Derleme
BibTex RIS Kaynak Göster

ENERJİ VERİMLİ BİNALAR İÇİN SÜRDÜRÜLEBİLİR VE ÇEVRE DOSTU PENCERE VE CAM TEKNOLOJİLERİ: SON GELİŞMELER VE UYGULAMALAR

Yıl 2019, Cilt: 24 Sayı: 3, 503 - 522, 31.12.2019
https://doi.org/10.17482/uumfd.562173

Öz

Bu çalışmada enerji verimli düşük/sıfır karbon binalar için geliştirilen sürdürülebilir ve çevre dostu
pencere ve cam teknolojilerinin kapsamlı bir analizi sunulmaktadır. Ortalama ısı transfer katsayısı (Uvalue), güneş ısı kazanç katsayısı, görünür ışık geçirgenlik katsayısı, UV ve IR ışık bloklama kapasitesi,
termal konfor, maliyet ve ticarileşebilme potansiyeli gibi temel performans kriterleri üzerinden söz
konusu yeni nesil pencere ve cam teknolojileri incelenmekte ve konvansiyonel ürünlerle
karşılaştırılmaktadır. Pencereler bina kabuğundan gerçekleşen toplam ısı kayıplarının yaklaşık %60’ından
sorumlu olduğu için, çalışmalar çoğunlukla ısıl direnci yüksek ürün geliştirme üzerine yoğunlaşmaktadır.
Bu manada vakum cam teknolojisi oldukça iyimser sonuçlar ortaya koymaktadır. Vakum camlar 0.50
W/m2
K’in altında U değerlerine sahiptir. Bu değer hava ya da argon dolgulu çok katmanlı klasik pencere
teknolojilerinde 2.00-2.70 W/m2
K aralığındadır. Isıl dirençli fotovoltaik cam uygulamaları (TRPVG)
yaklaşık 1.19 W/m2
K’lik bir U değeri ile hem çift katmanlı camlara göre iki kat daha iyi ısıl yalıtım
ortaya koymakta hem de birim m2
’den yaklaşık 100 W elektrik üretimine imkân tanımaktadır. Low-e
camlar sert iklim koşullarında pencere orijinli ısıl kayıpların etkin minimizasyonunda anahtar rol
oynamaktadır. Aerogel camlar görsel kaliteyi etkilese de sınırlı bir et kalınlığında ortaya koyduğu
benzersiz ısıl direnç açısından farkındalık oluşturmaktadır

Destekleyen Kurum

TÜBİTAK (The Scientific and Technological Research Council of Turkey)

Proje Numarası

216M531

Teşekkür

Sorumlu yazar bu çalışmaya 216M531 numaralı proje kapsamında sunduğu maddi desteğinden ötürü TÜBİTAK’a teşekkürlerini sunar.

