Araştırma Makalesi
BibTex RIS Kaynak Göster

FARKLI GÜÇ AKTARMA SİSTEMLERİNE SAHİP HİDROJEN ENERJİLİ ELEKTRİKLİ ARAÇLARIN ENERJİ TÜKETİMİ VE GERİ KAZANIMLARININ KARŞILAŞTIRILMASI

Yıl 2019, Cilt: 24 Sayı: 2, 91 - 102, 30.08.2019
https://doi.org/10.17482/uumfd.558354

Öz

Otomotiv
endüstrisinde elektrikli araçlara geçişin hızla arttığı günümüzde, yüksek
enerji verimliliği sağlayan araç mimarilerinin tasarımı konuları oldukça önem
kazanmıştır. Nitekim farklı araç mimarileri ile elde edilecek enerji tüketim ve
geri kazanım değerleri bu güç ünitesinin yapısına bağlı olarak değişkenlik göstermektedir.
Bu çalışma kapsamında, farklı güç aktarma sistemlerine sahip hidrojen enerjili
elektrikli araçların enerji tüketimi ve rejeneratif frenleme yardımıyla geri
kazanımı farklı mimariler için matematiksel model yardımıyla sayısal olarak
incelenmiş ve karşılaştırılmıştır. Öncelikle elektrikli aracın verilen farklı
iki sürüş çevrimi için güç hesabı yapılmış ve tekerlek içi, tek kademeli ve iki
kademeli vites durumları için aynı elektrik motorundan çekilen ve frenlemeden
kazanılan akım değerleri hesaplanmıştır. Hesaplanan akım değerlerine göre tüm
güç mimarilerine ait yakıt pili hidrojen tüketimi ve süperkapasitör şarj durumu
belirlenmiştir. Elde edilen sonuçlara göre en düşük hidrojen tüketimi sırasıyla
iki kademeli vites, tek kademeli vites ve tekerlek içi motor durumlarında elde
edilmiştir. Bununla birlikte, en iyi şarj durumu bu sıranın tam tersi durumunda
elde edilmiştir. Son olarak farklı yol eğimleri için de enerji tüketimleri ve
geri kazanımları karşılaştırılmış ve yine aynı sıralamayı yansıtan sonuçlar
elde edilmiştir. 

Kaynakça

  • 1. Bottiglione F., De Pinto S., Mantriota G., Sorniotti A., 2014. Energy Consumption of a Battery Electric Vehicle with Infinitely Variable Transmission. Energies, 7 (12), 8317-8337.
  • 2. Bottiglione F., Contursi T., Gentile A., Mantriota G. 2014. The Fuel Economy of Hybrid Buses: The Role of Ancillaries in Real Urban Driving. Energies, 7 (7), 4202-4220.
  • 3. Yildiz A., Kopmaz O., 2017. A study on the basic control of speed ratio of the CVT system used for electric vehicles. International Journal of Advances in Engineering & Technology 10 (2), 201-209.
  • 4. Bayar K., 2018. Farklı Elektrikli Araç Mimarilerinin Taşıt Dinamiği Performansı Açısından Karşılaştırılması. OTEKON 2018, Bursa, Turkey.5. Capasso C., Veneri O., 2017. Integration between super-capacitors and ZEBRA batteries as high performance hybrid storage system for electric vehicles. Energy Procedia, 105(2017) 2539-2544.
  • 6. Chang X., Ma T., Wu R., 2018. Impact of urban development on residents’ public transportation travel energy consumption in China: An analysis of hdrogen fuel cell vehicles alternatives. International Journal of Hydrogen Energy, doi.org/10.1016/j.ijhydene.2018.09.099.
  • 7. Kaya K., Hames Y.,2018. Two new control strategies: For hydrogen fuel saving and extend the life cycle in the hydrogen fuel cell vehicles. International Journal of Hydrogen Energy, In press.
  • 8. Liang J., Walker P.D., Ruan J., Yang H. Wu J., Zhang N., 2019. Gearshift and brake distribution control for regenerative braking in electric vehicles with dual clutch transmission. Mechanism and Machine Theory, 133(2019) 1-22.
  • 9. Mo W., Walker P.D., Zhang N.,2019. Dynamic analysis and control for an electric vehicle with harpoon-shift synchronizer. Mechanism and Machine Theory, 133(2019) 750-756.
  • 10. Mo W., Walker P.D., Fang Y. Wu J., Ruan J., Zhang N., 2018. A novel shift control concept for multi-speed electric vehicles. Mechanical Systems and Signal Processing. 112(2018) 171-193.
  • 11. Tie S.F., Tan C.W., 2013. A review of energy sources and energy management system in electric vehicles. Renewable and Sustainable Energy Reviews, 20(2013), 82-102.
  • 12. Wen H.H., Chen W., Hui J., 2018. A single-pedal regenerative braking control strategy of accelerator pedal for electric vehicles based on adaptive fuzzy control algorithm. Energy Procedia, 152 (2018) 624-629.
  • 13. Xiong H., Liu H., Zhang R., Yu L., ZongZ., Zhang M., Li Z., 2019. An energy matching method for battery electric vehicle and hydrogen fuel cell vehicle based on source energy consumption rate. Internatiional of Hydrogen Energy, In press.
  • 14. Xu W., Chen H., Zhao H., Ren B. Torque optimization control for electric vehicles with four in-wheel motors equipped with regenerative braking system. Mechatronics 57 (2019) 95-108.
  • 15. Zhang L., Cai X., 2018. Control strategy of regenerative braking system in electric vehicles. Energy Procedia, 152(2018) 496-501.

