Araştırma Makalesi
BibTex RIS Kaynak Göster

Effects of Aponeurosis and Fiber Alignment on The Force and Stability During Isometric Contraction of Frog Gastrocnemius

Yıl 2021, Cilt: 26 Sayı: 3, 921 - 936, 31.12.2021
https://doi.org/10.17482/uumfd.883831

Öz

The aim of this study is to analyze the contractile behavior of frog gastrocnemius muscle (also known as plantaris longus) via a computational model based on the finite element method (FEM). Therefore, a physical reality simulation scenario which is based on the finite element method has been generated. The finite element model developed within the scenario uses the theory of distributed-moments in order to study the effect of the angular alignment of the aponeurosis sheet covering the muscle on the total contractile force. By the way, in order to investigate the effect of fiber alignment, fibers have been typified two distinct fiber architectures, as the uniaxial and fusiform ones and the effect of different architecture type on the developed force and convergence was studied. The physical reality simulation outputs have been compared with the real frog muscle force responses that has been obtained in the laboratory condition. Results indicate that both the choice of fiber architecture as well as the aponeurosis alignment and position have important consequences in terms of the computed muscle force as well was the numerical stability of the model and the muscle model used in this work is compatible to use for three-dimensional muscle modelling.

Kaynakça

  • 1. Azizi, E., Brainerd, E. L., and Roberts, T. J. (2008). Variable gearing in pennate muscles. Proceedings of the National Academy of Sciences, 105(5), 1745–1750. doi:10.1073/pnas.0709212105
  • 2. Cooke, R., and Holmes, K. C. (1986). The Mechanism of Muscle Contractio. Critical Reviews in Biochemistry, 21(1), 53–118. doi:10.3109/10409238609113609
  • 3. Ebashi, S., Endo, M., and Ohtsuki, I. (1969). Control of muscle contraction. Quarterly Reviews of Biophysics, 2(4), 351–384. doi:10.1017/s0033583500001190
  • 4. Gans, C., and Bock, W. J. (1965). The functional significance of muscle architecture--a theoretical analysis. Ergebnisse der Anatomie und Entwicklungsgeschichte, 38, 115–142. PMID: 5319094
  • 5. Gielen, A. W. J, (2000). A Finite Element Approach for Skeletal Muscle using a Distributed Moment Model of Contraction. Computer Methods in Biomechanics and Biomedical Engineering, 3(3), 231–244. doi:10.1080/10255840008915267
  • 6. Gordon, A. M., Huxley, A. F., and Julian, F. J. (1966). The variation in isometric tension with sarcomere length in vertebrate muscle fibres. The Journal of Physiology, 184(1), 170–192. doi:10.1113/jphysiol.1966.sp007909
  • 7. Holzapfel, G. (2000) Nonlinear Solid Mechanics: A Continuum Approach for Engineering, Wiley.
  • 8. Holzapfel, G. A., and Ogden, R. W. (2010). Constitutive modelling of arteries. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 466(2118), 1551–1597. doi:10.1098/rspa.2010.0058
  • 9. Huijing, P. A., and Ettema, G. J. (1988). Length-force characteristics of aponeurosis in passive muscle and during isometric and slow dynamic contractions of rat gastrocnemius muscle. Acta morphologica Neerlando-Scandinavica, 26(1), 51–62. PMID:3247879