Kaynakça

  • Baetens, R. Jelle, B. P. ve Gustavsen, A. (2010a) Phase change materials for building applications: A state-of-the-art review, Energy and Buildings, 42(9), 1361–1368. doi: 10.1016/J.ENBUILD.2010.03.026
  • Baetens, R. Jelle, B. P. ve Gustavsen, A. (2010b) Properties, requirements and possibilities of smart windows for dynamic daylight and solar energy control in buildings: A state-ofthe-art review, Solar Energy Materials and Solar Cells, 94(2), 87–105. doi: 10.1016/J.SOLMAT.2009.08.021
  • Bansal, N. K. Garg, S. N. Lugani, N. ve Bhandari, M. S. (1994) Determination of glazing area in direct gain systems for three different climatic zones, Solar Energy, 53(1), 81–90. doi: 10.1016/S0038-092X(94)90608-4
  • Carlos, J. S. Corvacho, H. Silva, P. D. ve Castro-Gomes, J. P. (2010) Real climate experimental study of two double window systems with preheating of ventilation air, Energy and Buildings, 42(6), 928–934. doi: 10.1016/J.ENBUILD.2010.01.003
  • Casini, M. (2018) Active dynamic windows for buildings: A review, Renewable Energy. doi: 10.1016/j.renene.2017.12.049
  • Chae, Y. T. Kim, J. Park, H. ve Shin, B. (2014) Building energy performance evaluation of building integrated photovoltaic (BIPV) window with semi-transparent solar cells, Applied Energy. doi: 10.1016/j.apenergy.2014.04.106
  • Chaiyapinunt, S. Phueakphongsuriya, B. Mongkornsaksit, K. ve Khomporn, N. (2005) Performance rating of glass windows and glass windows with films in aspect of thermal comfort and heat transmission, Energy and Buildings, 37(7), 725–738. doi: 10.1016/J.ENBUILD.2004.10.008
  • Chen, X. Lv, Q. ve Yi, X. (2012) Smart window coating based on nanostructured VO2 thin film, Optik - International Journal for Light and Electron Optics, 123(13), 1187–1189. doi: 10.1016/J.IJLEO.2011.07.048
  • Chow, T. Li, C. ve Lin, Z. (2010) Innovative solar windows for cooling-demand climate, Solar Energy Materials and Solar Cells, 94(2), 212–220. doi: 10.1016/J.SOLMAT.2009.09.004
  • Cuce, E. (2014) Development of innovative window and fabric technologies for low-carbon buildings, Ph.D. Thesis, The University of Nottingham, 2014.
  • Cuce, E. (2018) Accurate and reliable U-value assessment of argon-filled double glazed windows: A numerical and experimental investigation, Energy and Buildings, 171, 100– 106. doi: 10.1016/J.ENBUILD.2018.04.036
  • Cuce, E. Besir, A. B. ve Cuce, P. M. (2018) Low/Zero-Carbon Buildings for a Sustainable Future, Low Carbon Transition - Technical, Economic and Policy Assessment: Low Carbon Transition - Technical, Economic and Policy Assessment, InTech. doi: 10.5772/intechopen.74540
  • Cuce, E. ve Cuce, P. M. (2018) Smart retrofit solutions of buildings toward a low carbon world, Energy Research Journal, 9, 78–87. doi.org/ 10.3844/erjsp.2018.78.87
  • Cuce, E. ve Cuce, P. M. (2013) A comprehensive review on solar cookers, Applied Energy, 102, 1399–1421. doi: 10.1016/J.APENERGY.2012.09.002
  • Cuce, E. ve Cuce, P. M. (2017) Solar Pond Window Technology for Energy-Efficient Retrofitting of Buildings: An Experimental and Numerical Investigation, Arabian Journal for Science and Engineering, 42(5), 1909–1916. doi: 10.1007/s13369-016-2375-0
  • Cuce, E. ve Cuce, P. M. (2019) Optimised thermal insulation performance of a novel photovoltaic (PV) glazing technology called TRPVG through a comprehensive CFD research: An experimental validation, Energy Reports, 5, 1185–1195. doi.org/10.1016/j.egyr.2019.08.046
  • Cuce, E. Cuce, P. M. ve Young, C. H. (2016) Energy saving potential of heat insulation solar glass: Key results from laboratory and in-situ testing, Energy. doi: 10.1016/j.energy.2015.12.134
  • Cuce, E. ve Riffat, S. B. (2015) A state-of-the-art review on innovative glazing technologies, Renewable and Sustainable Energy Reviews. doi: 10.1016/j.rser.2014.08.084
  • Cupelli, D. Nicoletta, F. P. Manfredi, S. Filpo, G. De ve Chidichimo, G. (2009) Electrically switchable chromogenic materials for external glazing, Solar Energy Materials and Solar Cells, 93(3), 329–333. doi: 10.1016/J.SOLMAT.2008.11.010
  • Delalat, F. Ranjbar, M. ve Salamati, H. (2016) Blue colloidal nanoparticles of molybdenum oxide by simple anodizing method: decolorization by PdCl2 and observation of in-liquid gasochromic coloration, Solar Energy Materials and Solar Cells, 144, 165–172. doi: 10.1016/J.SOLMAT.2015.08.038
  • Demirbas, M. F. (2006) Thermal Energy Storage and Phase Change Materials: An Overview, Energy Sources, Part B: Economics, Planning, and Policy, 1(1), 85–95. doi: 10.1080/009083190881481
  • Duer, K. Svendsen, S. Moller Mogensen, M. ve Birck Laustsen, J. (2002) Energy labelling of glazings and windows in Denmark: calculated and measured values, Solar Energy, 73(1), 23–31. doi: 10.1016/S0038-092X(02)00031-2
  • Fanger, P. O. Thermal Comfort, Analysis ve Application in Environmental Engineering, Danish Technical Press, Copenhagen, Denmark, 1970, .
  • Farid, M. M. Khudhair, A. M. Razack, S. A. K. ve Al-Hallaj, S. (2004) A review on phase change energy storage: materials and applications, Energy Conversion and Management, 45(9–10), 1597–1615. doi: 10.1016/J.ENCONMAN.2003.09.015
  • Feuermann, D. ve Novoplansky, A. (1998) Reversible low solar heat gain windows for energy savings, Solar Energy, 62(3), 169–175. doi: 10.1016/S0038-092X(98)00015-2
  • Gago, E. J. Muneer, T. Knez, M. ve Köster, H. (2015) Natural light controls and guides in buildings. Energy saving for electrical lighting, reduction of cooling load, Renewable and Sustainable Energy Reviews, 41, 1–13. doi: 10.1016/J.RSER.2014.08.002
  • Ghosh, R. Baker, M. B. ve Lopez, R. (2010) Optical properties and aging of gasochromic WO3, Thin Solid Films, 518(8), 2247–2249. doi: 10.1016/J.TSF.2009.08.003
  • Goia, F. Zinzi, M. Carnielo, E. ve Serra, V. (2015) Spectral and angular solar properties of a PCM-filled double glazing unit, Energy and Buildings, 87, 302–312. doi: 10.1016/J.ENBUILD.2014.11.019
  • Granqvist, C. G. (2014a) Electrochromics for smart windows: Oxide-based thin films and devices, Thin Solid Films, 564, 1–38. doi:10.1016/J.TSF.2014.02.002
  • Granqvist, C. G. (2014b) Oxide-based chromogenic coatings and devices for energy efficient fenestration: Brief survey and update on thermochromics and electrochromics, Journal of Vacuum Science & Technology B, Nanotechnology and Microelectronics: Materials, Processing, Measurement, and Phenomena, 32(6), 060801. doi: 10.1116/1.4896489
  • Hasnain, S. M. (1998) Review on sustainable thermal energy storage technologies, Part I:heat storage materials and techniques, Energy Conversion and Management, 39(11), 1127–1138. doi: 10.1016/S0196-8904(98)00025-9
  • Heiselberg, P. (1994) Draught risk from cold vertical surfaces, Building and Environment, 29(3), 297–301. doi:10.1016/0360-1323(94)90026-4
