Araştırma Makalesi
BibTex RIS Kaynak Göster

Ardışık Bitim İşlemi Görmüş Polipropilen Esaslı Dış Mekan Kumaşların Antimikrobiyel ve Su İtici Performanslarının İncelenmesi

Yıl 2021, Cilt: 26 Sayı: 3, 885 - 902, 31.12.2021
https://doi.org/10.17482/uumfd.966501

Öz

Dış mekân tekstilleri kapsamında en çok tercih edilen kumaşlardan bir tanesi polipropilen esaslı kumaşlardır. Son yıllarda pandeminin oluşturduğu risklerden dolayı dış mekân tekstillerinden antibakteriyel, antivirüs, küf önleyebilen bir takım ilave özellikler de beklenmektedir. Antimikrobiyel bitim işlemi ve su itici işlemler polipropilen kumaşlara ard arda uygulanabilmektedir. Bu çalışma farklı oranlarda antimikrobiyel (0,5, 10 gr/lt) ve florokarbon esaslı su itici (0, 30 ve 50 gr/lt) kimyasalların ard arda uygulanmasıyla elde edilen dış mekân kumaşların antimikrobiyal etkinlik ve su itici seviyelerinin araştırılmasını hedeflemektedir. İstatiksel sonuçlara göre; S. aureus ve C. albicans mikroorganizmalarına karşı antibakteriyel etkinlik, proses türünden 0,05 anlamlılık seviyesinde etkilenmektedir. Polipropilen esaslı dış mekân kumaşları genel olarak S. aureus mikroorganizmasına karşı daha etkili bulunmuştur. Aynı miktar antimikrobiyal madde ile işlem gören kumaşlarda, uygulanan su itici madde miktarı arttıkça, su iticilik seviyeleri genel olarak iyileşmiştir.

