Araştırma Makalesi
BibTex RIS Kaynak Göster

PAMUK LİFLERİNİN KİTOSAN İLE YÜZEY MODİFİKASYONU SONRASI POLİELEKTROLİT POLİ (AKRİLİK ASİDİN SODYUM TUZU) VARLIĞINDA REAKTİF BOYANMASI

Yıl 2022, Cilt: 27 Sayı: 3, 1147 - 1162, 31.12.2022
https://doi.org/10.17482/uumfd.1129407

Öz

Reaktif boyarmaddeler pamuğun boyanmasında en yaygın kullanılan boyarmaddelerdir. Pamuklu kumaşların reaktif boyanması için yüksek miktarda kullanılan elektrolit kaçınılmaz olarak çevresel tehditler oluşturmaktadır. Kitosan üstün özelliklerinden dolayı tekstilde birçok alanda farklı amaçlarla kullanılmaktadır. Bu çalışmada, sentetik polielektrolit poli(akrilik asidin sodyum tuzu) reaktif boyamada inorganik elektrolit sodyum klorür yerine kullanımı ve kitosanın kumaşın reaktif boyama davranışı üzerindeki etkileri araştırılmıştır. Ayrıca kumaşların yıkama haslıkları ve ultraviyole koruma faktörleri de gözlemlenmiştir. Boyamadan önce kitosan ile muamele ve boyamada sodyum klorür kullanımı konvansiyonel boyamalara göre renk derinliklerini arttırmış ve bu artış kitosan konsantrasyonundaki artışla devam etmiştir. Öyle ki, %8 konsantrasyonda kitosan uygulamasını takiben %2 konsantrasyonda yapılan boyamadan, %3 konvansiyonel boyamanın renk kuvvetine benzer değerler elde edilmiştir. Sodyum klorür konsantrasyon artışının renk derinliği üzerindeki etkisi polielektrolitten daha belirgin olarak gözlemlenmiştir. Poli (akrilik asidin sodyum tuzunun) pamuğun reaktif boyamasındaki çalışma prensibinin iyonlaşamaması, sıcaklık-konsantrasyon-pH duyarlılığı ve hidrofobik boya kombinasyonları oluşturması nedeniyle nispeten karmaşık olduğu anlaşılmıştır. Ayrıca boyarmaddelerin farklı tuz duyarlılıklarının da elektrolitlerin etkisinde farklılık yaratmış olabileceği düşünülmüştür. Kitosan aplike edilen ve boyanan numunelerin yıkama haslıkları iyi-mükemmel seviyede iken, kitosan aplikasyonunda kullanılan çapraz bağlayıcının bu değerleri 0,5 puan kadar artırdığı görülmüştür. Boyarmaddelerin ultraviyole koruma faktörünü arttırmada kitosandan daha etkili olduğu gözlemlenmiştir.

Destekleyen Kurum

Bursa Uludağ Üniversitesi Bilimsel Araştırma Projeleri Birimi

Proje Numarası

OUAP(MH)-2019/5

Teşekkür

Bu çalışma Bursa Uludağ Üniversitesi Bilimsel Araştırma Projeleri Birimi tarafından “Pamuklu Materyallerin Reaktif ve Direkt Boyar Maddeler İle Boyanmasında Atık Yükünü Düşürecek Alternatif Yöntemlerin İncelenmesi” başlıklı ve OUAP(MH)-2019/5 numaralı projesi ile desteklenmiştir.

