Yıl 2019, Cilt 24 , Sayı 2, Sayfalar 373 - 392 2019-08-30

EKLEMELİ İMALAT (3B BASKI): TEKNOLOJİLER VE UYGULAMALAR

Hasan Kemal SÜRMEN [1]


Hızlı prototipleme ve üç boyutlu (3B) baskı adlarıyla da bilinen eklemeli imalat, geleneksel bilgisayar destekli üretimdeki talaş kaldırma prensibinin tersine, malzemelerin birleştirilerek katmanlar halinde oluşturulup üst üste eklenmesi prensibine dayanan, serbest formlu ve karmaşık geometrili objelerin üretilmesine imkan sağlayan pratik bir imalat metodudur. Günümüzde daha çok 3B baskı olarak anılan bu yöntem, çatısı altında birçok farklı teknoloji bulundurmaktadır. Ürünlerin farklı malzeme, mekanik ve geometrik özelliklerinden dolayı çeşitli eklemeli imalat teknolojileri geliştirilmiş ve ticarileştirilerek otomotiv, havacılık, biyomedikal, tıp, gıda, eğitim ve eğlence sektörlerinin kullanımına sunulmuştur.  Bu yazıda eklemeli imalat teknolojileri ile ilgili kapsamlı bir derleme yapılmıştır. 3B baskı sürecindeki işlem adımları izah edilmiş, günümüzde kullanılan popüler 3B baskı teknolojilerinin çalışma prensipleri açıklanmış ve karşılaştırılmaları yapılmıştır. Güncel uygulama alanlarına da yer verilen bu yazıda 3B baskı teknolojilerine ait bazı püf noktaları ve gelecek yönelimlerinden de bahsedilmiştir.


Eklemeli imalat, 3B baskı, Yöntemler, 3D yazıcı, Uygulama alanları, Teknolojiler
  • 1. Adamidis, O., Alber, S. ve Anastasopoulos, I. (2018). Investigation into 3D printing of granular media. Physical Modelling in Geotechnics, Proceedings of the 9th International Conference on Physical Modelling in Geotechnics, CRC Press, London, 113-118. doi:10.1201/9780429438660-9
  • 2. Agarwala, M., Bourell, D., Beaman, J., Marcus, H. ve Barlow, J. (1995). Direct selective laser sintering of metals. Rapid Prototyping Journal, 1(1), 26-36. doi:10.1108/13552549 510078113
  • 3. Asadollahi-Yazdi, E., Gardan, J. ve Lafon, P. (2016). Integrated design in additive manufacturing based on design for manufacturing. Int'l Journal of Mechanical, Aerospace, Industrial, Mechatronic and Manufacturing Engineering, 10(6), 1104-1111.
  • 4. ASTM Committee F42 on Additive Manufacturing Technologies & ASTM Committee F42 on Additive Manufacturing Technologies. Subcommittee F42. 91 on Terminology. (2012). Standard terminology for additive manufacturing technologies. ASTM International. doi: 10.1520/F2792-09
  • 5. Beaman, J. J. ve Deckard, C. R. (1990). U.S. Patent No. 4,938,816. Washington, DC: U.S. Patent and Trademark Office.
  • 6. Calignano, F., Manfredi, D., Ambrosio, E. P., Biamino, S., Lombardi, M., Atzeni, E. ve Fino, P. (2017). Overview on Additive Manufacturing Technologies. Proceedings of the IEEE, 105(4), 593-612. doi: 10.1109/JPROC.2016.2625098
  • 7. Canzi, P., Marconi, S., Manfrin, M., Magnetto, M., Carelli, C., Simoncelli, A. M. ve Benazzo, M. (2018). From CT scanning to 3D printing technology: a new method for the preoperative planning of a transcutaneous bone-conduction hearing device. Acta Otorhinolaryngologica Italica, 38, 251-256. doi: 10.14639/0392-100X-1625
  • 8. Chaput, C. ve Chartier, T. (2007, August). Fabrication of ceramics by stereolithography. RTejournal-Forum für Rapid Technologie, 4(1).
  • 9. Cheriachan, D. M., DiPaola, M., Iannotti, J. P. ve Ricchetti, E. T. (2019). 3D Printing in Orthopedics-Upper Extremity Arthroplasty. 3D Printing in Orthopaedic Surgery, 151-169. doi: 10.1016/b978-0-323-58118-9.00013-0
  • 10. Chua, C. K. ve Leong, K. F. (2014). 3D Printing and Additive Manufacturing: Principles and Applications (with Companion Media Pack) of Rapid Prototyping Fourth Edition. World Scientific Publishing Company.
