The aim of this study is to analyze the contractile behavior of frog gastrocnemius muscle (also known as plantaris longus) via a computational model based on the finite element method (FEM). Therefore, a physical reality simulation scenario which is based on the finite element method has been generated. The finite element model developed within the scenario uses the theory of distributed-moments in order to study the effect of the angular alignment of the aponeurosis sheet covering the muscle on the total contractile force. By the way, in order to investigate the effect of fiber alignment, fibers have been typified two distinct fiber architectures, as the uniaxial and fusiform ones and the effect of different architecture type on the developed force and convergence was studied. The physical reality simulation outputs have been compared with the real frog muscle force responses that has been obtained in the laboratory condition. Results indicate that both the choice of fiber architecture as well as the aponeurosis alignment and position have important consequences in terms of the computed muscle force as well was the numerical stability of the model and the muscle model used in this work is compatible to use for three-dimensional muscle modelling.
Finite element method contractile mechanics aponeurosis fiber architecture fiber-reinforced composites
Bu çalışmada, kurbağa gastrocnemius (plantaris longus olarak da bilinmektedir) kasının sayısal modelini oluşturarak sonlu elemanlar yöntemi (SEY) ile kasılma davranışı incelenmiştir. Bu amaçla sonlu elemanlar yöntemi ile çalışan bir fiziksel gerçeklik benzetim senaryosu oluşturulmuştur. Bu senaryo dahilinde, çapraz-bağ kinetik modelini dağıtık-moment yaklaşımını kullanarak çözen sonlu elemanlar yöntemi ile oluşturulmuş kas modeli, kas üzerinde ince bir zar şeklinde bulunan aponevroz örtüsünün açısal yerleşiminin, kasılma sonucunda oluşan toplam çekme kuvveti üzerindeki etkisini incelemek üzere kullanılmıştır. Bununla birlikte, kas modelinde lif yöneliminin etkisinin incelenmesi amacıyla yönelim eksenel (sabit eksen yönünde) ve fusiform (kas geometrisini takip eden) olarak iki tipte örneklenerek üretilen çekme kuvveti ve yakınsama üzerindeki etkileri değerlendirilmiştir. Ayrıca, elde edilen veriler, gerçek bir kurbağa kasından laboratuvar ortamında elde edilmiş verilerle karşılaştırılmıştır. Sonuç olarak, aponevroz örtüsünün şeklinin ve lif yöneliminin kas modeli üzerinde üretilen çekme kuvveti ve yakınsama özellikleri bakımından ayırt edici ve önemli etkileri olduğu deneyimlenmiş, kullanılan modelin 3 boyutlu kas modellemesine uygun olabileceği görülmüştür.
Sonlu elemanlar yöntemi kasılma mekaniği aponevroz lif mimarisi lif-takviyeli kompozit
Birincil Dil | Türkçe |
---|---|
Konular | Makine Mühendisliği |
Bölüm | Araştırma Makaleleri |
Yazarlar | |
Yayımlanma Tarihi | 31 Aralık 2021 |
Gönderilme Tarihi | 20 Şubat 2021 |
Kabul Tarihi | 31 Ağustos 2021 |
Yayımlandığı Sayı | Yıl 2021 Cilt: 26 Sayı: 3 |
DUYURU:
30.03.2021- Nisan 2021 (26/1) sayımızdan itibaren TR-Dizin yeni kuralları gereği, dergimizde basılacak makalelerde, ilk gönderim aşamasında Telif Hakkı Formu yanısıra, Çıkar Çatışması Bildirim Formu ve Yazar Katkısı Bildirim Formu da tüm yazarlarca imzalanarak gönderilmelidir. Yayınlanacak makalelerde de makale metni içinde "Çıkar Çatışması" ve "Yazar Katkısı" bölümleri yer alacaktır. İlk gönderim aşamasında doldurulması gereken yeni formlara "Yazım Kuralları" ve "Makale Gönderim Süreci" sayfalarımızdan ulaşılabilir. (Değerlendirme süreci bu tarihten önce tamamlanıp basımı bekleyen makalelerin yanısıra değerlendirme süreci devam eden makaleler için, yazarlar tarafından ilgili formlar doldurularak sisteme yüklenmelidir). Makale şablonları da, bu değişiklik doğrultusunda güncellenmiştir. Tüm yazarlarımıza önemle duyurulur.
Bursa Uludağ Üniversitesi, Mühendislik Fakültesi Dekanlığı, Görükle Kampüsü, Nilüfer, 16059 Bursa. Tel: (224) 294 1907, Faks: (224) 294 1903, e-posta: mmfd@uludag.edu.tr