  • Hien, W. N. Liping, W. Chandra, A. N. Pandey, A. R. ve Xiaolin, W. (2005) Effects of double glazed facade on energy consumption, thermal comfort and condensation for a typical office building in Singapore, Energy and Buildings, 37(6), 563–572. doi: 10.1016/J.ENBUILD.2004.08.004
  • Iqbal, I. ve Al-Homoud, M. S. (2007) Parametric analysis of alternative energy conservation measures in an office building in hot and humid climate, Building and Environment, 42(5), 2166–2177. doi: 10.1016/J.BUILDENV.2006.04.011
  • Jelle, B. P. Gustavsen, A. Nilsen, T. N. ve Jacobsen, T. (2007) Solar material protection factor (SMPF) and solar skin protection factor (SSPF) for window panes and other glass structures in buildings, Solar Energy Materials and Solar Cells, 91(4), 342–354. doi: 10.1016/J.SOLMAT.2006.10.017
  • Jelle, B. P. Hynd, A. Gustavsen, A. Arasteh, D. Goudey, H. ve diğ. (2012) Fenestration of today and tomorrow: A state-of-the-art review and future research opportunities, Solar Energy Materials and Solar Cells, 96, 1–28. doi: 10.1016/J.SOLMAT.2011.08.010
  • Karlsson, J. Karlsson, B. ve Roos, A. (2001) A simple model for assessing the energy performance of windows, Energy and Buildings, 33(7), 641–651. doi:10.1016/S0378-7788(00)00131-6
  • Krarti, M. Erickson, P. M. and Hillman, T. C. (2005) A simplified method to estimate energy savings of artificial lighting use from daylighting, Building and Environment, 40(6), 747–754. doi: 10.1016/J.BUILDENV.2004.08.007
  • Lampert, C. M. (1993) Optical switching technology for glazings, Thin Solid Films, 236(1–2), 6–13. doi: 10.1016/0040-6090(93)90633-Z
  • Lemarchand, P. Doran, J. ve Norton, B. (2014) Smart Switchable Technologies for Glazing and Photovoltaic Applications, Energy Procedia, 57, 1878–1887. doi: 10.1016/J.EGYPRO.2014.10.052
  • Li, D. H. ve Lam, J. C. (2000) Measurements of solar radiation and illuminance on vertical surfaces and daylighting implications, Renewable Energy, 20(4), 389–404. doi: 10.1016/S0960-1481(99)00126-3
  • Li, D. H. W. Lam, T. N. T. Chan, W. W. H. and Mak, A. H. L. (2009) Energy and cost analysis of semi-transparent photovoltaic in office buildings, Applied Energy, 86(5), 722– 729. doi:10.1016/J.APENERGY.2008.08.009
  • Li, D. H. W. Lau, C. C. S. ve Lam, J. C. (2005) Predicting daylight illuminance on inclined surfaces using sky luminance data, Energy, 30(9), 1649–1665. doi: 10.1016/J.ENERGY.2004.04.038
  • Lien, A. G. Hestnes, A. G. ve Aschehoug, Ø. (1997) The use of transparent insulation in low energy dwellings in cold climates, Solar Energy, 59(1–3), 27–35. doi: 10.1016/S0038-092X(96)00120-X
  • Llordés, A. Garcia, G. Gazquez, J. ve Milliron, D. J. (2013) Tunable near-infrared and visible-light transmittance in nanocrystal-in-glass composites, Nature, 500(7462), 323– 326. doi: 10.1038/nature12398
  • Long, L. ve Ye, H. (2014) How to be smart and energy efficient: A general discussion on thermochromic windows, Scientific reports, 4, 6427.
  • Maccari, A. ve Zinzi, M. (2000) Simplified algorithms for the Italian energy rating scheme for fenestration in residential buildings, Solar Energy, 69, 75–92. doi: 10.1016/S0038-092X(01)00045-7
  • Manz, H. ve Menti, U.-P. (2012) Energy performance of glazings in European climates, Renewable Energy, 37(1), 226–232. doi: 10.1016/J.RENENE.2011.06.016
  • Miyazaki, T. Akisawa, A. ve Kashiwagi, T. (2005) Energy savings of office buildings by the use of semi-transparent solar cells for windows, Renewable Energy, 30(3), 281–304. doi: 10.1016/J.RENENE.2004.05.010
  • Mukherjee, S. Hsieh, W. L. Smith, N. Goulding, M. ve Heikenfeld, J. (2015) Electrokinetic pixels with biprimary inks for color displays and color-temperature-tunable smart windows, Applied Optics, 54(17), 5603. doi: 10.1364/AO.54.005603
  • Norton, B. Eames, P. C. Mallick, T. K. Huang, M. J. McCormack, S. J. ve diğ. (2011) Enhancing the performance of building integrated photovoltaics, Solar Energy, 85(8), 1629–1664. doi: 10.1016/J.SOLENER.2009.10.004
  • Olivieri, L. Caamaño-Martín, E. Moralejo-Vázquez, F. J. Martín-Chivelet, N. Olivieri, F. ve diğ. (2014) Energy saving potential of semi-transparent photovoltaic elements for building integration, Energy. doi: 10.1016/j.energy.2014.08.054
  • Parkin, I. P. ve Manning, T. D. (2006) Intelligent Thermochromic Windows, Journal of Chemical Education, 83(3), 393. doi: 10.1021/ed083p393
  • Rezaei, S. D. Shannigrahi, S. ve Ramakrishna, S. (2017) A review of conventional, advanced, and smart glazing technologies and materials for improving indoor environment, Solar Energy Materials and Solar Cells, 159, 26–51. doi: 10.1016/J.SOLMAT.2016.08.026
  • Roos, A. ve Karlsson, B. (1994) Optical and thermal characterization of multiple glazed windows with low U-values, Solar Energy, 52(4), 315–325. doi:10.1016/0038-092X(94)90138-4
  • Rudolph, S. E. Dieckmann, J. ve Brodrick, J. (2009) Technologies for smart windows, ASHRAE Journal, 51(7), 104–106. Retrieved from https://www.scopus.com/inward/record.uri?eid=2-s2.0-69749088341&partnerID=40&md5=498818b186eeba0f27a763bcdef485ad
  • Shian, S. ve Clarke, D. R. (2016). Electrically tunable window device, Optics Letters, 41(6), 1289. doi: 10.1364/OL.41.001289
  • Skandalos, N. ve Karamanis, D. (2015) PV glazing technologies, Renewable and Sustainable Energy Reviews. doi: 10.1016/j.rser.2015.04.145
  • Skandalos, N. ve Karamanis, D. (2016) Investigation of thermal performance of semitransparent PV technologies, Energy and Buildings. doi: 10.1016/j.enbuild.2016.04.072
  • Smith, G. B. ve Granqvist, C. G. Green Nanotechnology: Solutions for Sustainability and Energy in the Built Environment (CRC, Boca Raton, FL, 2010), Google Scholar.
  • Stegou-Sagia, A. Antonopoulos, K. Angelopoulou, C. ve Kotsiovelos, G. (2007) The impact of glazing on energy consumption and comfort, Energy Conversion and Management, 48(11), 2844–2852. doi: 10.1016/J.ENCONMAN.2007.07.005
  • Tuchinda, C. Srivannaboon, S. ve Lim, H. W. (2006) Photoprotection by window glass, automobile glass, and sunglasses, Journal of the American Academy of Dermatology, 54(5), 845–854. doi: 10.1016/J.JAAD.2005.11.1082
  • Wittwer, V. Datz, M. Ell, J. Georg, A. Graf, W. ve diğ. (2004) Gasochromic windows, Solar Energy Materials and Solar Cells, 84(1–4), 305–314. doi: 10.1016/J.SOLMAT.2004.01.040
  • Yohanis, Y. G. ve Norton, B. (1999) Utilization factor for building solar-heat gain for use in a simplified energy model, Applied Energy, 63(4), 227–239. doi: 10.1016/S0306-2619(99)00032-X
  • Zhang, W. Lu, L. Peng, J. ve Song, A. (2016) Comparison of the overall energy performance of semi-transparent photovoltaic windows and common energy-efficient windows in Hong Kong, Energy and Buildings. doi: 10.1016/j.enbuild.2016.07.016
  • Zhou, X. ve Milbrandt, R. (2014) Demonstration with Energy Assessments of Thermochromic Window Systems., ASHRAE Transactions, 120(1), 330–339. Retrieved fromhttp://search.ebscohost.com/login.aspx?direct=true&db=a9h&AN=96045434&site=eds-live&authtype=ip,uid