  • 11. Crump, S. S. (1992). U.S. Patent No. 5,121,329. Washington, DC: U.S. Patent and Trademark Office.
  • 13. Damianou, C., Giannakou, M., Yiallouras, C. ve Menikou, G. (2018). The role of three-dimensional printing in magnetic resonance imaging-guided focused ultrasound surgery. Digital Medicine, 4(1), 22. doi: 10.4103/digm.digm_48_17
  • 14. Danforth, S. C. ve Safari, A. (1996, August). Solid freeform fabrication: novel manufacturing opportunities for electronic ceramics. Applications of Ferroelectrics, 1996. ISAF'96., Proceedings of the Tenth IEEE International Symposium, 1, 183-188. doi:10.1109/isaf.1996.602732
  • 15. Dudek, P. F. D. M. (2013). FDM 3D printing technology in manufacturing composite elements. Archives of Metallurgy and Materials, 58(4), 1415-1418. doi:10.2478/amm-2013-0186
  • 16. Dupláková, D., Hatala, M., Duplák, J., Radchenko, S. ve Steranka, J. (2018). Direct Metal Laser Sintering–Possibility of Application in Production Process. Science and Research Journal, 1(4), 123-127. doi:10.18421/SAR14-01
  • 17. Durgun, I. (2015). Sheet metal forming using FDM rapid prototype tool. Rapid Prototyping Journal, 21(4), 412-422. doi:10.1108/rpj-01-2014-0003
  • 18. Fetvaci, M. C. (2017). Determination of effective involute parameter limit in generation simulation of gears manufactured by rack-type cutters. Mechanics & Industry, 18(4), 405. doi: 10.1051/meca/2017028
  • 19. Frazier, W. E. (2014). Metal additive manufacturing: a review. Journal of Materials Engineering and Performance, 23(6), 1917-1928. doi:10.1007/s11665-014-0958-z
  • 20. Garg, A., Bhattacharya, A. ve Batish, A. (2016). On surface finish and dimensional accuracy of FDM parts after cold vapor treatment. Materials and Manufacturing Processes, 31(4), 522-529. doi:10.1080/10426914.2015.1070425
  • 21. Gosselin, C., Duballet, R., Roux, P., Gaudillière, N., Dirrenberger, J. ve Morel, P. (2016). Large-scale 3D printing of ultra-high performance concrete–a new processing route for architects and builders. Materials ve Design, 100, 102-109. doi:10.1016/j.matdes.2016.03.097
  • 22. Goyanes, A., Kobayashi, M., Martínez-Pacheco, R., Gaisford, S. ve Basit, A. W. (2016). Fused-filament 3D printing of drug products: microstructure analysis and drug release characteristics of PVA-based caplets. International journal of pharmaceutics, 514(1), 290-295. doi:10.1016/j.ijpharm.2016.06.021
  • 23. Guillotin, B., Souquet, A., Catros, S., Duocastella, M., Pippenger, B., Bellance, S. ve Guillemot, F. (2010). Laser assisted bioprinting of engineered tissue with high cell density and microscale organization. Biomaterials, 31(28), 7250-7256. doi:10.1016/j.biomaterials. 2010.05.055
  • 24. Han, Y., Wang, F., Wang, H., Jiao, X. ve Chen, D. (2018). High-strength boehmite-acrylate composites for 3D printing: Reinforced filler-matrix interactions. Composites Science and Technology, 154, 104-109. doi:10.1016/j.compscitech.2017.10.026
  • 25. Hanssen, J., Moe, Z. H., Tan, D. ve Chien, O. Y. (2013). Rapid Prototyping in Manufacturing. Handbook of Manufacturing Engineering and Technology, 1-16.
  • 26. Hornbeck, L. J. (1991). U.S. Patent No. 5,061,049. Washington, DC: U.S. Patent and Trademark Office.
  • 27. http://www.3dnatives.com/en/polyjet100420174/, Erişim Tarihi: 07.08.2018, Konu: Polijet teknolojisi.
  • 12. Cui, X., Boland, T., DD'Lima, D. ve K Lotz, M. (2012). Thermal inkjet printing in tissue engineering and regenerative medicine. Recent patents on drug delivery ve formulation, 6(2), 149-155. doi: 10.2174/187221112800672949
  • 28. https://amtech3d.com/3d-printing-techniques/, Erişim Tarihi: 02.06.2019, Konu: Direk Işık İşleme.
  • 29. http://www.custompartnet.com/wu/fused-deposition-modeling/, Erişim Tarihi: 02.06.2019, Konu: Eriyik Yığarak Modelleme.