Kaynakça

  • 1. AATCC 147:2004, “Antimicrobial Activity Assessment of Textile Materials: Parallel Streak Method”, 2004.
  • 2. AATCC Test Method 22, “Water repellency, spray test”, Research Triangle Park, NC: Author, 2010. Retrieved from https://www.aatcc.org/.
  • 3. Abdou, E. S., Elkholy, S. S., Elsabee, M. Z., & Mohamed, E. (2008). Improved antimicrobial activity of polypropylene and cotton nonwoven fabrics by surface treatment and modification with chitosan, Journal of Applied Polymer Science, 108(4), 2290-2296.
  • 4. Arık, B. (2021). Common and nano-antimicrobial textile finishes. In Antimicrobial Textiles from Natural Resources (pp. 87-117). Woodhead Publishing.
  • 5. ASTM E2149-13a, ‘Standard Test Method for Determining the Antimicrobial Activity of Antimicrobial Agents Under Dynamic Contact Conditions’, 2001.
  • 6. Badrossamay, M. R., & Sun, G. (2008). Acyclic halamine polypropylene polymer: Effect of monomer structure on grafting efficiency, stability and biocidal activities, Reactive and Functional Polymers, 68(12), 1636-1645. Doi: https://doi.org/10.1016/j.reactfunctpolym.2008.09.012
  • 7. Bagherzadeh, R., Montazer, M., Latifi, M., Sheikhzadeh, M., & Sattari, M. (2007). Evaluation of comfort properties of polyester knitted spacer fabrics finished with water repellent and antimicrobial agents, Fibers and Polymers, 8(4), 386-392.
  • 8. Chandrasekaran, V., Senthilkumar, P., & Sakthivel, J. C. (2018). Study on moisture management properties of micro-pore ring-spun viscose yarn-plated knitted fabrics. The Journal of the Textile Institute, 109(11), 1458-1464. Doi: 10.1080/00405000.2018.1423884.
  • 9. Cook, J. G., 1984, Handbook of textile fibers, Volume 2. Man-Made Fibres. pp 750, Woodhead publishing,
  • 10. Cerkez, I., Worley, S. D., Broughton, R. M., & Huang, T. S. (2013). Antimicrobial surface coatings for polypropylene nonwoven fabrics, Reactive and Functional Polymers, 73(11), 1412-1419. Doi: https://doi.org/10.1016/j.reactfunctpolym.2013.07.016
  • 11. Günaydın, G.K., Çeven, E. K., Gürarda, A., & Akgün, M. (2021). A research on effect of surface treatment conditions on flammability and water repellency properties of drapery fabrics produced from micro polyester yarns. Journal of the Textile Institute, 112(2), 233-242. Doi: 10.1080/00405000.2020.1736425.
  • 12. https://rilonfibers.com/blog/polypropylene-fiber/ ,accessed, march 20, 2020.
  • 13. https://sewport.com/fabrics-directory/polypropylene-fabric, accessed, march 20, 2020.
  • 14. https://www.vip-environment.com/outdoor-furniture-fabrics, accessed, february 10, 2021.
  • 15. Huang, J., Murata, H., Koepsel, R. R., Russell, A. J., & Matyjaszewski, K. (2007). Antibacterial polypropylene via surface-initiated atom transfer radical polymerization. Biomacromolecules, 8 (5), 1396-1399. Doi: https://doi.org/10.1021/bm061236j
  • 16. Jambrich, M., & Hodul, P. (1999). Textile applications of polypropylene fibers. In Polypropylene (pp. 806-812). Springer, Dordrecht.
  • 17. Joseph, PV., Kuruvilla, J. and Sabu T. (1999). Effect of processing variables on the mechanical properties of sisal fiber-reinforced polypropylene composites, Composites Science and Technology, 59(11), 1625-1640. Doi: https://doi.org/10.1016/S0266-3538(99)00024-X
  • 18. Karacan, İ., & Wang, I. C. (1997). İzotaktik Polipropilen Liflerinin Yapısal Çalışmaları ,Tekstil ve Mühendis, 11(56).
  • 19. Millard, F., & West, K. (1962). The Properties of Textile Fibers Made from Polypropylene. Journal of the Textile Institute Proceedings, 53(8), P465-P480.
  • 20. Nielsen, R., & Endrusick, T. L. (1990). Thermoregulatory responses to intermittent exercise are influenced by knit structure of underwear, European journal of applied physiology and occupational physiology, 60(1), 15-25.
  • 21. Park, C. Y., Moon, S., Baek, S. H., Kim, M. W., Roh, J., Sung, J., & Park, T. J. (2020). Development of detection methods for zinc pyrithione in polypropylene via simple extraction methods for quality control, BioChip Journal, 14(2), 211-217. Doi: 10.1007/s13206-020-4210-7
  • 22. Pittol, M., Tomacheski, D., Simões, D. N., Ribeiro, V. F., & Santana, R. M. C. (2017). Antimicrobial performance of thermoplastic elastomers containing zinc pyrithione and silver nanoparticles. Materials Research, 20, 1266-1273. Doi: http://dx.doi.org/10.1590/1980-5373-MR-2017-0137.
  • 23. Rahman, M. S., Mondal, M. I. H., Hasan, M. S., Alom, J., Ahmed, M. B., & Ahmed, F. (2021). Microorganisms, infection, and the role of medical textiles. In Antimicrobial Textiles from Natural Resources (pp. 45-85). Woodhead Publishing.
  • 24. Schindler, W. D., & Hauser, P. J. (2004). Chemical finishing of textiles. Elsevier.
  • 25. Simoncic, B., & Tomsic, B. (2010). Structures of novel antimicrobial agents for textiles-a review, Textile Research Journal, 80(16), 1721-1737. Doi: 10.1177/0040517510363193
  • 26. Wei, B., Xu, F., Azhar, S. W., Li, W., Lou, L., Liu, W., & Qiu, Y. (2015). Fabrication and property of discarded denim fabric/polypropylene composites, Journal of Industrial Textiles, 44(5), 798-812. Doi: https://doi.org/10.1177%2F1528083714550055.
  • 27. Williams, J. T. (Ed.). (2017). Waterproof and water repellent textiles and clothing. Woodhead Publishing, Textile Institute, United Kingdom.
  • 28. Yaman, N., Özdoğan, E., & Seventekin, N. (2010). Evaluation of some of the physical properties of atmospheric plasma treated polypropylene fabric, The Journal of The Textile Institute, 101(8), 746-752. Doi: 10.1080/00405000902843433.
  • 29. Yüksel, Y. E., & Korkmaz, Y. (2019). Investigation of sewing and water repellent performance of outdoor clothing, International Journal of Clothing Science and Technology, 31(5), 693-704. Doi: 10.1108/IJCST-09-2018-0119.