Sustainable and Environmental Friendly Window and Glass Technologies for Energy Efficient Buildings: Recent Developments and Applications

Yıl 2019, Cilt: 24 Sayı: 3, 503 - 522, 31.12.2019
https://doi.org/10.17482/uumfd.562173

Öz

This study presents a comprehensive analysis of sustainable and environmentally friendly
window and glass technologies developed for energy efficient low / zero carbon buildings. The new
generation of window and glass technologies are examined over the basic performance criteria such as
average heat transfer coefficient (U-value), solar heat gain coefficient, visible light transmission
coefficient, thermal comfort, cost and commercialization potential. As the windows are responsible for the approximate % 60 of heat loss from the building's shell, the works are mostly concentrated on the
development of products with high thermal resistance. In this context, vacuum glass technology reveals
quite optimistic results. Vacuum glasses have U values below 0.50 W/m2
K. This value is in the range of
2.00-2.70 W/m2
K in air or argon filled multi-layered classical window technologies. Thermal resistance
photovoltaic glass applications (TRPVG) provide a U value of about 1.19 W/m2
K. And thus, it provides
twice as good thermal insulation compared to double-layer glass, and allows the production of
approximately 100 W of electricity per m2
. Low-e glasses play a key role in the efficient minimization of
window-based thermal losses in harsh climatic conditions. Although aerogel glasses affect visual quality,
it is a very impressive technology because it offers a unique thermal resistance at a limited wall thickness. 

