Araştırma Makalesi
BibTex RIS Kaynak Göster

YÜKSEK KROMLU BEYAZ DÖKME DEMİRLERDE FAZ DENGESİNİN BENZETİMİ

Yıl 2018, Cilt: 23 Sayı: 3, 179 - 190, 31.12.2018
https://doi.org/10.17482/uumfd.333701

Öz

Bu çalışmada Materials Calculator yazılımı kullanılarak, farklı molibden
içeriğine sahip yüksek kromlu beyaz dökme demirlerin (ağırlıkça ~%19) ikilimsi faz
diyagramları (eşdeğer kesit haritaları) benzetilmiştir.  Hesaplanan faz diyagramlarının doğruluğunu
test etmek amacı ile, diyagramlardan belirli kompozisyonlarda okunan dönüşüm
sıcaklıkları, aynı kompozisyonlarda döküm sonrası yavaşça soğutularak üretilen
numunelerin diferansiyel taramalı kalorimetri (İng.: Differential Scanning
Calorimetry, DSC) analizi ile ölçülen faz dönüşüm sıcaklıkları ile
karşılaştırılmıştır. Yine aynı amaçla, faz diyagramlarından okunan düşük
sıcaklık fazları ve döküm ile üretilen numunelerin içindeki, X-ışını kırınım
yöntemi (İng.: X-Ray Diffraction, XRD) ile belirlenen, kristalin fazlar
karşılaştırılmıştır. Benzetilen diyagramlar, artan molibden içeriği ile ikincil
M23C6 karbürlerin miktarında bir artış öngörmüştür. Bu
öngörünün geçerliliği döküm ile üretilen numuneler içerisindeki faz dağılımı ve
faz kompozisyonlarını metalografik muayene, taramalı elektron mikroskobu (İng.:
Scanning Electron Microscopy, SEM) – enerji saçınım spektrometresi (İng.:
Energy Dispersive Spectroscopy, EDS) analizleri ile belirleyerek test
edilmiştir. Numunelerin sertlik değerlerine bakıldığında ise, herhangi bir ısıl
işlem yapılmaksızın Mo içeriğindeki %1 'lik bir artış ve buna bağlı ikincil
karbürlerin miktarındaki artış ile sertliğin 44,90'dan 51,05 HRC'ye yükseldiği
görülmüştür. Elde edilen sonuçlar deneysel ölçümler ve teorik tahminlerin
uyumlu olduğunu ve çok bileşenli sistemlerde faz dengesinin tahmin
edilebilmesinin pratik önemini göstermiştir.