COMPARISON OF ENERGY CONSUMPTION AND RECOVERY OF HYDROGEN POWERED ELECTRIC VEHICLES WITH DIFFERENT POWER TRANSMISSION SYSTEMS

Yıl 2019, Cilt: 24 Sayı: 2, 91 - 102, 30.08.2019
https://doi.org/10.17482/uumfd.558354

Öz

Nowadays, the shifting
to electric vehicles in automotive industry is increasing rapidly, and the
design of high-energy efficient vehicle architectures has gained importance.
The energy consumption and recovery values ​​to be obtained with different
vehicle architectures vary depending on the structure of this power unit.  In this study, the energy consumption of
hydrogen electric vehicles equipped with different power transmission systems
and regeneration with the help of regenerative braking were investigated and
compared with the mathematical model for different architectures.  Firstly, the power calculation was made for
the two different driving cycles of the electric vehicle, and the current
values ​​which were drawn from the same electric motor and braking were
calculated for the wheel, single stage and two-step gear situations.
According to the calculated current values,
fuel cell hydrogen consumption and supercapacitor charge status of all power
architectures were determined. According to the results obtained, the lowest
hydrogen consumption are obtained in two-stage gears, single-stage gears, and
in-wheel motor conditions, respectively. However, the best charging state is
obtained in the reverse order. Finally, energy consumptions and recoveries are
compared for different road slopes, and results were obtained reflecting the
same order.