Proje Numarası

216M531

Kaynakça

  • Baetens, R. Jelle, B. P. ve Gustavsen, A. (2010a) Phase change materials for building applications: A state-of-the-art review, Energy and Buildings, 42(9), 1361–1368. doi: 10.1016/J.ENBUILD.2010.03.026
  • Baetens, R. Jelle, B. P. ve Gustavsen, A. (2010b) Properties, requirements and possibilities of smart windows for dynamic daylight and solar energy control in buildings: A state-ofthe-art review, Solar Energy Materials and Solar Cells, 94(2), 87–105. doi: 10.1016/J.SOLMAT.2009.08.021
  • Bansal, N. K. Garg, S. N. Lugani, N. ve Bhandari, M. S. (1994) Determination of glazing area in direct gain systems for three different climatic zones, Solar Energy, 53(1), 81–90. doi: 10.1016/S0038-092X(94)90608-4
  • Carlos, J. S. Corvacho, H. Silva, P. D. ve Castro-Gomes, J. P. (2010) Real climate experimental study of two double window systems with preheating of ventilation air, Energy and Buildings, 42(6), 928–934. doi: 10.1016/J.ENBUILD.2010.01.003
  • Casini, M. (2018) Active dynamic windows for buildings: A review, Renewable Energy. doi: 10.1016/j.renene.2017.12.049
  • Chae, Y. T. Kim, J. Park, H. ve Shin, B. (2014) Building energy performance evaluation of building integrated photovoltaic (BIPV) window with semi-transparent solar cells, Applied Energy. doi: 10.1016/j.apenergy.2014.04.106
  • Chaiyapinunt, S. Phueakphongsuriya, B. Mongkornsaksit, K. ve Khomporn, N. (2005) Performance rating of glass windows and glass windows with films in aspect of thermal comfort and heat transmission, Energy and Buildings, 37(7), 725–738. doi: 10.1016/J.ENBUILD.2004.10.008
  • Chen, X. Lv, Q. ve Yi, X. (2012) Smart window coating based on nanostructured VO2 thin film, Optik - International Journal for Light and Electron Optics, 123(13), 1187–1189. doi: 10.1016/J.IJLEO.2011.07.048
  • Chow, T. Li, C. ve Lin, Z. (2010) Innovative solar windows for cooling-demand climate, Solar Energy Materials and Solar Cells, 94(2), 212–220. doi: 10.1016/J.SOLMAT.2009.09.004
  • Cuce, E. (2014) Development of innovative window and fabric technologies for low-carbon buildings, Ph.D. Thesis, The University of Nottingham, 2014.
  • Cuce, E. (2018) Accurate and reliable U-value assessment of argon-filled double glazed windows: A numerical and experimental investigation, Energy and Buildings, 171, 100– 106. doi: 10.1016/J.ENBUILD.2018.04.036
  • Cuce, E. Besir, A. B. ve Cuce, P. M. (2018) Low/Zero-Carbon Buildings for a Sustainable Future, Low Carbon Transition - Technical, Economic and Policy Assessment: Low Carbon Transition - Technical, Economic and Policy Assessment, InTech. doi: 10.5772/intechopen.74540
  • Cuce, E. ve Cuce, P. M. (2018) Smart retrofit solutions of buildings toward a low carbon world, Energy Research Journal, 9, 78–87. doi.org/ 10.3844/erjsp.2018.78.87
  • Cuce, E. ve Cuce, P. M. (2013) A comprehensive review on solar cookers, Applied Energy, 102, 1399–1421. doi: 10.1016/J.APENERGY.2012.09.002
  • Cuce, E. ve Cuce, P. M. (2017) Solar Pond Window Technology for Energy-Efficient Retrofitting of Buildings: An Experimental and Numerical Investigation, Arabian Journal for Science and Engineering, 42(5), 1909–1916. doi: 10.1007/s13369-016-2375-0
  • Cuce, E. ve Cuce, P. M. (2019) Optimised thermal insulation performance of a novel photovoltaic (PV) glazing technology called TRPVG through a comprehensive CFD research: An experimental validation, Energy Reports, 5, 1185–1195. doi.org/10.1016/j.egyr.2019.08.046
  • Cuce, E. Cuce, P. M. ve Young, C. H. (2016) Energy saving potential of heat insulation solar glass: Key results from laboratory and in-situ testing, Energy. doi: 10.1016/j.energy.2015.12.134
  • Cuce, E. ve Riffat, S. B. (2015) A state-of-the-art review on innovative glazing technologies, Renewable and Sustainable Energy Reviews. doi: 10.1016/j.rser.2014.08.084
  • Cupelli, D. Nicoletta, F. P. Manfredi, S. Filpo, G. De ve Chidichimo, G. (2009) Electrically switchable chromogenic materials for external glazing, Solar Energy Materials and Solar Cells, 93(3), 329–333. doi: 10.1016/J.SOLMAT.2008.11.010
  • Delalat, F. Ranjbar, M. ve Salamati, H. (2016) Blue colloidal nanoparticles of molybdenum oxide by simple anodizing method: decolorization by PdCl2 and observation of in-liquid gasochromic coloration, Solar Energy Materials and Solar Cells, 144, 165–172. doi: 10.1016/J.SOLMAT.2015.08.038
  • Demirbas, M. F. (2006) Thermal Energy Storage and Phase Change Materials: An Overview, Energy Sources, Part B: Economics, Planning, and Policy, 1(1), 85–95. doi: 10.1080/009083190881481