  • 30. https://prattparametrics.com/2017/09/18/3d-printing-research-6/, Erişim Tarihi: 02.06.2019, Konu: 3B baskı teknolojileri.
  • 31. https://www.sculpteo.com/media/ebook/State_of_3DP_2018.pdf, Erişim Tarihi: 10.11. 2018, Konu: 3B baskı teknolojileri.
  • 32. Huang, R., Riddle, M., Graziano, D., Warren, J., Das, S., Nimbalkar, S. ve Masanet, E. (2016). Energy and emissions saving potential of additive manufacturing: the case of lightweight aircraft components. Journal of Cleaner Production, 135, 1559-1570. doi:10.1016/j.jclepro.2015.04.109
  • 33. Hull, C. W. (1986). U.S. Patent No. 4,575,330. Washington, DC: U.S. Patent and Trademark Office.
  • 34. Jacobs, P. F. (1992). Fundamentals of stereolithography. 1992 International Solid Freeform Fabrication Symposium.
  • 35. Kang, H. W., Lee, S. J., Ko, I. K., Kengla, C., Yoo, J. J. ve Atala, A. (2016). A 3D bioprinting system to produce human-scale tissue constructs with structural integrity. Nature biotechnology, 34(3), 312. doi:10.1038/nbt.3413
  • 36. Khan, H. M., Dirikolu, M. H., & Koç, E. (2018). Parameters optimization for horizontally built circular profiles: Numerical and experimental investigation. Optik, 174, 521-529. doi: 10.1016/j.ijleo.2018.08.095
  • 37. Kim, M. K., Kim, J. H., Park, S. E. ve BACK, S. A. (2018). U.S. Patent Application No. 15/745,736.
  • 38. Krinitcyn, M., Fu, Z., Harris, J., Kostikov, K., Pribytkov, G. A., Greil, P. ve Travitzky, N. (2017). Laminated Object Manufacturing of in-situ synthesized MAX-phase composites. Ceramics International, 43(12), 9241-9245. doi:10.1016/j.ceramint.2017.04 .079
  • 39. Kumar, S., Choudhary, A. K. S., Singh, A. K., Gupta, A. K., Kumar, S., Choudhary, A. K. S. ve Gupta, A. K. (2016). A Comparison of Additive Manufacturing Technologies. IJIRST-International Journal for Innovative Research in Science ve Technology, 3(01), 06.
  • 40. Lipton, J. I., Cutler, M., Nigl, F., Cohen, D. ve Lipson, H. (2015). Additive manufacturing for the food industry. Trends in food science ve technology, 43(1), 114-123. doi:10.1016/j.tifs.2015.02.004
  • 41. Long, J., Gholizadeh, H., Lu, J., Bunt, C. ve Seyfoddin, A. (2017). Application of fused deposition modelling (FDM) method of 3D printing in drug delivery, Current pharmaceutical design, 23(3), 433-439. doi:10.2174/1381612822666161026162707
  • 42. Markovıć, V. ve Žıvkovıć, P. (2016). 3D printing–challenges and perspectives, International Scientific Journal of Technical Sciences, 60-67.
  • 43. McMenamin, P. G., Quayle, M. R., McHenry, C. R. ve Adams, J. W. (2014). The production of anatomical teaching resources using three‐dimensional (3D) printing technology. Anatomical sciences education, 7(6), 479-486. doi:10.1002/ase.1475
  • 44. Meiners, W., Wissenbach, K. ve Gasser, A. (2001). U.S. Patent No. 6,215,093. Washington, DC: U.S. Patent and Trademark Office.
  • 45. Mostafaei, A., Stevens, E. L., Ference, J. J., Schmidt, D. E. ve Chmielus, M. (2017). Binder jet printing of partial denture metal framework from metal powder. Mater. Sci. Technol., 289-291. doi:10.7449/2017mst/2017/mst_2017_289_291
  • 46. Murphy, S. V. ve Atala, A. (2014). 3D bioprinting of tissues and organs. Nature biotechnology, 32(8), 773. doi:10.1038/nbt.2958
  • 47. Murr, L. E., Amato, K. N., Li, S. J., Tian, Y. X., Cheng, X. Y., Gaytan, S. M. ve Wicker, R. B. (2011). Microstructure and mechanical properties of open-cellular biomaterials prototypes for total knee replacement implants fabricated by electron beam melting. Journal of the mechanical behavior of biomedical materials, 4(7), 1396-1411. doi:10.1016/j.jmbbm.2011 .05.010
  • 48. Ngo, T. D., Kashani, A., Imbalzano, G., Nguyen, K. T. ve Hui, D. (2018). Additive manufacturing (3D printing): A review of materials, methods, applications and challenges. Composites Part B: Engineering. doi:10.1016/j.compositesb.2018.02.012
  • 49. Niaki, M. K. ve Nonino, F. (2018). The Management of Additive Manufacturing. Springer.doi: 10.1007/978-3-319-56309-1
  • 50. Oropallo, W. ve Piegl, L. A. (2016). Ten challenges in 3D printing, Engineering with Computers, 32(1), 135-148. doi:10.1007/s00366-015-0407-0
  • 51. Ortes, F., Surmen, H. K. ve Arslan, Y. Z. (2016). A bıomechatronıc applıcatıon on prosthetıcs for undergraduate engıneerıng students. The Eurasia Proceedings of Educational & Social Sciences, 4, 461-464.
