Derleme
BibTex RIS Kaynak Göster

HİDROLİK SİSTEMLERDEKİ ENERJİ VERİMLİLİĞİ

Yıl 2018, Cilt: 23 Sayı: 2, 241 - 254, 31.08.2018
https://doi.org/10.17482/uumfd.321820

Öz

Bu çalışmada,
keyfi başlangıç fonksiyonuna sahip hafifçe eğri bir kirişin lineer olmayan
titreşimleri ele alınmaktadır. Her iki ucundan elastik mesnetler kullanılarak
kiriş, boyuna yönünde kısıtlanmıştır. Başlangıçta sinüsoidal eğrilik
fonksiyonuna sahip olduğu varsayılan kiriş için, ulaşılan eğrilik yüksekliğinin
izdüşüme oranı 1/10 alınmaktadır. Euler-Bernoulli tipinde olan kiriş Winkler
elastik zemini üzerine oturmakta ve üzerinde keyfi olarak yerleştirilmiş
kütleler taşımaktadır. Hamilton prensibi kullanılarak hareket denklemleri elde
edilmiştir. Zeminden ve kiriş uzamasından dolayı matematiksel modelde kübik ve
quadratik lineer olmayan terimler ortaya çıkmaktadır. Hareket denklemlerini
analitik olarak çözümlemek için bir Pertürbasyon tekniği olan Çok Ölçekli
Metod(MMS) kullanılmaktadır. Geçici-durum titreşimleri süresince baskın
rezonans durumu dikkate alınmaktadır. Mesnetlerin tipleri, kütlelerin konumları
ve zeminin lineer bileşeni gibi farklı mukayese parametreleri için doğal
frekanslar elde edilmektedir. Genlik-faz modülasyon denklemleri kullanılarak
frekans-genlik ve frekans-cevap grafikleri çizilmiştir.



 