ANTIMICROBIAL AND WATER REPELLENCY PERFORMANCE OF POLYPROPYLENE OUTDOOR FABRICS SUBJECTED TO SEQUENTIAL FINISHING PROCESSES

Yıl 2021, Cilt: 26 Sayı: 3, 885 - 902, 31.12.2021
https://doi.org/10.17482/uumfd.966501

Öz

Polypropylene fabrics are one of the most preferred products for outdoor textiles. With the risks posed by the pandemic in the last year, outdoor textiles are expected to have some additional features such as antibacterial, antivirus, antimildew properties. Antimicrobial finishing and water repellency treatment may be applied consecutively on polypropylene fabrics. This research aims to investigate the effect of sequential finishing process by applying of different antimicrobial chemical ratio (0, 5 and 10 g/l) and fluorocarbon-based water repelling substance (0, 30 and 50 g/l) on antimicrobial efficiency and water repellency grades of outdoor fabrics. According to the results of statistical analyses, it was determined that antimicrobial efficiency against S. aureus and C. albicans was statistically influenced from process type at significance level of 0.05, while antimicrobial efficiency against E.coli microorganism was not statistically influenced from process type. Antimicrobial activity of outdoor samples was more satisfying against S. aureus microorganism. Water repellency results generally improved as the applied amount of water repellent substance increased for the fabrics treated with the same amount of antimicrobial substance.