  • 52. Panwar, A. ve Tan, L. P. (2016). Current status of bioinks for micro-extrusion-based 3D bioprinting. Molecules, 21(6), 685. doi:10.3390/molecules21060685
  • 53. Ramya, A. ve Vanapalli, S. L. (2016). 3D printing technologies in various applications. International Journal of Mechanical Engineering and Technology, 7(3), 396-409.
  • 54. Richardson, M. ve Haylock, B. (2012). Designer/maker: the rise of additive manufacturing, domestic-scale production and the possible implications for the automotive industry. Computer-Aided Design ve Applications PACE, 2, 33-48. doi: 10.3722/cadaps. 2012.pace.33-48
  • 55. Singh, S., Ramakrishna, S. ve Singh, R. (2017). Material issues in additive manufacturing: A review. Journal of Manufacturing Processes, 25, 185-200. doi:10.1016/j.jmapro.2016 .11.006
  • 56. Swanson, W. J., Mannella, D. F. ve Schloesser, R. G. (2013). U.S. Patent No. 8,459,280. Washington, DC: U.S. Patent and Trademark Office.
  • 57. Tack, P., Victor, J., Gemmel, P. ve Annemans, L. (2016). 3D-printing techniques in a medical setting: a systematic literature review. Biomedical engineering online, 15(1), 115. doi:10.1186/s12938-016-0236-4
  • 58. Tumbleston, J. R., Shirvanyants, D., Ermoshkin, N., Janusziewicz, R., Johnson, A. R., Kelly, D. ve Samulski, E. T. (2015). Continuous liquid interface production of 3D objects. Science, 2397. doi:10.1126/science.aaa2397
  • 59. Udroiu, R., ve Braga, I. C. (2017). Polyjet technology applications for rapid tooling, MATEC Web of Conferences, 112, 3011. doi:10.1051/matecconf/201711203011
  • 60. Vaezi, M., Seitz, H. ve Yang, S. (2013). A review on 3D micro-additive manufacturing technologies. The International Journal of Advanced Manufacturing Technology, 67(5-8), 1721-1754. doi:10.1007/s00170-013-4962-5
  • 61. Vaupotic, B., Brezocnik, M. ve Balic, J. (2006). Use of PolyJet technology in manufacture of new product. Journal of Achievements in Materials and Manufacturing Engineering, 18(1-2), 319-322.
  • 62. Wang, Y. C., Chen, T. ve Yeh, Y. L. (2018). Advanced 3D printing technologies for the aircraft industry: a fuzzy systematic approach for assessing the critical factors. The International Journal of Advanced Manufacturing Technology, 1-11. doi:10.1007/s00170-018-1927-8
  • 63. Wohlers Report 2018, 2018. Wohlers Associates.
  • 64. Wohlers, T. ve Gornet, T. (2014). History of additive manufacturing. Wohlers report, 24(2014), 118.