Kaynakça

  • Achten, P., Fu, Z. ve Vael, G. (1997) Transforming future hydraulics: A new design of a hydraulic transformer, The 5th Scandinavian International Conference on Fluid Power (SICFP’97), Linköping, Sweden, 1-18.
  • Achten, P., Vael, G., Brink, T., Potma, J. ve Schellekens, M. (2011) Efficiency measurements of the hydrid motor/pump, The Twelfth Scandinavian International Conference on Fluid Power (SICFP’11), 3(1), Finland, 41-49.
  • Andersson, B.R. (1980) A survey of load-sensing systems, The BFPR Journal, 13(1) 103-115. doi: 10.1177/0959651813512820
  • Biedermenn, O.J., Engelhardt, J. ve Geerling, G. (2009) More efficient fluid power systems using variable displacement hydraulic motors, Technical University Hamburg, Section: Aircraft Systems Engineering, Germany, 1-8. doi:10.15480/882.228
  • Drumea, P. (2008) Energy losses in hydraulic systems, FLUIDAS Asociatia Nationala Profesionala De Hidrolica Si Pneumatica, Bucuresti, Romania, 1-10.
  • Eriksson, B. (2007) Control strategy for energy efficient fluid power actuators–utilizing individual metering, Licentiate Thesis, Thesis No: 1341, Linkoping University, 13-17. ISBN: 978-91-85895-06-9
  • Eriksson, B. (2010) Mobile fluid power systems design–with a focus on energy efficiency, PhD Thesis, Linkoping University. ISBN:978-91-7393-304-9
  • Eriksson, B. ve Palmberg, J.O. (2011) Individual metering fluid power systems: challenges and opportunities, Proceedings of the Institution of Mechanical Engineers, Part I: Journal of Systems and Control Engineering, 225, 196-211. doi: 10.1243/09596518JSCE1111
  • Gomm, R. ve Vanderlaan, D. (2009) Velocity control of unbalanced hydraulic actuator subjected to over-center load conditions, Patent: EP 2318720.
  • Grey, C.L. (2011) Is the hydraulics industry ready for a world desperate for affordable transportation?, The Eleventh IFPE Conference, Las Vegas, USA, 1-25.
  • Heybroek, K. (2008) Saving energy in construction machinery using displacement control hydraulics–concept realization and validation, PhD Thesis, No.1372, Linkoping University. ISBN 978-91-7393-860-0
  • Rahmfeld, R. ve Ivantysynova, M. (2001) Displacement controlled linear actuator with differential cylinder–a way to save primary energy in mobile machines, Fifth International Conference on Fluid Power Transmission and Control (ICFP), Hangzhou, China, 316-322.
  • Raymond, E.T. ve Chenoweth, C.C. (1993) Aircraft flight control actuation system design, SAE Inc., USA. ISBN: 1560913762
  • Rydberg, K.E. (2005) Hydraulic accumulators as key components in energy efficient mobile systems, Sixth International Conference on Fluid Power Transmission and Control (ICFP), Hangzhou, China, 2-5. ISBN/ISSN: 7506274027
  • Rydberg, K.E. (2009) Energy efficient hydraulic hybrid drives, The 11th Scandinavian International Conference on Fluid Power (SICFP’09), Linköping, Sweden, 1-14. ISBN: 978-91-7393-588-3
  • Shang, T. (2004) Improving performance of an energy efficient hydraulic circuit, MSc Thesis, University of Saskatchewan, Canada, 128-130. http://hdl.handle.net/10388/etd-04242004-151248
  • Sullivan, J.A. (1989) Fluid power theory and applications, 3rd ed., Prentice Hall, New Jersey. ISBN 13: 9780133230802
  • Vael, G., Achten, P. ve Brink, T. (2009) Efficiency of a variable displacement open circiut floating cup pump, The 11th Scandinavian International Conference on Fluid Power (SICFP’07), Linkoping, Sweden, 20-21. ISBN: 978-91-7393-589-0.
  • Wang, L. ve Book, J.W. (2013) Using leakage to stabilize a hydraulic circuit for pump controlled actuators, Journal of Dynamic System Measurement Control, 135, 1-12. doi:10.1115/1.4024900
  • Weber, J. ve Burget, W. (2012) Mobile systems-markets, industrial needs and technological trends, 8th International Fluid Power Conference (IFK), Dresden, Germany, 2(1), 23-54.
  • Wendel, G. (2002) Hydraulic system configurations for improved efficiency, SAE Technical Paper, No: 01-1433. doi: 10.4271/2002-01-1433
  • Werndin, R. ve Palmberg, J.O. (2003) Hydraulic transformers–comparison of different designs, The Eighth Scandinavian International Conference of Fluid Power (SICFP’03), Finland, 1-6.

Energy Efficiency in Hydraulic Systems

Yıl 2018, Cilt: 23 Sayı: 2, 241 - 254, 31.08.2018
https://doi.org/10.17482/uumfd.321820

Öz

The development of hydraulic systems and the reduction of energy losses
have provided by very serious scientific studies related to these systems
recently.
Energy losses consist of friction in pipes,
equipment, elbows and diameter changes. The hydraulic pressure losses that
cause the heat increase will require the use of a cooler, as it will damage the
system.
Another energy loss is due to fluid leakages, which are initially small
but increase over time. In addition, the fluid returning to the tank through the
safety valve also increases the energy loss. Equipment and technological
improvements, in hydraulic systems, reduce the energy losses. In order to
facilitate the pressure control in the system, the high-pressurized liquid
discharge in return line, passed through the safety valve installed into the closest
to the pump is increased. The role of the hydraulic system in industrial
development is increasingly taking the place of digital control systems, which
is a much more economical alternative. In this study, conventional and energy
efficient systems are compared with valve and pump-controlled mobile devices.