Kaynakça

  • Abdel-Aziz, K., El-Shennawy, M., Omar, A. A. (2017) Microstructural Characteristics and Mechanical Properties of Heat Treated High-Cr White Cast Iron Alloys, International Journal of Apllied Engineering Research, 12, 4675–4686.
  • Andersson, J. O., Helander, T., Höglund, L., Shi, P., & Sundman, B. (2002) Thermo-Calc & DICTRA, computational tools for materials science. Calphad: Computer Coupling of Phase Diagrams and Thermochemistry, 26(2), 273–312. doi:10.1016/S0364-5916(02)00037-8
  • Archard, J. F. (1953) Contact of rubbing flat surfaces, Journal of Applied Physics, 24, 981–988. doi: 10.1063/1.1721448
  • ASTM A532 / A532M-10(2014), (2014). Standard Specification for Abrasion-Resistant Cast Irons, ASTM International, West Conshohocken, PA. doi: 10.1520/A0532_A0532M-10R14
  • Bale, C. W., Bélisle, E., Chartrand, P., Decterov, S. A., Eriksson, G., Hack, K., Petersen, S. (2009). FactSage thermochemical software and databases - recent developments, Calphad: Computer Coupling of Phase Diagrams and Thermochemistry, 33(2), 295–311. doi: 10.1016/j.calphad.2008.09.009
  • Bedolla-Jacuinde, A., Hernández, B., and Béjar-Gómez, L. (2005) SEM study on the M7 C3 carbide nucleation during eutectic solidification of high-chromium white irons, Zeitschrift Für Metallkunde, 96(12), 1380–1385. doi: 10.3139/146.101188
  • Cao, W., Chen, S. L., Zhang, F., Wu, K., Yang, Y., Chang, Y. A., … Oates, W. A. (2009) PANDAT software with PanEngine, PanOptimizer and PanPrecipitation for multi-component phase diagram calculation and materials property simulation, Calphad: Computer Coupling of Phase Diagrams and Thermochemistry, 33(2), 328–342. doi: 10.1016/j.calphad.2008.08.004
  • Çetinkaya, C. (2003) Yüksek kromlu beyaz dökme demir malzemelerin Al2O3 ile aşınma davranışlarının incelenmesi, Politeknik Dergisi, 6(3) 559-567.
  • Correa, R., Bedolla‐Jacuinde, A., Mejía, I., Cardoso, E., and Hernández, B. (2011) Effect of boron on microstructure of directionally solidified high chromium white irons, International Journal of Cast Metals Research, 24(1), 37–44. doi: 10.1179/136404611X12965641181767
  • Filipovic, M., Kamberovic, Z., & Korac, M. (2011) Solidification of High Chromium White Cast Iron Alloyed with Vanadium, Materials Transactions, 52(3), 386–390. doi: 10.2320/matertrans.M2010059
  • Harding, R.A., Saunders, N.J. (1997) Theory and Practice of Computer Modelling of Phase Diagrams for Cast Irons, Trans. American Foundrymen's Society, 105, 451-457.
  • Heino, V., Kallio, M., Valtonen, K., Kuokkala, V.-T. (2017) The role of microstructure in high stress abrasion of white cast irons, Wear, 388–389, 119–125. doi: 10.1016/j.wear.2017.04.029
  • Higuera-Cobos, O. F. (2015) Improvement of abrasive wear resistance of the high chromium cast iron ASTM A-532 through thermal treatment cycles, Facultad de Ingeniería, 25(41), 93–103.
  • Imurai, S., Thanachayanont, C., Pearce, J. T. H., & Chairuangsri, T. (2015) Microstructure And Erosion-Corrosion Behaviour Of As-Cast High Chromium White Irons Containing Molybdenum In Aqueous Sulfuric-Acid Slurry, Archives of Metallurgy and Materials, 60(2), 919–923. doi: 10.1515/amm-2015-0230
  • Jacuinde, A. B., & Rainforth, W. M. (2001) The wear behaviour of high-chromium white cast irons as a function of silicon and Mischmetal content, Wear, 250–251(PART 1), 449–461. doi: 10.1016/S0043-1648(01)00633-0
  • Kattner, U. R. (2016) the Calphad Method and Its Role in Material and Process Development. Tecnologia Em Metalurgia Materiais e Mineração, 13(1), 3–15. doi: 10.4322/2176-1523.1059
  • Kozeschnik E, Buchmayr B. (2001) MatCalc - a simulation tool for multicomponent thermodynamics, diffusion and phase transformation kinetics, Mathematical modelling of weld phenomena 5, London Institute of Materials, UK, 349-361.
  • Li, D., Liu, L., Zhang, Y., Ye, C., Ren, X., Yang, Y., Yang, Q. (2009) Phase diagram calculation of high chromium cast irons and influence of its chemical composition, Materials and Design, 30(2), 340–345. doi: 10.1016/j.matdes.2008.04.061
  • Mampuru, L. A., Maruma, M. G., & Moema, J. S. (2016) Grain refinement of 25 wt% high-chromium white cast iron by addition of vanadium, Journal of the Southern African Institute of Mining and Metallurgy, 116(10), 969–972. doi: 10.17159/2411-9717/2016/v116n10a12
  • Medvedeva, N. I., Van Aken, D. C., & Medvedeva, J. E. (2015) Stability of binary and ternary M23C6carbides from first principles, Computational Materials Science, 96(PA), 159–164. doi: 10.1016/j.commatsci.2014.09.016
  • Ogi K, Matsubara Y, and Matsuda K. (1982) Eutectic solidification of high chromium cast iron-eutectic mechanism of eutectic growth, AFS Transactions, 89, 197–204.
  • Su, Y-L., Li, D., Zhang, X-E. (2006) Optimizing hardenability of high chromium white cast iron, China Foundry, 3(4), 284-287.
  • Tabrett, C. P., Sare, I. R., & Ghomashchi, M. R. (1996) Microstructure-property relationships in high chromium white iron alloys, International Materials Reviews, 41(2), 59–82. doi: 10.1179/095066096790326075
  • Wiengmoon, A., Chairuangsri, T., & Pearce, J. T. H. (2005) An unusual structure of an as-cast 30% Cr alloy white iron, ISIJ International, 45(11), 1658–1665. doi: 10.2355/isijinternational.45.1658
  • Wiengmoon, A., Pearce, J. T. H., & Chairuangsri, T. (2011) Relationship between microstructure, hardness and corrosion resistance in 20 wt.%Cr, 27 wt.%Cr and 36 wt.%Cr high chromium cast irons, Materials Chemistry and Physics, 125(3), 739–748. doi: 10.1016/j.matchemphys.2010.09.064
  • Yen, C. L., Liu, K. L., & Pan, Y. N. (2013) Simulation of the Phase Diagrams for High-Chromium White Cast Irons and Multi-Component White Cast Irons, Advanced Materials Research, 848, 39–45. doi: 10.4028/www.scientific.net/AMR.848.39
  • Youping, M., Xiulan, L., Yugao, L., Shuyi, Z., & Xiaoming, D. (2012) Effect of Ti-V-Nb-Mo addition on microstructure of high chromium cast iron, China Foundry, 9(2), 148–153.
  • Zumelzu, E., Opitz, O., Cabezas, C., Parada, A., & Goyos, L. (2003) High-chromium (22-34 percent) cast iron alloys and their simulated behaviour at the sugar industry, Journal of Scientific and Industrial Research, 62(6), 583–588.