  • Duer, K. Svendsen, S. Moller Mogensen, M. ve Birck Laustsen, J. (2002) Energy labelling of glazings and windows in Denmark: calculated and measured values, Solar Energy, 73(1), 23–31. doi: 10.1016/S0038-092X(02)00031-2
  • Fanger, P. O. Thermal Comfort, Analysis ve Application in Environmental Engineering, Danish Technical Press, Copenhagen, Denmark, 1970, .
  • Farid, M. M. Khudhair, A. M. Razack, S. A. K. ve Al-Hallaj, S. (2004) A review on phase change energy storage: materials and applications, Energy Conversion and Management, 45(9–10), 1597–1615. doi: 10.1016/J.ENCONMAN.2003.09.015
  • Feuermann, D. ve Novoplansky, A. (1998) Reversible low solar heat gain windows for energy savings, Solar Energy, 62(3), 169–175. doi: 10.1016/S0038-092X(98)00015-2
  • Gago, E. J. Muneer, T. Knez, M. ve Köster, H. (2015) Natural light controls and guides in buildings. Energy saving for electrical lighting, reduction of cooling load, Renewable and Sustainable Energy Reviews, 41, 1–13. doi: 10.1016/J.RSER.2014.08.002
  • Ghosh, R. Baker, M. B. ve Lopez, R. (2010) Optical properties and aging of gasochromic WO3, Thin Solid Films, 518(8), 2247–2249. doi: 10.1016/J.TSF.2009.08.003
  • Goia, F. Zinzi, M. Carnielo, E. ve Serra, V. (2015) Spectral and angular solar properties of a PCM-filled double glazing unit, Energy and Buildings, 87, 302–312. doi: 10.1016/J.ENBUILD.2014.11.019
  • Granqvist, C. G. (2014a) Electrochromics for smart windows: Oxide-based thin films and devices, Thin Solid Films, 564, 1–38. doi:10.1016/J.TSF.2014.02.002
  • Granqvist, C. G. (2014b) Oxide-based chromogenic coatings and devices for energy efficient fenestration: Brief survey and update on thermochromics and electrochromics, Journal of Vacuum Science & Technology B, Nanotechnology and Microelectronics: Materials, Processing, Measurement, and Phenomena, 32(6), 060801. doi: 10.1116/1.4896489
  • Hasnain, S. M. (1998) Review on sustainable thermal energy storage technologies, Part I:heat storage materials and techniques, Energy Conversion and Management, 39(11), 1127–1138. doi: 10.1016/S0196-8904(98)00025-9
  • Heiselberg, P. (1994) Draught risk from cold vertical surfaces, Building and Environment, 29(3), 297–301. doi:10.1016/0360-1323(94)90026-4
  • Hien, W. N. Liping, W. Chandra, A. N. Pandey, A. R. ve Xiaolin, W. (2005) Effects of double glazed facade on energy consumption, thermal comfort and condensation for a typical office building in Singapore, Energy and Buildings, 37(6), 563–572. doi: 10.1016/J.ENBUILD.2004.08.004
  • Iqbal, I. ve Al-Homoud, M. S. (2007) Parametric analysis of alternative energy conservation measures in an office building in hot and humid climate, Building and Environment, 42(5), 2166–2177. doi: 10.1016/J.BUILDENV.2006.04.011
  • Jelle, B. P. Gustavsen, A. Nilsen, T. N. ve Jacobsen, T. (2007) Solar material protection factor (SMPF) and solar skin protection factor (SSPF) for window panes and other glass structures in buildings, Solar Energy Materials and Solar Cells, 91(4), 342–354. doi: 10.1016/J.SOLMAT.2006.10.017
  • Jelle, B. P. Hynd, A. Gustavsen, A. Arasteh, D. Goudey, H. ve diğ. (2012) Fenestration of today and tomorrow: A state-of-the-art review and future research opportunities, Solar Energy Materials and Solar Cells, 96, 1–28. doi: 10.1016/J.SOLMAT.2011.08.010
  • Karlsson, J. Karlsson, B. ve Roos, A. (2001) A simple model for assessing the energy performance of windows, Energy and Buildings, 33(7), 641–651. doi:10.1016/S0378-7788(00)00131-6
  • Krarti, M. Erickson, P. M. and Hillman, T. C. (2005) A simplified method to estimate energy savings of artificial lighting use from daylighting, Building and Environment, 40(6), 747–754. doi: 10.1016/J.BUILDENV.2004.08.007
  • Lampert, C. M. (1993) Optical switching technology for glazings, Thin Solid Films, 236(1–2), 6–13. doi: 10.1016/0040-6090(93)90633-Z
  • Lemarchand, P. Doran, J. ve Norton, B. (2014) Smart Switchable Technologies for Glazing and Photovoltaic Applications, Energy Procedia, 57, 1878–1887. doi: 10.1016/J.EGYPRO.2014.10.052
  • Li, D. H. ve Lam, J. C. (2000) Measurements of solar radiation and illuminance on vertical surfaces and daylighting implications, Renewable Energy, 20(4), 389–404. doi: 10.1016/S0960-1481(99)00126-3
  • Li, D. H. W. Lam, T. N. T. Chan, W. W. H. and Mak, A. H. L. (2009) Energy and cost analysis of semi-transparent photovoltaic in office buildings, Applied Energy, 86(5), 722– 729. doi:10.1016/J.APENERGY.2008.08.009
  • Li, D. H. W. Lau, C. C. S. ve Lam, J. C. (2005) Predicting daylight illuminance on inclined surfaces using sky luminance data, Energy, 30(9), 1649–1665. doi: 10.1016/J.ENERGY.2004.04.038