Kaynakça

  • 1. Abdel-Halim, E.S., Abdel-Mohdy, F.A., Al-Deyab, S.S., El-Newehy, M.H. (2010) Chitosan and Monochlorotriazinyl-β-Cyclodextrin Finishes Improve Antistatic Properties of Cotton/Polyester Blend and Polyester Fabrics, Carbohydrate Polymers, 82 (1): 202–8. https://doi.org/10.1016/j.carbpol.2010.04.077.
  • 2. Agarwal, B.J., Bhattacharya, S.D.(2010) Possibilities of Polymer-Aided Dyeing of Cotton Fabricwith Reactive Dyes at Neutral pH, Journal of Applied Polymer Science,118: 1257-1269. https://doi.org/10.1002/app.32469
  • 3. Ahmad, A., Mohd-Setapar, S.H., Chuong, C.S., Khatoon, A., Wani, W.A., Kumar, R., Rafatullah, M. (2015) Recent Advances in New Generation Dye Removal Technologies: Novel Search for Approaches to Reprocess Wastewater, RSC Advances, 5 (39): 30801–18. https://doi.org/10.1039/c4ra16959j.
  • 4. Ahmed, N.S.E. (2005) The Use of Sodium Edate in the Dyeing of Cotton with Reactive Dyes, Dyes and Pigments, 65 (3): 221–25. https://doi.org/10.1016/j.dyepig.2004.07.014.
  • 5. Ahmed, N.S.E., Youssef, Y.A., El-Shishtawy, R.M., Mousa, A.A. (2006) Urea/Alkali-Free Printing of Cotton with Reactive Dyes, Coloration Technology, 122 (6): 324–28. https://doi.org/10.1111/j.1478- 4408.2006.00047.x.
  • 6. Akgun, M., Becerir, B., Alpay, H.R. (2014) Reflectance Prediction of Colored Polyester Fabrics by A Novel Formula, Fibers and Polymers, 15 (1): 126–37. https://doi.org/10.1007/s12221-014-0126-y.
  • 7. Ali, R., Ali, S., Khatri, A., Javeed, A. (2022) Using Biodegradable Organic Salt for Cotton Garment Dyeing to Reduce Effluent Pollution, Coloration Technology, 1–9. https://doi.org/10.1111/cote.12599.
  • 8. Alonso, D., Gimeno, M., Olayo, R., Vázquez-Torres, H., Sepúlveda-Sánchez, J.D., Shirai, K., (2009) Cross-Linking Chitosan into UV-Irradiated Cellulose Fibers for The Preparation of Antimicrobial-Finished Textiles, Carbohydrate Polymers, 77 (3): 536–43. https://doi.org/10.1016/j.carbpol.2009.01.027.
  • 9. Anis, P., Toprak, T., Kutlu, E. (2019) Sericin Assisted Eco-Friendly Reactive Dyeing for Cotton Fabric, Cellulose, 26 (10): 6317–31. https://doi.org/10.1007/s10570-019-02464-3.
  • 10. Arivithamani, N., Dev, V.R.G. (2017a) Industrial Scale Salt-Free Reactive Dyeing of Cationized Cotton Fabric with Different Reactive Dye Chemistry, Carbohydrate Polymers, 174: 137–45. https://doi.org/10.1016/j.carbpol.2017.06.045.
  • 11. Arivithamani, N., Dev, V.R.G. (2017b) Cationization of Cotton for Industrial Scale Salt-Free Reactive Dyeing of Garments, Clean Technologies and Environmental Policy, 19 (9): 2317–26. https://doi.org/10.1007/s10098-017-1425-y.
  • 12. Babar, A.A., Bughio, N. ul ain, Peerzada, M.H., Naveed, T., Dayo, A.Q. (2019) Exhaust Reactive Dyeing of Lyocell Fabric with Ultrasonic Energy, Ultrasonics Sonochemistry, 58: 104611. https://doi.org/10.1016/j.ultsonch.2019.05.028.
  • 13. Bahmani, S.A., East, G.C., Holme, I. (2000) The Application of Chitosan in Pigment Printing, Journal of the Society of Dyers and Colourists, 116 (3): 94–99. https://doi.org/10.1111/j.1478-4408.2000.tb00027.x.
  • 14. Bashar, M.M., Khan, M.A. (2013) An Overview on Surface Modification of Cotton Fiber for Apparel Use, Journal of Polymers and the Environment, 21 (1): 181–90. https://doi.org/10.1007/s10924-012-0476- 8.
  • 15. Blumberg, A.A. (1986) Membranes and Films from Polymers, Journal of Chemical Education 63 (5): 414–17. https://doi.org/10.1021/ed063p414.
  • 16. Burkinshaw, S.M., Salihu, G. (2019a) The Role of Auxiliaries in the Immersion Dyeing of Textile Fibres: Part 3 Theoretical Model to Describe the Role of Inorganic Electrolytes Used in Dyeing Cellulosic Fibres with Direct Dyes, Dyes and Pigments, 161: 546–64. https://doi.org/10.1016/j.dyepig.2017.11.039.