  • 10. Huijing, P.A., Woittiez, R.D. (1984) The effect of architecture on skeletal muscle performance: a simple planimetric model. Netherlands Journal of Zoology 34(1), 21–32 ISBN: 0-7360-3966-X
  • 11. Huxley, A. F. (1974). Muscular contraction. The Journal of Physiology, 243(1), 1–43. doi:10.1113/jphysiol.1974.sp010740
  • 12. Ma, S., and Zahalak, G. I. (1991). A distribution-moment model of energetics in skeletal muscle. Journal of Biomechanics, 24(1), 21–35. doi:10.1016/0021-9290(91)90323-f
  • 13. Muramatsu, T., Muraoka, T., Takeshita, D., Kawakami, Y., Hirano, Y., and Fukunaga, T. (2001). Mechanical properties of tendon and aponeurosis of human gastrocnemius muscle in vivo. Journal of Applied Physiology, 90(5), 1671–1678. doi:10.1152/jappl.2001.90.5.1671
  • 14. Ogden, R. (2013) Non-Linear Elastic Deformations, Dover Civil and Mechanical Engineering, Dover Publications
  • 15. Okyar, F., Karadag, V., Akgun, M., and Ciblak, N. (2019). Leveraging artificial neural networks to mesh frog gastrocnemius muscle from digital photography. Computer Methods in Biomechanics and Biomedical Engineering: Imaging and Visualization, 8(2), 143–151. doi:10.1080/21681163.2019.1627677
  • 16. Richards, C. T. (2011). Building a robotic link between muscle dynamics and hydrodynamics. Journal of Experimental Biology, 214(14), 2381–2389. doi:10.1242/jeb.056671
  • 17. Scott, S. H., and Winter, D. A. (1991). A comparison of three muscle pennation assumptions and their effect on isometric and isotonic force. Journal of Biomechanics, 24(2), 163–167. doi:10.1016/0021-9290(91)90361-p
  • 18. Serbest, K., and Eldoğan O. (2014). Structure and biomechanics of skeletal muscle. Academic Platform Journal of Engineering and Science, 2(3), 41–51. doi:10.5505/apjes.2014.70299
  • 19. Shan, X., Otsuka, S., Yakura, T., Naito, M., Nakano, T., and Kawakami, Y. (2019). Morphological and mechanical properties of the human triceps surae aponeuroses taken from elderly cadavers: Implications for muscle-tendon interactions. PLOS ONE, 14(2), doi:10.1371/journal.pone.0211485
  • 20. A.V. Hill, The heat of shortening and the dynamic constants of muscle. (1938). Proceedings of the Royal Society of London. Series B- Biological Sciences, 126(843), 136–195. doi:10.1098/rspb.1938.0050
  • 21. Tözeren, A. (1985). Continuum rheology of muscle contraction and its application to cardiac contractility. Biophysical Journal, 47(3), 303–309. doi:10.1016/s0006-3495(85)83920-5
  • 22. University of California, (2014). FEAP-Finite Element Analysis Program. Erişim Adresi: http://www.ce.berkeley/feap. (Erişim Tarihi:10.10.2019)
  • 23. Waugh Anne, and Grant Allison, (2014) The Nervous System. Ross and Wilson Anatomy and Physiology. Elsevier, s.144-177
  • 24. Zahalak, G. I., and Ma, S.-P. (1990). Muscle Activation and Contraction: Constitutive Relations Based Directly on Cross-Bridge Kinetics. Journal of Biomechanical Engineering, 112(1), 52–62. doi:10.1115/1.2891126

KURBAĞA BALDIRININ İZOMETRİK KASILMASINDA APONEVROZ VE LİF YÖNELİMİNİN KUVVET VE SAYISAL KARARLIK ÜZERİNDEKİ ETKİLERİ

Yıl 2021, Cilt: 26 Sayı: 3, 921 - 936, 31.12.2021
https://doi.org/10.17482/uumfd.883831