  • Lien, A. G. Hestnes, A. G. ve Aschehoug, Ø. (1997) The use of transparent insulation in low energy dwellings in cold climates, Solar Energy, 59(1–3), 27–35. doi: 10.1016/S0038-092X(96)00120-X
  • Llordés, A. Garcia, G. Gazquez, J. ve Milliron, D. J. (2013) Tunable near-infrared and visible-light transmittance in nanocrystal-in-glass composites, Nature, 500(7462), 323– 326. doi: 10.1038/nature12398
  • Long, L. ve Ye, H. (2014) How to be smart and energy efficient: A general discussion on thermochromic windows, Scientific reports, 4, 6427.
  • Maccari, A. ve Zinzi, M. (2000) Simplified algorithms for the Italian energy rating scheme for fenestration in residential buildings, Solar Energy, 69, 75–92. doi: 10.1016/S0038-092X(01)00045-7
  • Manz, H. ve Menti, U.-P. (2012) Energy performance of glazings in European climates, Renewable Energy, 37(1), 226–232. doi: 10.1016/J.RENENE.2011.06.016
  • Miyazaki, T. Akisawa, A. ve Kashiwagi, T. (2005) Energy savings of office buildings by the use of semi-transparent solar cells for windows, Renewable Energy, 30(3), 281–304. doi: 10.1016/J.RENENE.2004.05.010
  • Mukherjee, S. Hsieh, W. L. Smith, N. Goulding, M. ve Heikenfeld, J. (2015) Electrokinetic pixels with biprimary inks for color displays and color-temperature-tunable smart windows, Applied Optics, 54(17), 5603. doi: 10.1364/AO.54.005603
  • Norton, B. Eames, P. C. Mallick, T. K. Huang, M. J. McCormack, S. J. ve diğ. (2011) Enhancing the performance of building integrated photovoltaics, Solar Energy, 85(8), 1629–1664. doi: 10.1016/J.SOLENER.2009.10.004
  • Olivieri, L. Caamaño-Martín, E. Moralejo-Vázquez, F. J. Martín-Chivelet, N. Olivieri, F. ve diğ. (2014) Energy saving potential of semi-transparent photovoltaic elements for building integration, Energy. doi: 10.1016/j.energy.2014.08.054
  • Parkin, I. P. ve Manning, T. D. (2006) Intelligent Thermochromic Windows, Journal of Chemical Education, 83(3), 393. doi: 10.1021/ed083p393
  • Rezaei, S. D. Shannigrahi, S. ve Ramakrishna, S. (2017) A review of conventional, advanced, and smart glazing technologies and materials for improving indoor environment, Solar Energy Materials and Solar Cells, 159, 26–51. doi: 10.1016/J.SOLMAT.2016.08.026
  • Roos, A. ve Karlsson, B. (1994) Optical and thermal characterization of multiple glazed windows with low U-values, Solar Energy, 52(4), 315–325. doi:10.1016/0038-092X(94)90138-4
  • Rudolph, S. E. Dieckmann, J. ve Brodrick, J. (2009) Technologies for smart windows, ASHRAE Journal, 51(7), 104–106. Retrieved from https://www.scopus.com/inward/record.uri?eid=2-s2.0-69749088341&partnerID=40&md5=498818b186eeba0f27a763bcdef485ad
  • Shian, S. ve Clarke, D. R. (2016). Electrically tunable window device, Optics Letters, 41(6), 1289. doi: 10.1364/OL.41.001289
  • Skandalos, N. ve Karamanis, D. (2015) PV glazing technologies, Renewable and Sustainable Energy Reviews. doi: 10.1016/j.rser.2015.04.145
  • Skandalos, N. ve Karamanis, D. (2016) Investigation of thermal performance of semitransparent PV technologies, Energy and Buildings. doi: 10.1016/j.enbuild.2016.04.072
  • Smith, G. B. ve Granqvist, C. G. Green Nanotechnology: Solutions for Sustainability and Energy in the Built Environment (CRC, Boca Raton, FL, 2010), Google Scholar.
  • Stegou-Sagia, A. Antonopoulos, K. Angelopoulou, C. ve Kotsiovelos, G. (2007) The impact of glazing on energy consumption and comfort, Energy Conversion and Management, 48(11), 2844–2852. doi: 10.1016/J.ENCONMAN.2007.07.005
  • Tuchinda, C. Srivannaboon, S. ve Lim, H. W. (2006) Photoprotection by window glass, automobile glass, and sunglasses, Journal of the American Academy of Dermatology, 54(5), 845–854. doi: 10.1016/J.JAAD.2005.11.1082
  • Wittwer, V. Datz, M. Ell, J. Georg, A. Graf, W. ve diğ. (2004) Gasochromic windows, Solar Energy Materials and Solar Cells, 84(1–4), 305–314. doi: 10.1016/J.SOLMAT.2004.01.040
  • Yohanis, Y. G. ve Norton, B. (1999) Utilization factor for building solar-heat gain for use in a simplified energy model, Applied Energy, 63(4), 227–239. doi: 10.1016/S0306-2619(99)00032-X
  • Zhang, W. Lu, L. Peng, J. ve Song, A. (2016) Comparison of the overall energy performance of semi-transparent photovoltaic windows and common energy-efficient windows in Hong Kong, Energy and Buildings. doi: 10.1016/j.enbuild.2016.07.016
  • Zhou, X. ve Milbrandt, R. (2014) Demonstration with Energy Assessments of Thermochromic Window Systems., ASHRAE Transactions, 120(1), 330–339. Retrieved fromhttp://search.ebscohost.com/login.aspx?direct=true&db=a9h&AN=96045434&site=eds-live&authtype=ip,uid
Toplam 66 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Mühendislik
Bölüm Derleme Makaleler
Yazarlar