Kaynakça

  • 1. Bottiglione F., De Pinto S., Mantriota G., Sorniotti A., 2014. Energy Consumption of a Battery Electric Vehicle with Infinitely Variable Transmission. Energies, 7 (12), 8317-8337.
  • 2. Bottiglione F., Contursi T., Gentile A., Mantriota G. 2014. The Fuel Economy of Hybrid Buses: The Role of Ancillaries in Real Urban Driving. Energies, 7 (7), 4202-4220.
  • 3. Yildiz A., Kopmaz O., 2017. A study on the basic control of speed ratio of the CVT system used for electric vehicles. International Journal of Advances in Engineering & Technology 10 (2), 201-209.
  • 4. Bayar K., 2018. Farklı Elektrikli Araç Mimarilerinin Taşıt Dinamiği Performansı Açısından Karşılaştırılması. OTEKON 2018, Bursa, Turkey.5. Capasso C., Veneri O., 2017. Integration between super-capacitors and ZEBRA batteries as high performance hybrid storage system for electric vehicles. Energy Procedia, 105(2017) 2539-2544.
  • 6. Chang X., Ma T., Wu R., 2018. Impact of urban development on residents’ public transportation travel energy consumption in China: An analysis of hdrogen fuel cell vehicles alternatives. International Journal of Hydrogen Energy, doi.org/10.1016/j.ijhydene.2018.09.099.
  • 7. Kaya K., Hames Y.,2018. Two new control strategies: For hydrogen fuel saving and extend the life cycle in the hydrogen fuel cell vehicles. International Journal of Hydrogen Energy, In press.
  • 8. Liang J., Walker P.D., Ruan J., Yang H. Wu J., Zhang N., 2019. Gearshift and brake distribution control for regenerative braking in electric vehicles with dual clutch transmission. Mechanism and Machine Theory, 133(2019) 1-22.
  • 9. Mo W., Walker P.D., Zhang N.,2019. Dynamic analysis and control for an electric vehicle with harpoon-shift synchronizer. Mechanism and Machine Theory, 133(2019) 750-756.
  • 10. Mo W., Walker P.D., Fang Y. Wu J., Ruan J., Zhang N., 2018. A novel shift control concept for multi-speed electric vehicles. Mechanical Systems and Signal Processing. 112(2018) 171-193.
  • 11. Tie S.F., Tan C.W., 2013. A review of energy sources and energy management system in electric vehicles. Renewable and Sustainable Energy Reviews, 20(2013), 82-102.
  • 12. Wen H.H., Chen W., Hui J., 2018. A single-pedal regenerative braking control strategy of accelerator pedal for electric vehicles based on adaptive fuzzy control algorithm. Energy Procedia, 152 (2018) 624-629.
  • 13. Xiong H., Liu H., Zhang R., Yu L., ZongZ., Zhang M., Li Z., 2019. An energy matching method for battery electric vehicle and hydrogen fuel cell vehicle based on source energy consumption rate. Internatiional of Hydrogen Energy, In press.
  • 14. Xu W., Chen H., Zhao H., Ren B. Torque optimization control for electric vehicles with four in-wheel motors equipped with regenerative braking system. Mechatronics 57 (2019) 95-108.
  • 15. Zhang L., Cai X., 2018. Control strategy of regenerative braking system in electric vehicles. Energy Procedia, 152(2018) 496-501.
Toplam 14 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Mühendislik
Bölüm Araştırma Makaleleri
Yazarlar

Ahmet Yıldız 0000-0001-5434-4368

Mert Ali Özel

Osman Kopmaz

Yayımlanma Tarihi 30 Ağustos 2019
Gönderilme Tarihi 26 Nisan 2019
Kabul Tarihi 29 Mayıs 2019
Yayımlandığı Sayı Yıl 2019 Cilt: 24 Sayı: 2