Öz

Bu çalışmada, kurbağa gastrocnemius (plantaris longus olarak da bilinmektedir) kasının sayısal modelini oluşturarak sonlu elemanlar yöntemi (SEY) ile kasılma davranışı incelenmiştir. Bu amaçla sonlu elemanlar yöntemi ile çalışan bir fiziksel gerçeklik benzetim senaryosu oluşturulmuştur. Bu senaryo dahilinde, çapraz-bağ kinetik modelini dağıtık-moment yaklaşımını kullanarak çözen sonlu elemanlar yöntemi ile oluşturulmuş kas modeli, kas üzerinde ince bir zar şeklinde bulunan aponevroz örtüsünün açısal yerleşiminin, kasılma sonucunda oluşan toplam çekme kuvveti üzerindeki etkisini incelemek üzere kullanılmıştır. Bununla birlikte, kas modelinde lif yöneliminin etkisinin incelenmesi amacıyla yönelim eksenel (sabit eksen yönünde) ve fusiform (kas geometrisini takip eden) olarak iki tipte örneklenerek üretilen çekme kuvveti ve yakınsama üzerindeki etkileri değerlendirilmiştir. Ayrıca, elde edilen veriler, gerçek bir kurbağa kasından laboratuvar ortamında elde edilmiş verilerle karşılaştırılmıştır. Sonuç olarak, aponevroz örtüsünün şeklinin ve lif yöneliminin kas modeli üzerinde üretilen çekme kuvveti ve yakınsama özellikleri bakımından ayırt edici ve önemli etkileri olduğu deneyimlenmiş, kullanılan modelin 3 boyutlu kas modellemesine uygun olabileceği görülmüştür.

Kaynakça

  • 1. Azizi, E., Brainerd, E. L., and Roberts, T. J. (2008). Variable gearing in pennate muscles. Proceedings of the National Academy of Sciences, 105(5), 1745–1750. doi:10.1073/pnas.0709212105
  • 2. Cooke, R., and Holmes, K. C. (1986). The Mechanism of Muscle Contractio. Critical Reviews in Biochemistry, 21(1), 53–118. doi:10.3109/10409238609113609
  • 3. Ebashi, S., Endo, M., and Ohtsuki, I. (1969). Control of muscle contraction. Quarterly Reviews of Biophysics, 2(4), 351–384. doi:10.1017/s0033583500001190
  • 4. Gans, C., and Bock, W. J. (1965). The functional significance of muscle architecture--a theoretical analysis. Ergebnisse der Anatomie und Entwicklungsgeschichte, 38, 115–142. PMID: 5319094
  • 5. Gielen, A. W. J, (2000). A Finite Element Approach for Skeletal Muscle using a Distributed Moment Model of Contraction. Computer Methods in Biomechanics and Biomedical Engineering, 3(3), 231–244. doi:10.1080/10255840008915267
  • 6. Gordon, A. M., Huxley, A. F., and Julian, F. J. (1966). The variation in isometric tension with sarcomere length in vertebrate muscle fibres. The Journal of Physiology, 184(1), 170–192. doi:10.1113/jphysiol.1966.sp007909
  • 7. Holzapfel, G. (2000) Nonlinear Solid Mechanics: A Continuum Approach for Engineering, Wiley.
  • 8. Holzapfel, G. A., and Ogden, R. W. (2010). Constitutive modelling of arteries. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 466(2118), 1551–1597. doi:10.1098/rspa.2010.0058
  • 9. Huijing, P. A., and Ettema, G. J. (1988). Length-force characteristics of aponeurosis in passive muscle and during isometric and slow dynamic contractions of rat gastrocnemius muscle. Acta morphologica Neerlando-Scandinavica, 26(1), 51–62. PMID:3247879