Simulation of Phase Equilibria in High Chromium White Cast Irons

Yıl 2018, Cilt: 23 Sayı: 3, 179 - 190, 31.12.2018
https://doi.org/10.17482/uumfd.333701

Öz

In this study, using the Materials Calculator software program, the
pseudo binary phase diagrams (i.e. isoplethal maps) of high chromium white cast
irons (~19% in weight) with different molybdenum contents were simulated. In
order to test the accuracy of the calculated phase diagrams, the transformation
temperatures read from the diagrams at certain compositions were compared with
the phase transformation temperatures measured using Differential Scanning
Calorimetry (DSC) analysis of the samples produced by casting in the same
composition followed by slow cooling. With the same purpose, low temperature
phases read from the phase diagrams were compared with the crystalline phases
determined by X-Ray Diffraction (XRD) of the casted samples. Simulated diagrams
predicted an increase in the amount of secondary
M23C6carbides with increasing molybdenum content. The
validity of this prediction was tested by determining the phase distribution
and phase compositions in the casted samples by means of metallographic
examinations and Scanning Electron Microscopy (SEM) - Energy Dispersive
Spectroscopy (EDS) analyzes. When the hardness values of the samples were taken
into consideration, it was seen that the hardness increased from 44.90 to 51.05
HRC with a 1% increase in Mo content and a corresponding increase in the amount
of secondary carbides without any heat treatments. Results show that
theoretical predictions and experimental measurements are in accord and
estimating phase equilibria in multi-component systems is of practical
importance.