  • 65. Wong, K. V. ve Hernandez, A. (2012). A review of additive manufacturing. ISRN Mechanical Engineering. 2012. doi:10.5402/2012/208760
  • 66. Wu, W., Jiang, J., Jiang, H., Liu, W., Li, G., Wang, B. ve Zhao, J. (2018). Improving bending and dynamic mechanics performance of 3D printing through ultrasonic strengthening. Materials Letters, 220, 317-320. doi:10.1016/j.matlet.2018.03.048
  • 67. Yan, X. ve Gu, P. E. N. G. (1996). A review of rapid prototyping technologies and systems. Computer-Aided Design, 28(4), 307-318. doi:10.1016/0010-4485(95)00035-6
  • 68. Yang, Y. ve Li, L. (2018). Cost modeling and analysis for Mask Image Projection Stereolithography additive manufacturing: Simultaneous production with mixed geometries. International Journal of Production Economics, 206, 146-158. doi:10.1016 /j.ijpe.2018.09.023
  • 69. Zhang, B., Luo, Y., Ma, L., Gao, L., Li, Y., Xue, Q. ve Cui, Z. (2018). 3D bioprinting: an emerging technology full of opportunities and challenges. Bio-Design and Manufacturing, 1-12. doi:10.1007/s42242-018-0004-3
  • 70. Zhang, Z. Y., Jhong, K. J., Cheng, C. W., Huang, P. W., Tsai, M. C. ve Lee, W. H. (2016). Metal 3D printing of synchronous reluctance motor. Industrial Technology (ICIT), 2016 IEEE International Conference, 1125-1128. doi:10.1109/icit.2016.7474912
Birincil Dil tr
Konular Mühendislik
Bölüm Derleme Makaleler
Yazarlar

Orcid: 0000-0001-8045-9193
Yazar: Hasan Kemal SÜRMEN (Sorumlu Yazar)
Kurum: İSTANBUL ÜNİVERSİTESİ - CERRAHPAŞA, TEKNİK BİLİMLER MESLEK YÜKSEKOKULU
Ülke: Turkey


Tarihler

Başvuru Tarihi : 29 Ocak 2019
Kabul Tarihi : 26 Haziran 2019
Yayımlanma Tarihi : 30 Ağustos 2019

Bibtex @derleme { uumfd519147, journal = {Uludağ University Journal of The Faculty of Engineering}, issn = {2148-4147}, eissn = {2148-4155}, address = {}, publisher = {Bursa Uludağ Üniversitesi}, year = {2019}, volume = {24}, pages = {373 - 392}, doi = {10.17482/uumfd.519147}, title = {EKLEMELİ İMALAT (3B BASKI): TEKNOLOJİLER VE UYGULAMALAR}, key = {cite}, author = {SÜRMEN, Hasan Kemal} }
APA SÜRMEN, H . (2019). EKLEMELİ İMALAT (3B BASKI): TEKNOLOJİLER VE UYGULAMALAR. Uludağ University Journal of The Faculty of Engineering , 24 (2) , 373-392 . DOI: 10.17482/uumfd.519147
MLA SÜRMEN, H . "EKLEMELİ İMALAT (3B BASKI): TEKNOLOJİLER VE UYGULAMALAR". Uludağ University Journal of The Faculty of Engineering 24 (2019 ): 373-392 <https://dergipark.org.tr/tr/pub/uumfd/issue/45830/519147>
Chicago SÜRMEN, H . "EKLEMELİ İMALAT (3B BASKI): TEKNOLOJİLER VE UYGULAMALAR". Uludağ University Journal of The Faculty of Engineering 24 (2019 ): 373-392
RIS TY - JOUR T1 - EKLEMELİ İMALAT (3B BASKI): TEKNOLOJİLER VE UYGULAMALAR AU - Hasan Kemal SÜRMEN Y1 - 2019 PY - 2019 N1 - doi: 10.17482/uumfd.519147 DO - 10.17482/uumfd.519147 T2 - Uludağ University Journal of The Faculty of Engineering JF - Journal JO - JOR SP - 373 EP - 392 VL - 24 IS - 2 SN - 2148-4147-2148-4155 M3 - doi: 10.17482/uumfd.519147 UR - https://doi.org/10.17482/uumfd.519147 Y2 - 2019 ER -
EndNote %0 Uludağ University Journal of The Faculty of Engineering EKLEMELİ İMALAT (3B BASKI): TEKNOLOJİLER VE UYGULAMALAR %A Hasan Kemal SÜRMEN %T EKLEMELİ İMALAT (3B BASKI): TEKNOLOJİLER VE UYGULAMALAR %D 2019 %J Uludağ University Journal of The Faculty of Engineering %P 2148-4147-2148-4155 %V 24 %N 2 %R doi: 10.17482/uumfd.519147 %U 10.17482/uumfd.519147
ISNAD SÜRMEN, Hasan Kemal . "EKLEMELİ İMALAT (3B BASKI): TEKNOLOJİLER VE UYGULAMALAR". Uludağ University Journal of The Faculty of Engineering 24 / 2 (Ağustos 2019): 373-392 . https://doi.org/10.17482/uumfd.519147
AMA SÜRMEN H . EKLEMELİ İMALAT (3B BASKI): TEKNOLOJİLER VE UYGULAMALAR. JFE. 2019; 24(2): 373-392.
Vancouver SÜRMEN H . EKLEMELİ İMALAT (3B BASKI): TEKNOLOJİLER VE UYGULAMALAR. Uludağ University Journal of The Faculty of Engineering. 2019; 24(2): 392-373.