralık 2017) BİYOMEDİKAL UYGULAMALAR İÇİN POLİSAKKARİT ESASLI NANOLİFLİ YÜZEY ÜRETİMİ VE ÇAPRAZ BAĞLANMASI. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi 22 3 127–144.
IEEE Ş. Şafak ve E. Karaca, “BİYOMEDİKAL UYGULAMALAR İÇİN POLİSAKKARİT ESASLI NANOLİFLİ YÜZEY ÜRETİMİ VE ÇAPRAZ BAĞLANMASI”, UUJFE, c. 22, sy. 3, ss. 127–144, 2017, doi: 10.17482/uumfd.309657.
ISNAD Şafak, Şerife - Karaca, Esra. “BİYOMEDİKAL UYGULAMALAR İÇİN POLİSAKKARİT ESASLI NANOLİFLİ YÜZEY ÜRETİMİ VE ÇAPRAZ BAĞLANMASI”. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi 22/3 (Aralık 2017), 127-144. https://doi.org/10.17482/uumfd.309657.
JAMA Şafak Ş, Karaca E. BİYOMEDİKAL UYGULAMALAR İÇİN POLİSAKKARİT ESASLI NANOLİFLİ YÜZEY ÜRETİMİ VE ÇAPRAZ BAĞLANMASI. UUJFE. 2017;22:127–144.
MLA Şafak, Şerife ve Esra Karaca. “BİYOMEDİKAL UYGULAMALAR İÇİN POLİSAKKARİT ESASLI NANOLİFLİ YÜZEY ÜRETİMİ VE ÇAPRAZ BAĞLANMASI”. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi, c. 22, sy. 3, 2017, ss. 127-44, doi:10.17482/uumfd.309657.
Vancouver Şafak Ş, Karaca E. BİYOMEDİKAL UYGULAMALAR İÇİN POLİSAKKARİT ESASLI NANOLİFLİ YÜZEY ÜRETİMİ VE ÇAPRAZ BAĞLANMASI. UUJFE. 2017;22(3):127-44.

DUYURU:

30.03.2021- Nisan 2021 (26/1) sayımızdan itibaren TR-Dizin yeni kuralları gereği, dergimizde basılacak makalelerde, ilk gönderim aşamasında Telif Hakkı Formu yanısıra, Çıkar Çatışması Bildirim Formu ve Yazar Katkısı Bildirim Formu da tüm yazarlarca imzalanarak gönderilmelidir. Yayınlanacak makalelerde de makale metni içinde "Çıkar Çatışması" ve "Yazar Katkısı" bölümleri yer alacaktır. İlk gönderim aşamasında doldurulması gereken yeni formlara "Yazım Kuralları" ve "Makale Gönderim Süreci" sayfalarımızdan ulaşılabilir. (Değerlendirme süreci bu tarihten önce tamamlanıp basımı bekleyen makalelerin yanısıra değerlendirme süreci devam eden makaleler için, yazarlar tarafından ilgili formlar doldurularak sisteme yüklenmelidir).  Makale şablonları da, bu değişiklik doğrultusunda güncellenmiştir. Tüm yazarlarımıza önemle duyurulur.

Bursa Uludağ Üniversitesi, Mühendislik Fakültesi Dekanlığı, Görükle Kampüsü, Nilüfer, 16059 Bursa. Tel: (224) 294 1907, Faks: (224) 294 1903, e-posta: mmfd@uludag.edu.tr