Kaynakça

  • Abdel-Aziz, K., El-Shennawy, M., Omar, A. A. (2017) Microstructural Characteristics and Mechanical Properties of Heat Treated High-Cr White Cast Iron Alloys, International Journal of Apllied Engineering Research, 12, 4675–4686.
  • Andersson, J. O., Helander, T., Höglund, L., Shi, P., & Sundman, B. (2002) Thermo-Calc & DICTRA, computational tools for materials science. Calphad: Computer Coupling of Phase Diagrams and Thermochemistry, 26(2), 273–312. doi:10.1016/S0364-5916(02)00037-8
  • Archard, J. F. (1953) Contact of rubbing flat surfaces, Journal of Applied Physics, 24, 981–988. doi: 10.1063/1.1721448
  • ASTM A532 / A532M-10(2014), (2014). Standard Specification for Abrasion-Resistant Cast Irons, ASTM International, West Conshohocken, PA. doi: 10.1520/A0532_A0532M-10R14
  • Bale, C. W., Bélisle, E., Chartrand, P., Decterov, S. A., Eriksson, G., Hack, K., Petersen, S. (2009). FactSage thermochemical software and databases - recent developments, Calphad: Computer Coupling of Phase Diagrams and Thermochemistry, 33(2), 295–311. doi: 10.1016/j.calphad.2008.09.009
  • Bedolla-Jacuinde, A., Hernández, B., and Béjar-Gómez, L. (2005) SEM study on the M7 C3 carbide nucleation during eutectic solidification of high-chromium white irons, Zeitschrift Für Metallkunde, 96(12), 1380–1385. doi: 10.3139/146.101188
  • Cao, W., Chen, S. L., Zhang, F., Wu, K., Yang, Y., Chang, Y. A., … Oates, W. A. (2009) PANDAT software with PanEngine, PanOptimizer and PanPrecipitation for multi-component phase diagram calculation and materials property simulation, Calphad: Computer Coupling of Phase Diagrams and Thermochemistry, 33(2), 328–342. doi: 10.1016/j.calphad.2008.08.004
  • Çetinkaya, C. (2003) Yüksek kromlu beyaz dökme demir malzemelerin Al2O3 ile aşınma davranışlarının incelenmesi, Politeknik Dergisi, 6(3) 559-567.
  • Correa, R., Bedolla‐Jacuinde, A., Mejía, I., Cardoso, E., and Hernández, B. (2011) Effect of boron on microstructure of directionally solidified high chromium white irons, International Journal of Cast Metals Research, 24(1), 37–44. doi: 10.1179/136404611X12965641181767
  • Filipovic, M., Kamberovic, Z., & Korac, M. (2011) Solidification of High Chromium White Cast Iron Alloyed with Vanadium, Materials Transactions, 52(3), 386–390. doi: 10.2320/matertrans.M2010059
  • Harding, R.A., Saunders, N.J. (1997) Theory and Practice of Computer Modelling of Phase Diagrams for Cast Irons, Trans. American Foundrymen's Society, 105, 451-457.
  • Heino, V., Kallio, M., Valtonen, K., Kuokkala, V.-T. (2017) The role of microstructure in high stress abrasion of white cast irons, Wear, 388–389, 119–125. doi: 10.1016/j.wear.2017.04.029
  • Higuera-Cobos, O. F. (2015) Improvement of abrasive wear resistance of the high chromium cast iron ASTM A-532 through thermal treatment cycles, Facultad de Ingeniería, 25(41), 93–103.
  • Imurai, S., Thanachayanont, C., Pearce, J. T. H., & Chairuangsri, T. (2015) Microstructure And Erosion-Corrosion Behaviour Of As-Cast High Chromium White Irons Containing Molybdenum In Aqueous Sulfuric-Acid Slurry, Archives of Metallurgy and Materials, 60(2), 919–923. doi: 10.1515/amm-2015-0230
  • Jacuinde, A. B., & Rainforth, W. M. (2001) The wear behaviour of high-chromium white cast irons as a function of silicon and Mischmetal content, Wear, 250–251(PART 1), 449–461. doi: 10.1016/S0043-1648(01)00633-0
  • Kattner, U. R. (2016) the Calphad Method and Its Role in Material and Process Development. Tecnologia Em Metalurgia Materiais e Mineração, 13(1), 3–15. doi: 10.4322/2176-1523.1059
  • Kozeschnik E, Buchmayr B. (2001) MatCalc - a simulation tool for multicomponent thermodynamics, diffusion and phase transformation kinetics, Mathematical modelling of weld phenomena 5, London Institute of Materials, UK, 349-361.
  • Li, D., Liu, L., Zhang, Y., Ye, C., Ren, X., Yang, Y., Yang, Q. (2009) Phase diagram calculation of high chromium cast irons and influence of its chemical composition, Materials and Design, 30(2), 340–345. doi: 10.1016/j.matdes.2008.04.061
  • Mampuru, L. A., Maruma, M. G., & Moema, J. S. (2016) Grain refinement of 25 wt% high-chromium white cast iron by addition of vanadium, Journal of the Southern African Institute of Mining and Metallurgy, 116(10), 969–972. doi: 10.17159/2411-9717/2016/v116n10a12
  • Medvedeva, N. I., Van Aken, D. C., & Medvedeva, J. E. (2015) Stability of binary and ternary M23C6carbides from first principles, Computational Materials Science, 96(PA), 159–164. doi: 10.1016/j.commatsci.2014.09.016
  • Ogi K, Matsubara Y, and Matsuda K. (1982) Eutectic solidification of high chromium cast iron-eutectic mechanism of eutectic growth, AFS Transactions, 89, 197–204.
  • Su, Y-L., Li, D., Zhang, X-E. (2006) Optimizing hardenability of high chromium white cast iron, China Foundry, 3(4), 284-287.
  • Tabrett, C. P., Sare, I. R., & Ghomashchi, M. R. (1996) Microstructure-property relationships in high chromium white iron alloys, International Materials Reviews, 41(2), 59–82. doi: 10.1179/095066096790326075
  • Wiengmoon, A., Chairuangsri, T., & Pearce, J. T. H. (2005) An unusual structure of an as-cast 30% Cr alloy white iron, ISIJ International, 45(11), 1658–1665. doi: 10.2355/isijinternational.45.1658
  • Wiengmoon, A., Pearce, J. T. H., & Chairuangsri, T. (2011) Relationship between microstructure, hardness and corrosion resistance in 20 wt.%Cr, 27 wt.%Cr and 36 wt.%Cr high chromium cast irons, Materials Chemistry and Physics, 125(3), 739–748. doi: 10.1016/j.matchemphys.2010.09.064
  • Yen, C. L., Liu, K. L., & Pan, Y. N. (2013) Simulation of the Phase Diagrams for High-Chromium White Cast Irons and Multi-Component White Cast Irons, Advanced Materials Research, 848, 39–45. doi: 10.4028/www.scientific.net/AMR.848.39
  • Youping, M., Xiulan, L., Yugao, L., Shuyi, Z., & Xiaoming, D. (2012) Effect of Ti-V-Nb-Mo addition on microstructure of high chromium cast iron, China Foundry, 9(2), 148–153.
  • Zumelzu, E., Opitz, O., Cabezas, C., Parada, A., & Goyos, L. (2003) High-chromium (22-34 percent) cast iron alloys and their simulated behaviour at the sugar industry, Journal of Scientific and Industrial Research, 62(6), 583–588.
Toplam 28 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Mühendislik
Bölüm Araştırma Makaleleri
Yazarlar