  • 17. Burkinshaw, S.M., Salihu, G. (2019b) The Role of Auxiliaries in the Immersion Dyeing of Textile Fibres: Part 6 Analysis of Conventional Models That Describe the Manner by Which Inorganic Electrolytes Promote Reactive Dye Uptake on Cellulosic Fibres, Dyes and Pigments, 161: 595–604. https://doi.org/10.1016/j.dyepig.2017.09.028.
  • 18. Cai, L., Ying, D., Liang, X., Zhu, M., Lin, X., Xu, Q., Cai, Z., Xu, X., Zhang, L. (2021) A Novel Cationic Polyelectrolyte Microsphere for Ultrafast and Ultra-Efficient Removal of Heavy Metal Ions and Dyes, Chemical Engineering Journal, 410: 128404. https://doi.org/10.1016/j.cej.2021.128404.
  • 19. Chakraborty, J. N. (2010) Dyeing with Reactive Dye, in Fundamentals and Practices in Colouration of Textiles, edited by J.N. Chakraborty, 57–75. Daryaganj: Woodhead Publishing.
  • 20. Chattopadhyay, D.P. (2011) Chemistry of Dyeing, in Handbook of Textile and Industrial Dyeing Volume 1: Principles, Processes and Types of Dyes, edited by M. Clark, 150–83. Cambridge: Woodhead Publishing.
  • 21. Chinta, S. K., and Shrivastava V. (2013) Technical Facts & Figures of Reactive Dyes Used in Textiles, International Journal of Engineering and Management Sciences, 4 (3): 308–12.
  • 22. Chollakup, R., Beck, J.B., Dirnberger, K., Tirrell, M., Eisenbach, C.D. (2013) Polyelectrolyte Molecular Weight and Salt Effects on the Phase Behavior and Coacervation of Aqueous Solutions of Poly(Acrylic Acid) Sodium Salt and Poly(Allylamine) Hydrochloride, Macromolecules, 46 (6): 2376–90. https://doi.org/10.1021/ma202172q.
  • 23. Dasgupta, J., Sikder, J., Chakraborty, S., Curcio, S., Drioli, E. (2015) Remediation of Textile Effluents by Membrane Based Treatment Techniques: A State of the Art Review, Journal of Environmental Management, 147: 55–72. https://doi.org/10.1016/j.jenvman.2014.08.008.
  • 24. Fang, K., Shu, D., Liu, X., Cai, Y., An, F., Zhang, X. (2018) Reactive Pad-Steam Dyeing of Cotton Fabric Modified with Cationic P(St-BA-VBT) Nanospheres, Polymers, 10 (564): 1–11. https://doi.org/10.3390/polym10060564.
  • 25. Frank, H.S., Evans, M.W. (1945) Free Volume and Entropy in Condensed Systems III. Entropy in Binary Liquid Mixtures; Partial Molal Entropy in Dilute Solutions; Structure and Thermodynamics in Aqueous Electrolytes, The Journal of Chemical Physics, 13 (11): 507–32. https://doi.org/10.1063/1.1723985.
  • 26. Gies, P.H., Roy, C.R., Toomey, S., McLennan, A. (1998) Protection against Solar Ultraviolet Radiation, Mutation Research - Fundamental and Molecular Mechanisms of Mutagenesis 422 (1): 15–22. https://doi.org/10.1016/S0027-5107(98)00181-X.
  • 27. Guan, Y., Zheng, Q., Mao, Y., Gui, M., Fu, H. (2007) Application of Polycarboxylic Acid Sodium Salt in the Dyeing of Cotton Fabric with Reactive Dyes, Journal of Applied Polymer Science, 105: 726–32. https://doi.org/10.1002/app.
  • 28. Hasebe, Y., Kuwahara, K., Tokunaga, S. (2001) Applied Technology Chitosan Hybrid Deodorant Agent for Finishing Textiles-A New Polymeric Deodorizer Exhibited Effective Deodorant Performance Against Human Malodors, American Association of Textile Chemists and Colorists Review, 1 (11): 23–27.
  • 29. Huang, K.S., Wu, W.J., Chen, J.B., Lian, H.S. (2008) Application of Low-Molecular-Weight Chitosan in Durable Press Finishing, Carbohydrate Polymers, 73 (2): 254–60. https://doi.org/10.1016/j.carbpol.2007.11.023.