Ayşe Pınar Mert Cüce 0000-0002-6522-7092

Tamer Güçlü Bu kişi benim 0000-0002-5864-3864

Ahmet Burhaneddin Beşir Bu kişi benim 0000-0002-2496-0001

Erdem Cuce 0000-0003-0150-4705

Proje Numarası 216M531
Yayımlanma Tarihi 31 Aralık 2019
Gönderilme Tarihi 9 Mayıs 2019
Kabul Tarihi 27 Eylül 2019
Yayımlandığı Sayı Yıl 2019 Cilt: 24 Sayı: 3

Kaynak Göster

APA Mert Cüce, A. P., Güçlü, T., Beşir, A. B., Cuce, E. (2019). ENERJİ VERİMLİ BİNALAR İÇİN SÜRDÜRÜLEBİLİR VE ÇEVRE DOSTU PENCERE VE CAM TEKNOLOJİLERİ: SON GELİŞMELER VE UYGULAMALAR. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi, 24(3), 503-522. https://doi.org/10.17482/uumfd.562173
AMA Mert Cüce AP, Güçlü T, Beşir AB, Cuce E. ENERJİ VERİMLİ BİNALAR İÇİN SÜRDÜRÜLEBİLİR VE ÇEVRE DOSTU PENCERE VE CAM TEKNOLOJİLERİ: SON GELİŞMELER VE UYGULAMALAR. UUJFE. Aralık 2019;24(3):503-522. doi:10.17482/uumfd.562173
Chicago Mert Cüce, Ayşe Pınar, Tamer Güçlü, Ahmet Burhaneddin Beşir, ve Erdem Cuce. “ENERJİ VERİMLİ BİNALAR İÇİN SÜRDÜRÜLEBİLİR VE ÇEVRE DOSTU PENCERE VE CAM TEKNOLOJİLERİ: SON GELİŞMELER VE UYGULAMALAR”. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi 24, sy. 3 (Aralık 2019): 503-22. https://doi.org/10.17482/uumfd.562173.
EndNote Mert Cüce AP, Güçlü T, Beşir AB, Cuce E (01 Aralık 2019) ENERJİ VERİMLİ BİNALAR İÇİN SÜRDÜRÜLEBİLİR VE ÇEVRE DOSTU PENCERE VE CAM TEKNOLOJİLERİ: SON GELİŞMELER VE UYGULAMALAR. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi 24 3 503–522.
IEEE A. P. Mert Cüce, T. Güçlü, A. B. Beşir, ve E. Cuce, “ENERJİ VERİMLİ BİNALAR İÇİN SÜRDÜRÜLEBİLİR VE ÇEVRE DOSTU PENCERE VE CAM TEKNOLOJİLERİ: SON GELİŞMELER VE UYGULAMALAR”, UUJFE, c. 24, sy. 3, ss. 503–522, 2019, doi: 10.17482/uumfd.562173.
ISNAD Mert Cüce, Ayşe Pınar vd. “ENERJİ VERİMLİ BİNALAR İÇİN SÜRDÜRÜLEBİLİR VE ÇEVRE DOSTU PENCERE VE CAM TEKNOLOJİLERİ: SON GELİŞMELER VE UYGULAMALAR”. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi 24/3 (Aralık 2019), 503-522. https://doi.org/10.17482/uumfd.562173.
JAMA Mert Cüce AP, Güçlü T, Beşir AB, Cuce E. ENERJİ VERİMLİ BİNALAR İÇİN SÜRDÜRÜLEBİLİR VE ÇEVRE DOSTU PENCERE VE CAM TEKNOLOJİLERİ: SON GELİŞMELER VE UYGULAMALAR. UUJFE. 2019;24:503–522.
MLA Mert Cüce, Ayşe Pınar vd. “ENERJİ VERİMLİ BİNALAR İÇİN SÜRDÜRÜLEBİLİR VE ÇEVRE DOSTU PENCERE VE CAM TEKNOLOJİLERİ: SON GELİŞMELER VE UYGULAMALAR”. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi, c. 24, sy. 3, 2019, ss. 503-22, doi:10.17482/uumfd.562173.
Vancouver Mert Cüce AP, Güçlü T, Beşir AB, Cuce E. ENERJİ VERİMLİ BİNALAR İÇİN SÜRDÜRÜLEBİLİR VE ÇEVRE DOSTU PENCERE VE CAM TEKNOLOJİLERİ: SON GELİŞMELER VE UYGULAMALAR. UUJFE. 2019;24(3):503-22.

DUYURU:

30.03.2021- Nisan 2021 (26/1) sayımızdan itibaren TR-Dizin yeni kuralları gereği, dergimizde basılacak makalelerde, ilk gönderim aşamasında Telif Hakkı Formu yanısıra, Çıkar Çatışması Bildirim Formu ve Yazar Katkısı Bildirim Formu da tüm yazarlarca imzalanarak gönderilmelidir. Yayınlanacak makalelerde de makale metni içinde "Çıkar Çatışması" ve "Yazar Katkısı" bölümleri yer alacaktır. İlk gönderim aşamasında doldurulması gereken yeni formlara "Yazım Kuralları" ve "Makale Gönderim Süreci" sayfalarımızdan ulaşılabilir. (Değerlendirme süreci bu tarihten önce tamamlanıp basımı bekleyen makalelerin yanısıra değerlendirme süreci devam eden makaleler için, yazarlar tarafından ilgili formlar doldurularak sisteme yüklenmelidir).  Makale şablonları da, bu değişiklik doğrultusunda güncellenmiştir. Tüm yazarlarımıza önemle duyurulur.

Bursa Uludağ Üniversitesi, Mühendislik Fakültesi Dekanlığı, Görükle Kampüsü, Nilüfer, 16059 Bursa. Tel: (224) 294 1907, Faks: (224) 294 1903, e-posta: mmfd@uludag.edu.tr