Öncü Akyıldız 0000-0002-0081-1642

Duygu Candemir

Hakan Yıldırım

Yayımlanma Tarihi 31 Aralık 2018
Gönderilme Tarihi 9 Ağustos 2017
Kabul Tarihi 8 Kasım 2018
Yayımlandığı Sayı Yıl 2018 Cilt: 23 Sayı: 3

Kaynak Göster

APA Akyıldız, Ö., Candemir, D., & Yıldırım, H. (2018). Simulation of Phase Equilibria in High Chromium White Cast Irons. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi, 23(3), 179-190. https://doi.org/10.17482/uumfd.333701
AMA Akyıldız Ö, Candemir D, Yıldırım H. Simulation of Phase Equilibria in High Chromium White Cast Irons. UUJFE. Aralık 2018;23(3):179-190. doi:10.17482/uumfd.333701
Chicago Akyıldız, Öncü, Duygu Candemir, ve Hakan Yıldırım. “Simulation of Phase Equilibria in High Chromium White Cast Irons”. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi 23, sy. 3 (Aralık 2018): 179-90. https://doi.org/10.17482/uumfd.333701.
EndNote Akyıldız Ö, Candemir D, Yıldırım H (01 Aralık 2018) Simulation of Phase Equilibria in High Chromium White Cast Irons. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi 23 3 179–190.
IEEE Ö. Akyıldız, D. Candemir, ve H. Yıldırım, “Simulation of Phase Equilibria in High Chromium White Cast Irons”, UUJFE, c. 23, sy. 3, ss. 179–190, 2018, doi: 10.17482/uumfd.333701.
ISNAD Akyıldız, Öncü vd. “Simulation of Phase Equilibria in High Chromium White Cast Irons”. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi 23/3 (Aralık 2018), 179-190. https://doi.org/10.17482/uumfd.333701.
JAMA Akyıldız Ö, Candemir D, Yıldırım H. Simulation of Phase Equilibria in High Chromium White Cast Irons. UUJFE. 2018;23:179–190.
MLA Akyıldız, Öncü vd. “Simulation of Phase Equilibria in High Chromium White Cast Irons”. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi, c. 23, sy. 3, 2018, ss. 179-90, doi:10.17482/uumfd.333701.
Vancouver Akyıldız Ö, Candemir D, Yıldırım H. Simulation of Phase Equilibria in High Chromium White Cast Irons. UUJFE. 2018;23(3):179-90.

DUYURU:

30.03.2021- Nisan 2021 (26/1) sayımızdan itibaren TR-Dizin yeni kuralları gereği, dergimizde basılacak makalelerde, ilk gönderim aşamasında Telif Hakkı Formu yanısıra, Çıkar Çatışması Bildirim Formu ve Yazar Katkısı Bildirim Formu da tüm yazarlarca imzalanarak gönderilmelidir. Yayınlanacak makalelerde de makale metni içinde "Çıkar Çatışması" ve "Yazar Katkısı" bölümleri yer alacaktır. İlk gönderim aşamasında doldurulması gereken yeni formlara "Yazım Kuralları" ve "Makale Gönderim Süreci" sayfalarımızdan ulaşılabilir. (Değerlendirme süreci bu tarihten önce tamamlanıp basımı bekleyen makalelerin yanısıra değerlendirme süreci devam eden makaleler için, yazarlar tarafından ilgili formlar doldurularak sisteme yüklenmelidir).  Makale şablonları da, bu değişiklik doğrultusunda güncellenmiştir. Tüm yazarlarımıza önemle duyurulur.

Bursa Uludağ Üniversitesi, Mühendislik Fakültesi Dekanlığı, Görükle Kampüsü, Nilüfer, 16059 Bursa. Tel: (224) 294 1907, Faks: (224) 294 1903, e-posta: mmfd@uludag.edu.tr