Kaynakça

  • Achten, P., Fu, Z. ve Vael, G. (1997) Transforming future hydraulics: A new design of a hydraulic transformer, The 5th Scandinavian International Conference on Fluid Power (SICFP’97), Linköping, Sweden, 1-18.
  • Achten, P., Vael, G., Brink, T., Potma, J. ve Schellekens, M. (2011) Efficiency measurements of the hydrid motor/pump, The Twelfth Scandinavian International Conference on Fluid Power (SICFP’11), 3(1), Finland, 41-49.
  • Andersson, B.R. (1980) A survey of load-sensing systems, The BFPR Journal, 13(1) 103-115. doi: 10.1177/0959651813512820
  • Biedermenn, O.J., Engelhardt, J. ve Geerling, G. (2009) More efficient fluid power systems using variable displacement hydraulic motors, Technical University Hamburg, Section: Aircraft Systems Engineering, Germany, 1-8. doi:10.15480/882.228
  • Drumea, P. (2008) Energy losses in hydraulic systems, FLUIDAS Asociatia Nationala Profesionala De Hidrolica Si Pneumatica, Bucuresti, Romania, 1-10.
  • Eriksson, B. (2007) Control strategy for energy efficient fluid power actuators–utilizing individual metering, Licentiate Thesis, Thesis No: 1341, Linkoping University, 13-17. ISBN: 978-91-85895-06-9
  • Eriksson, B. (2010) Mobile fluid power systems design–with a focus on energy efficiency, PhD Thesis, Linkoping University. ISBN:978-91-7393-304-9
  • Eriksson, B. ve Palmberg, J.O. (2011) Individual metering fluid power systems: challenges and opportunities, Proceedings of the Institution of Mechanical Engineers, Part I: Journal of Systems and Control Engineering, 225, 196-211. doi: 10.1243/09596518JSCE1111
  • Gomm, R. ve Vanderlaan, D. (2009) Velocity control of unbalanced hydraulic actuator subjected to over-center load conditions, Patent: EP 2318720.
  • Grey, C.L. (2011) Is the hydraulics industry ready for a world desperate for affordable transportation?, The Eleventh IFPE Conference, Las Vegas, USA, 1-25.
  • Heybroek, K. (2008) Saving energy in construction machinery using displacement control hydraulics–concept realization and validation, PhD Thesis, No.1372, Linkoping University. ISBN 978-91-7393-860-0
  • Rahmfeld, R. ve Ivantysynova, M. (2001) Displacement controlled linear actuator with differential cylinder–a way to save primary energy in mobile machines, Fifth International Conference on Fluid Power Transmission and Control (ICFP), Hangzhou, China, 316-322.
  • Raymond, E.T. ve Chenoweth, C.C. (1993) Aircraft flight control actuation system design, SAE Inc., USA. ISBN: 1560913762
  • Rydberg, K.E. (2005) Hydraulic accumulators as key components in energy efficient mobile systems, Sixth International Conference on Fluid Power Transmission and Control (ICFP), Hangzhou, China, 2-5. ISBN/ISSN: 7506274027
  • Rydberg, K.E. (2009) Energy efficient hydraulic hybrid drives, The 11th Scandinavian International Conference on Fluid Power (SICFP’09), Linköping, Sweden, 1-14. ISBN: 978-91-7393-588-3
  • Shang, T. (2004) Improving performance of an energy efficient hydraulic circuit, MSc Thesis, University of Saskatchewan, Canada, 128-130. http://hdl.handle.net/10388/etd-04242004-151248
  • Sullivan, J.A. (1989) Fluid power theory and applications, 3rd ed., Prentice Hall, New Jersey. ISBN 13: 9780133230802
  • Vael, G., Achten, P. ve Brink, T. (2009) Efficiency of a variable displacement open circiut floating cup pump, The 11th Scandinavian International Conference on Fluid Power (SICFP’07), Linkoping, Sweden, 20-21. ISBN: 978-91-7393-589-0.
  • Wang, L. ve Book, J.W. (2013) Using leakage to stabilize a hydraulic circuit for pump controlled actuators, Journal of Dynamic System Measurement Control, 135, 1-12. doi:10.1115/1.4024900
  • Weber, J. ve Burget, W. (2012) Mobile systems-markets, industrial needs and technological trends, 8th International Fluid Power Conference (IFK), Dresden, Germany, 2(1), 23-54.
  • Wendel, G. (2002) Hydraulic system configurations for improved efficiency, SAE Technical Paper, No: 01-1433. doi: 10.4271/2002-01-1433
  • Werndin, R. ve Palmberg, J.O. (2003) Hydraulic transformers–comparison of different designs, The Eighth Scandinavian International Conference of Fluid Power (SICFP’03), Finland, 1-6.
Toplam 22 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Mühendislik
Bölüm Derleme Makaleler
Yazarlar