Kaynakça

  • 1. AATCC 147:2004, “Antimicrobial Activity Assessment of Textile Materials: Parallel Streak Method”, 2004.
  • 2. AATCC Test Method 22, “Water repellency, spray test”, Research Triangle Park, NC: Author, 2010. Retrieved from https://www.aatcc.org/.
  • 3. Abdou, E. S., Elkholy, S. S., Elsabee, M. Z., & Mohamed, E. (2008). Improved antimicrobial activity of polypropylene and cotton nonwoven fabrics by surface treatment and modification with chitosan, Journal of Applied Polymer Science, 108(4), 2290-2296.
  • 4. Arık, B. (2021). Common and nano-antimicrobial textile finishes. In Antimicrobial Textiles from Natural Resources (pp. 87-117). Woodhead Publishing.
  • 5. ASTM E2149-13a, ‘Standard Test Method for Determining the Antimicrobial Activity of Antimicrobial Agents Under Dynamic Contact Conditions’, 2001.
  • 6. Badrossamay, M. R., & Sun, G. (2008). Acyclic halamine polypropylene polymer: Effect of monomer structure on grafting efficiency, stability and biocidal activities, Reactive and Functional Polymers, 68(12), 1636-1645. Doi: https://doi.org/10.1016/j.reactfunctpolym.2008.09.012
  • 7. Bagherzadeh, R., Montazer, M., Latifi, M., Sheikhzadeh, M., & Sattari, M. (2007). Evaluation of comfort properties of polyester knitted spacer fabrics finished with water repellent and antimicrobial agents, Fibers and Polymers, 8(4), 386-392.
  • 8. Chandrasekaran, V., Senthilkumar, P., & Sakthivel, J. C. (2018). Study on moisture management properties of micro-pore ring-spun viscose yarn-plated knitted fabrics. The Journal of the Textile Institute, 109(11), 1458-1464. Doi: 10.1080/00405000.2018.1423884.
  • 9. Cook, J. G., 1984, Handbook of textile fibers, Volume 2. Man-Made Fibres. pp 750, Woodhead publishing,
  • 10. Cerkez, I., Worley, S. D., Broughton, R. M., & Huang, T. S. (2013). Antimicrobial surface coatings for polypropylene nonwoven fabrics, Reactive and Functional Polymers, 73(11), 1412-1419. Doi: https://doi.org/10.1016/j.reactfunctpolym.2013.07.016
  • 11. Günaydın, G.K., Çeven, E. K., Gürarda, A., & Akgün, M. (2021). A research on effect of surface treatment conditions on flammability and water repellency properties of drapery fabrics produced from micro polyester yarns. Journal of the Textile Institute, 112(2), 233-242. Doi: 10.1080/00405000.2020.1736425.
  • 12. https://rilonfibers.com/blog/polypropylene-fiber/ ,accessed, march 20, 2020.
  • 13. https://sewport.com/fabrics-directory/polypropylene-fabric, accessed, march 20, 2020.
  • 14. https://www.vip-environment.com/outdoor-furniture-fabrics, accessed, february 10, 2021.
  • 15. Huang, J., Murata, H., Koepsel, R. R., Russell, A. J., & Matyjaszewski, K. (2007). Antibacterial polypropylene via surface-initiated atom transfer radical polymerization. Biomacromolecules, 8 (5), 1396-1399. Doi: https://doi.org/10.1021/bm061236j
  • 16. Jambrich, M., & Hodul, P. (1999). Textile applications of polypropylene fibers. In Polypropylene (pp. 806-812). Springer, Dordrecht.
  • 17. Joseph, PV., Kuruvilla, J. and Sabu T. (1999). Effect of processing variables on the mechanical properties of sisal fiber-reinforced polypropylene composites, Composites Science and Technology, 59(11), 1625-1640. Doi: https://doi.org/10.1016/S0266-3538(99)00024-X
  • 18. Karacan, İ., & Wang, I. C. (1997). İzotaktik Polipropilen Liflerinin Yapısal Çalışmaları ,Tekstil ve Mühendis, 11(56).
  • 19. Millard, F., & West, K. (1962). The Properties of Textile Fibers Made from Polypropylene. Journal of the Textile Institute Proceedings, 53(8), P465-P480.
  • 20. Nielsen, R., & Endrusick, T. L. (1990). Thermoregulatory responses to intermittent exercise are influenced by knit structure of underwear, European journal of applied physiology and occupational physiology, 60(1), 15-25.
  • 21. Park, C. Y., Moon, S., Baek, S. H., Kim, M. W., Roh, J., Sung, J., & Park, T. J. (2020). Development of detection methods for zinc pyrithione in polypropylene via simple extraction methods for quality control, BioChip Journal, 14(2), 211-217. Doi: 10.1007/s13206-020-4210-7
  • 22. Pittol, M., Tomacheski, D., Simões, D. N., Ribeiro, V. F., & Santana, R. M. C. (2017). Antimicrobial performance of thermoplastic elastomers containing zinc pyrithione and silver nanoparticles. Materials Research, 20, 1266-1273. Doi: http://dx.doi.org/10.1590/1980-5373-MR-2017-0137.
  • 23. Rahman, M. S., Mondal, M. I. H., Hasan, M. S., Alom, J., Ahmed, M. B., & Ahmed, F. (2021). Microorganisms, infection, and the role of medical textiles. In Antimicrobial Textiles from Natural Resources (pp. 45-85). Woodhead Publishing.
  • 24. Schindler, W. D., & Hauser, P. J. (2004). Chemical finishing of textiles. Elsevier.
  • 25. Simoncic, B., & Tomsic, B. (2010). Structures of novel antimicrobial agents for textiles-a review, Textile Research Journal, 80(16), 1721-1737. Doi: 10.1177/0040517510363193
  • 26. Wei, B., Xu, F., Azhar, S. W., Li, W., Lou, L., Liu, W., & Qiu, Y. (2015). Fabrication and property of discarded denim fabric/polypropylene composites, Journal of Industrial Textiles, 44(5), 798-812. Doi: https://doi.org/10.1177%2F1528083714550055.
  • 27. Williams, J. T. (Ed.). (2017). Waterproof and water repellent textiles and clothing. Woodhead Publishing, Textile Institute, United Kingdom.
  • 28. Yaman, N., Özdoğan, E., & Seventekin, N. (2010). Evaluation of some of the physical properties of atmospheric plasma treated polypropylene fabric, The Journal of The Textile Institute, 101(8), 746-752. Doi: 10.1080/00405000902843433.
  • 29. Yüksel, Y. E., & Korkmaz, Y. (2019). Investigation of sewing and water repellent performance of outdoor clothing, International Journal of Clothing Science and Technology, 31(5), 693-704. Doi: 10.1108/IJCST-09-2018-0119.
Toplam 29 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Giyilebilir Malzemeler
Bölüm Araştırma Makaleleri
Yazarlar

Erhan Kenan Çeven 0000-0003-3283-4117

Gizem Karakan Günaydın 0000-0001-9164-3391

Dilek Kut 0000-0002-9059-0838

Yayımlanma Tarihi 31 Aralık 2021
Gönderilme Tarihi 8 Temmuz 2021
Kabul Tarihi 19 Ekim 2021
Yayımlandığı Sayı Yıl 2021 Cilt: 26 Sayı: 3