Kaynak Göster

APA Yıldız, A., Özel, M. A., & Kopmaz, O. (2019). FARKLI GÜÇ AKTARMA SİSTEMLERİNE SAHİP HİDROJEN ENERJİLİ ELEKTRİKLİ ARAÇLARIN ENERJİ TÜKETİMİ VE GERİ KAZANIMLARININ KARŞILAŞTIRILMASI. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi, 24(2), 91-102. https://doi.org/10.17482/uumfd.558354
AMA Yıldız A, Özel MA, Kopmaz O. FARKLI GÜÇ AKTARMA SİSTEMLERİNE SAHİP HİDROJEN ENERJİLİ ELEKTRİKLİ ARAÇLARIN ENERJİ TÜKETİMİ VE GERİ KAZANIMLARININ KARŞILAŞTIRILMASI. UUJFE. Ağustos 2019;24(2):91-102. doi:10.17482/uumfd.558354
Chicago Yıldız, Ahmet, Mert Ali Özel, ve Osman Kopmaz. “FARKLI GÜÇ AKTARMA SİSTEMLERİNE SAHİP HİDROJEN ENERJİLİ ELEKTRİKLİ ARAÇLARIN ENERJİ TÜKETİMİ VE GERİ KAZANIMLARININ KARŞILAŞTIRILMASI”. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi 24, sy. 2 (Ağustos 2019): 91-102. https://doi.org/10.17482/uumfd.558354.
EndNote Yıldız A, Özel MA, Kopmaz O (01 Ağustos 2019) FARKLI GÜÇ AKTARMA SİSTEMLERİNE SAHİP HİDROJEN ENERJİLİ ELEKTRİKLİ ARAÇLARIN ENERJİ TÜKETİMİ VE GERİ KAZANIMLARININ KARŞILAŞTIRILMASI. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi 24 2 91–102.
IEEE A. Yıldız, M. A. Özel, ve O. Kopmaz, “FARKLI GÜÇ AKTARMA SİSTEMLERİNE SAHİP HİDROJEN ENERJİLİ ELEKTRİKLİ ARAÇLARIN ENERJİ TÜKETİMİ VE GERİ KAZANIMLARININ KARŞILAŞTIRILMASI”, UUJFE, c. 24, sy. 2, ss. 91–102, 2019, doi: 10.17482/uumfd.558354.
ISNAD Yıldız, Ahmet vd. “FARKLI GÜÇ AKTARMA SİSTEMLERİNE SAHİP HİDROJEN ENERJİLİ ELEKTRİKLİ ARAÇLARIN ENERJİ TÜKETİMİ VE GERİ KAZANIMLARININ KARŞILAŞTIRILMASI”. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi 24/2 (Ağustos 2019), 91-102. https://doi.org/10.17482/uumfd.558354.
JAMA Yıldız A, Özel MA, Kopmaz O. FARKLI GÜÇ AKTARMA SİSTEMLERİNE SAHİP HİDROJEN ENERJİLİ ELEKTRİKLİ ARAÇLARIN ENERJİ TÜKETİMİ VE GERİ KAZANIMLARININ KARŞILAŞTIRILMASI. UUJFE. 2019;24:91–102.
MLA Yıldız, Ahmet vd. “FARKLI GÜÇ AKTARMA SİSTEMLERİNE SAHİP HİDROJEN ENERJİLİ ELEKTRİKLİ ARAÇLARIN ENERJİ TÜKETİMİ VE GERİ KAZANIMLARININ KARŞILAŞTIRILMASI”. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi, c. 24, sy. 2, 2019, ss. 91-102, doi:10.17482/uumfd.558354.
Vancouver Yıldız A, Özel MA, Kopmaz O. FARKLI GÜÇ AKTARMA SİSTEMLERİNE SAHİP HİDROJEN ENERJİLİ ELEKTRİKLİ ARAÇLARIN ENERJİ TÜKETİMİ VE GERİ KAZANIMLARININ KARŞILAŞTIRILMASI. UUJFE. 2019;24(2):91-102.

DUYURU:

30.03.2021- Nisan 2021 (26/1) sayımızdan itibaren TR-Dizin yeni kuralları gereği, dergimizde basılacak makalelerde, ilk gönderim aşamasında Telif Hakkı Formu yanısıra, Çıkar Çatışması Bildirim Formu ve Yazar Katkısı Bildirim Formu da tüm yazarlarca imzalanarak gönderilmelidir. Yayınlanacak makalelerde de makale metni içinde "Çıkar Çatışması" ve "Yazar Katkısı" bölümleri yer alacaktır. İlk gönderim aşamasında doldurulması gereken yeni formlara "Yazım Kuralları" ve "Makale Gönderim Süreci" sayfalarımızdan ulaşılabilir. (Değerlendirme süreci bu tarihten önce tamamlanıp basımı bekleyen makalelerin yanısıra değerlendirme süreci devam eden makaleler için, yazarlar tarafından ilgili formlar doldurularak sisteme yüklenmelidir).  Makale şablonları da, bu değişiklik doğrultusunda güncellenmiştir. Tüm yazarlarımıza önemle duyurulur.

Bursa Uludağ Üniversitesi, Mühendislik Fakültesi Dekanlığı, Görükle Kampüsü, Nilüfer, 16059 Bursa. Tel: (224) 294 1907, Faks: (224) 294 1903, e-posta: mmfd@uludag.edu.tr