H. Sevil Ergür

Yayımlanma Tarihi 31 Ağustos 2018
Gönderilme Tarihi 15 Haziran 2017
Kabul Tarihi 25 Haziran 2018
Yayımlandığı Sayı Yıl 2018 Cilt: 23 Sayı: 2

Kaynak Göster

APA Ergür, H. S. (2018). HİDROLİK SİSTEMLERDEKİ ENERJİ VERİMLİLİĞİ. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi, 23(2), 241-254. https://doi.org/10.17482/uumfd.321820
AMA Ergür HS. HİDROLİK SİSTEMLERDEKİ ENERJİ VERİMLİLİĞİ. UUJFE. Ağustos 2018;23(2):241-254. doi:10.17482/uumfd.321820
Chicago Ergür, H. Sevil. “HİDROLİK SİSTEMLERDEKİ ENERJİ VERİMLİLİĞİ”. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi 23, sy. 2 (Ağustos 2018): 241-54. https://doi.org/10.17482/uumfd.321820.
EndNote Ergür HS (01 Ağustos 2018) HİDROLİK SİSTEMLERDEKİ ENERJİ VERİMLİLİĞİ. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi 23 2 241–254.
IEEE H. S. Ergür, “HİDROLİK SİSTEMLERDEKİ ENERJİ VERİMLİLİĞİ”, UUJFE, c. 23, sy. 2, ss. 241–254, 2018, doi: 10.17482/uumfd.321820.
ISNAD Ergür, H. Sevil. “HİDROLİK SİSTEMLERDEKİ ENERJİ VERİMLİLİĞİ”. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi 23/2 (Ağustos 2018), 241-254. https://doi.org/10.17482/uumfd.321820.
JAMA Ergür HS. HİDROLİK SİSTEMLERDEKİ ENERJİ VERİMLİLİĞİ. UUJFE. 2018;23:241–254.
MLA Ergür, H. Sevil. “HİDROLİK SİSTEMLERDEKİ ENERJİ VERİMLİLİĞİ”. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi, c. 23, sy. 2, 2018, ss. 241-54, doi:10.17482/uumfd.321820.
Vancouver Ergür HS. HİDROLİK SİSTEMLERDEKİ ENERJİ VERİMLİLİĞİ. UUJFE. 2018;23(2):241-54.

Cited By

DUYURU:

30.03.2021- Nisan 2021 (26/1) sayımızdan itibaren TR-Dizin yeni kuralları gereği, dergimizde basılacak makalelerde, ilk gönderim aşamasında Telif Hakkı Formu yanısıra, Çıkar Çatışması Bildirim Formu ve Yazar Katkısı Bildirim Formu da tüm yazarlarca imzalanarak gönderilmelidir. Yayınlanacak makalelerde de makale metni içinde "Çıkar Çatışması" ve "Yazar Katkısı" bölümleri yer alacaktır. İlk gönderim aşamasında doldurulması gereken yeni formlara "Yazım Kuralları" ve "Makale Gönderim Süreci" sayfalarımızdan ulaşılabilir. (Değerlendirme süreci bu tarihten önce tamamlanıp basımı bekleyen makalelerin yanısıra değerlendirme süreci devam eden makaleler için, yazarlar tarafından ilgili formlar doldurularak sisteme yüklenmelidir).  Makale şablonları da, bu değişiklik doğrultusunda güncellenmiştir. Tüm yazarlarımıza önemle duyurulur.

Bursa Uludağ Üniversitesi, Mühendislik Fakültesi Dekanlığı, Görükle Kampüsü, Nilüfer, 16059 Bursa. Tel: (224) 294 1907, Faks: (224) 294 1903, e-posta: mmfd@uludag.edu.tr