  • 10. Huijing, P.A., Woittiez, R.D. (1984) The effect of architecture on skeletal muscle performance: a simple planimetric model. Netherlands Journal of Zoology 34(1), 21–32 ISBN: 0-7360-3966-X
  • 11. Huxley, A. F. (1974). Muscular contraction. The Journal of Physiology, 243(1), 1–43. doi:10.1113/jphysiol.1974.sp010740
  • 12. Ma, S., and Zahalak, G. I. (1991). A distribution-moment model of energetics in skeletal muscle. Journal of Biomechanics, 24(1), 21–35. doi:10.1016/0021-9290(91)90323-f
  • 13. Muramatsu, T., Muraoka, T., Takeshita, D., Kawakami, Y., Hirano, Y., and Fukunaga, T. (2001). Mechanical properties of tendon and aponeurosis of human gastrocnemius muscle in vivo. Journal of Applied Physiology, 90(5), 1671–1678. doi:10.1152/jappl.2001.90.5.1671
  • 14. Ogden, R. (2013) Non-Linear Elastic Deformations, Dover Civil and Mechanical Engineering, Dover Publications
  • 15. Okyar, F., Karadag, V., Akgun, M., and Ciblak, N. (2019). Leveraging artificial neural networks to mesh frog gastrocnemius muscle from digital photography. Computer Methods in Biomechanics and Biomedical Engineering: Imaging and Visualization, 8(2), 143–151. doi:10.1080/21681163.2019.1627677
  • 16. Richards, C. T. (2011). Building a robotic link between muscle dynamics and hydrodynamics. Journal of Experimental Biology, 214(14), 2381–2389. doi:10.1242/jeb.056671
  • 17. Scott, S. H., and Winter, D. A. (1991). A comparison of three muscle pennation assumptions and their effect on isometric and isotonic force. Journal of Biomechanics, 24(2), 163–167. doi:10.1016/0021-9290(91)90361-p
  • 18. Serbest, K., and Eldoğan O. (2014). Structure and biomechanics of skeletal muscle. Academic Platform Journal of Engineering and Science, 2(3), 41–51. doi:10.5505/apjes.2014.70299
  • 19. Shan, X., Otsuka, S., Yakura, T., Naito, M., Nakano, T., and Kawakami, Y. (2019). Morphological and mechanical properties of the human triceps surae aponeuroses taken from elderly cadavers: Implications for muscle-tendon interactions. PLOS ONE, 14(2), doi:10.1371/journal.pone.0211485
  • 20. A.V. Hill, The heat of shortening and the dynamic constants of muscle. (1938). Proceedings of the Royal Society of London. Series B- Biological Sciences, 126(843), 136–195. doi:10.1098/rspb.1938.0050
  • 21. Tözeren, A. (1985). Continuum rheology of muscle contraction and its application to cardiac contractility. Biophysical Journal, 47(3), 303–309. doi:10.1016/s0006-3495(85)83920-5
  • 22. University of California, (2014). FEAP-Finite Element Analysis Program. Erişim Adresi: http://www.ce.berkeley/feap. (Erişim Tarihi:10.10.2019)
  • 23. Waugh Anne, and Grant Allison, (2014) The Nervous System. Ross and Wilson Anatomy and Physiology. Elsevier, s.144-177
  • 24. Zahalak, G. I., and Ma, S.-P. (1990). Muscle Activation and Contraction: Constitutive Relations Based Directly on Cross-Bridge Kinetics. Journal of Biomechanical Engineering, 112(1), 52–62. doi:10.1115/1.2891126
Toplam 24 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Makine Mühendisliği
Bölüm Araştırma Makaleleri
Yazarlar