Kaynak Göster

APA Çeven, E. K., Karakan Günaydın, G., & Kut, D. (2021). ANTIMICROBIAL AND WATER REPELLENCY PERFORMANCE OF POLYPROPYLENE OUTDOOR FABRICS SUBJECTED TO SEQUENTIAL FINISHING PROCESSES. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi, 26(3), 885-902. https://doi.org/10.17482/uumfd.966501
AMA Çeven EK, Karakan Günaydın G, Kut D. ANTIMICROBIAL AND WATER REPELLENCY PERFORMANCE OF POLYPROPYLENE OUTDOOR FABRICS SUBJECTED TO SEQUENTIAL FINISHING PROCESSES. UUJFE. Aralık 2021;26(3):885-902. doi:10.17482/uumfd.966501
Chicago Çeven, Erhan Kenan, Gizem Karakan Günaydın, ve Dilek Kut. “ANTIMICROBIAL AND WATER REPELLENCY PERFORMANCE OF POLYPROPYLENE OUTDOOR FABRICS SUBJECTED TO SEQUENTIAL FINISHING PROCESSES”. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi 26, sy. 3 (Aralık 2021): 885-902. https://doi.org/10.17482/uumfd.966501.
EndNote Çeven EK, Karakan Günaydın G, Kut D (01 Aralık 2021) ANTIMICROBIAL AND WATER REPELLENCY PERFORMANCE OF POLYPROPYLENE OUTDOOR FABRICS SUBJECTED TO SEQUENTIAL FINISHING PROCESSES. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi 26 3 885–902.
IEEE E. K. Çeven, G. Karakan Günaydın, ve D. Kut, “ANTIMICROBIAL AND WATER REPELLENCY PERFORMANCE OF POLYPROPYLENE OUTDOOR FABRICS SUBJECTED TO SEQUENTIAL FINISHING PROCESSES”, UUJFE, c. 26, sy. 3, ss. 885–902, 2021, doi: 10.17482/uumfd.966501.
ISNAD Çeven, Erhan Kenan vd. “ANTIMICROBIAL AND WATER REPELLENCY PERFORMANCE OF POLYPROPYLENE OUTDOOR FABRICS SUBJECTED TO SEQUENTIAL FINISHING PROCESSES”. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi 26/3 (Aralık 2021), 885-902. https://doi.org/10.17482/uumfd.966501.
JAMA Çeven EK, Karakan Günaydın G, Kut D. ANTIMICROBIAL AND WATER REPELLENCY PERFORMANCE OF POLYPROPYLENE OUTDOOR FABRICS SUBJECTED TO SEQUENTIAL FINISHING PROCESSES. UUJFE. 2021;26:885–902.
MLA Çeven, Erhan Kenan vd. “ANTIMICROBIAL AND WATER REPELLENCY PERFORMANCE OF POLYPROPYLENE OUTDOOR FABRICS SUBJECTED TO SEQUENTIAL FINISHING PROCESSES”. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi, c. 26, sy. 3, 2021, ss. 885-02, doi:10.17482/uumfd.966501.
Vancouver Çeven EK, Karakan Günaydın G, Kut D. ANTIMICROBIAL AND WATER REPELLENCY PERFORMANCE OF POLYPROPYLENE OUTDOOR FABRICS SUBJECTED TO SEQUENTIAL FINISHING PROCESSES. UUJFE. 2021;26(3):885-902.

DUYURU:

30.03.2021- Nisan 2021 (26/1) sayımızdan itibaren TR-Dizin yeni kuralları gereği, dergimizde basılacak makalelerde, ilk gönderim aşamasında Telif Hakkı Formu yanısıra, Çıkar Çatışması Bildirim Formu ve Yazar Katkısı Bildirim Formu da tüm yazarlarca imzalanarak gönderilmelidir. Yayınlanacak makalelerde de makale metni içinde "Çıkar Çatışması" ve "Yazar Katkısı" bölümleri yer alacaktır. İlk gönderim aşamasında doldurulması gereken yeni formlara "Yazım Kuralları" ve "Makale Gönderim Süreci" sayfalarımızdan ulaşılabilir. (Değerlendirme süreci bu tarihten önce tamamlanıp basımı bekleyen makalelerin yanısıra değerlendirme süreci devam eden makaleler için, yazarlar tarafından ilgili formlar doldurularak sisteme yüklenmelidir).  Makale şablonları da, bu değişiklik doğrultusunda güncellenmiştir. Tüm yazarlarımıza önemle duyurulur.

Bursa Uludağ Üniversitesi, Mühendislik Fakültesi Dekanlığı, Görükle Kampüsü, Nilüfer, 16059 Bursa. Tel: (224) 294 1907, Faks: (224) 294 1903, e-posta: mmfd@uludag.edu.tr