Ali Fethi Okyar 0000-0002-2561-7547

Şükrü Furkan Taşdemir 0000-0003-1653-8625

Yayımlanma Tarihi 31 Aralık 2021
Gönderilme Tarihi 20 Şubat 2021
Kabul Tarihi 31 Ağustos 2021
Yayımlandığı Sayı Yıl 2021 Cilt: 26 Sayı: 3

Kaynak Göster

APA Okyar, A. F., & Taşdemir, Ş. F. (2021). KURBAĞA BALDIRININ İZOMETRİK KASILMASINDA APONEVROZ VE LİF YÖNELİMİNİN KUVVET VE SAYISAL KARARLIK ÜZERİNDEKİ ETKİLERİ. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi, 26(3), 921-936. https://doi.org/10.17482/uumfd.883831
AMA Okyar AF, Taşdemir ŞF. KURBAĞA BALDIRININ İZOMETRİK KASILMASINDA APONEVROZ VE LİF YÖNELİMİNİN KUVVET VE SAYISAL KARARLIK ÜZERİNDEKİ ETKİLERİ. UUJFE. Aralık 2021;26(3):921-936. doi:10.17482/uumfd.883831
Chicago Okyar, Ali Fethi, ve Şükrü Furkan Taşdemir. “KURBAĞA BALDIRININ İZOMETRİK KASILMASINDA APONEVROZ VE LİF YÖNELİMİNİN KUVVET VE SAYISAL KARARLIK ÜZERİNDEKİ ETKİLERİ”. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi 26, sy. 3 (Aralık 2021): 921-36. https://doi.org/10.17482/uumfd.883831.
EndNote Okyar AF, Taşdemir ŞF (01 Aralık 2021) KURBAĞA BALDIRININ İZOMETRİK KASILMASINDA APONEVROZ VE LİF YÖNELİMİNİN KUVVET VE SAYISAL KARARLIK ÜZERİNDEKİ ETKİLERİ. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi 26 3 921–936.
IEEE A. F. Okyar ve Ş. F. Taşdemir, “KURBAĞA BALDIRININ İZOMETRİK KASILMASINDA APONEVROZ VE LİF YÖNELİMİNİN KUVVET VE SAYISAL KARARLIK ÜZERİNDEKİ ETKİLERİ”, UUJFE, c. 26, sy. 3, ss. 921–936, 2021, doi: 10.17482/uumfd.883831.
ISNAD Okyar, Ali Fethi - Taşdemir, Şükrü Furkan. “KURBAĞA BALDIRININ İZOMETRİK KASILMASINDA APONEVROZ VE LİF YÖNELİMİNİN KUVVET VE SAYISAL KARARLIK ÜZERİNDEKİ ETKİLERİ”. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi 26/3 (Aralık 2021), 921-936. https://doi.org/10.17482/uumfd.883831.
JAMA Okyar AF, Taşdemir ŞF. KURBAĞA BALDIRININ İZOMETRİK KASILMASINDA APONEVROZ VE LİF YÖNELİMİNİN KUVVET VE SAYISAL KARARLIK ÜZERİNDEKİ ETKİLERİ. UUJFE. 2021;26:921–936.
MLA Okyar, Ali Fethi ve Şükrü Furkan Taşdemir. “KURBAĞA BALDIRININ İZOMETRİK KASILMASINDA APONEVROZ VE LİF YÖNELİMİNİN KUVVET VE SAYISAL KARARLIK ÜZERİNDEKİ ETKİLERİ”. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi, c. 26, sy. 3, 2021, ss. 921-36, doi:10.17482/uumfd.883831.
Vancouver Okyar AF, Taşdemir ŞF. KURBAĞA BALDIRININ İZOMETRİK KASILMASINDA APONEVROZ VE LİF YÖNELİMİNİN KUVVET VE SAYISAL KARARLIK ÜZERİNDEKİ ETKİLERİ. UUJFE. 2021;26(3):921-36.

DUYURU:

30.03.2021- Nisan 2021 (26/1) sayımızdan itibaren TR-Dizin yeni kuralları gereği, dergimizde basılacak makalelerde, ilk gönderim aşamasında Telif Hakkı Formu yanısıra, Çıkar Çatışması Bildirim Formu ve Yazar Katkısı Bildirim Formu da tüm yazarlarca imzalanarak gönderilmelidir. Yayınlanacak makalelerde de makale metni içinde "Çıkar Çatışması" ve "Yazar Katkısı" bölümleri yer alacaktır. İlk gönderim aşamasında doldurulması gereken yeni formlara "Yazım Kuralları" ve "Makale Gönderim Süreci" sayfalarımızdan ulaşılabilir. (Değerlendirme süreci bu tarihten önce tamamlanıp basımı bekleyen makalelerin yanısıra değerlendirme süreci devam eden makaleler için, yazarlar tarafından ilgili formlar doldurularak sisteme yüklenmelidir).  Makale şablonları da, bu değişiklik doğrultusunda güncellenmiştir. Tüm yazarlarımıza önemle duyurulur.

Bursa Uludağ Üniversitesi, Mühendislik Fakültesi Dekanlığı, Görükle Kampüsü, Nilüfer, 16059 Bursa. Tel: (224) 294 1907, Faks: (224) 294 1903, e-posta: mmfd@uludag.edu.tr