  • 30. Huang, L., Xiao, L., Yang, G. (2018) Chitosan Application in Textile Processing, Current Trends in Fashion Technology & Textile Engineering, 4 (2): 32–34. https://doi.org/10.19080/ctftte.2018.04.555635.
  • 31. Kaliyamoorthi, K., Thangavelu, R. (2015) Union Dyeing of Cotton/Nylon Blended Fabric by Plasma-Nano Chitosan Treatment, Fashion and Textiles, 2 (10): 1–10. https://doi.org/10.1186/s40691-015- 0035-8.
  • 32. Kasaai, M.R. (2010) Determination of The Degree of N-Acetylation for Chitin and Chitosan by Various NMR Spectroscopy Techniques: A Review, Carbohydrate Polymers, 79 (4): 801–10. https://doi.org/10.1016/j.carbpol.2009.10.051.
  • 33. Khatri, A., Padhye, R., White, M. (2013) The Use of Trisodium Nitrilo Triacetate in the Pad-Steam Dyeing of Cotton with Reactive Dyes, Coloration Technology, 129 (1): 76–81. https://doi.org/10.1111/j.1478- 4408.2012.00410.x.
  • 34. Khatri, A., Peerzada, M.H., Mohsin, M., White, M. (2015) A Review on Developments in Dyeing Cotton Fabrics with Reactive Dyes for Reducing Effluent Pollution, Journal of Cleaner Production, 87 (1): 50–57. https://doi.org/10.1016/j.jclepro.2014.09.017.
  • 35. Kim, K.-S., Kim, S.-J., Jeon, D.-W. (2009) Dyeability of Cotton Fabric Treated with Chitosan, 1,2,3,4-Butanetetracarboxylic Acid, and Citric Acid, Journal of Fashion Business, 13 (1): 115–24.
  • 36. King, D. (2007) Dyeing Cotton and Cotton Products, in Cotton: Science and Technology, edited by S. Gordon and Y-L. Hsieh, 353–80. Cambridge: Woodhead Publishing.
  • 37. Leistner, M., Abu-Odeh, A.A., Rohmer, S.C., Grunlan, J.C. (2015) Water-Based Chitosan/Melamine Polyphosphate Multilayer Nanocoating That Extinguishes Fire on Polyester-Cotton Fabric, Carbohydrate Polymers, 130: 227–32. https://doi.org/10.1016/j.carbpol.2015.05.005.
  • 38. Lim, S.H., Hudson, S.M. (2003) Review of Chitosan and Its Derivatives as Antimicrobial Agents and Their Uses as Textile Chemicals, Journal of Macromolecular Science Part C : Polymer Reviews, 43 (2): 223–69. https://doi.org/10.1081/MC-120020161.
  • 39. Liu, L., Mu, B., Li, W., Yang, Y. (2019) Cost-Effective Reactive Dyeing Using Spent Cooking Oil for Minimal Discharge of Dyes and Salts, Journal of Cleaner Production, 227: 1023–34. https://doi.org/10.1016/j.jclepro.2019.04.277.
  • 40. Louris, E., Sfiroera, E., Priniotakis, G., Makris, R., Siemos, H., Efthymiou, C., Assimakopoulos, M.N. (2019) Evaluating the Ultraviolet Protection Factor (UPF) of Various Knit Fabric Structures, IOP Conference Series: Materials Science and Engineering, 459: 012051. https://doi.org/10.1088/1757-899X/459/1/012051.
  • 41. Massella, D., Giraud, S., Guan, J., Ferri, A., Salaün, F. (2019) Textiles for Health: A Review of Textile Fabrics Treated with Chitosan Microcapsules, Environmental Chemistry Letters, 17 (4): 1787–1800. https://doi.org/10.1007/s10311-019-00913-w.
  • 42. Merdan, N., Acar, K. (2009) Tekstilde UV Absorban Madde Uygulamaları, İstanbul Ticaret Üniversitesi Fen Bilimleri Dergisi, 16: 1–12.
  • 43. Moattari, M., Moattari, F., Kouchesfehani, H.M., Kaka, G., Sadraie, H.S., Naghdi, M. (2018) Chitosan and Textile Industry, Trends in Textile Engineering & Fashion Technology, 2 (5): 236–38. https://doi.org/10.31031/tteft.2018.02.000549.
  • 44. Mourya, V.K., Inamdar, N.N. (2008) Chitosan-Modifications and Applications: Opportunities Galore, Reactive and Functional Polymers, 68 (6): 1013–51. https://doi.org/10.1016/j.reactfunctpolym.2008.03.002.
  • 45. Mu, B., Li, W., Xu, H., Emanuel, L.R., Yang, Y. (2019) Salt-Free and Environment-Friendly Reactive Dyeing of Cotton in Cottonseed Oil/Water System, Cellulose, 26 (10): 6379–91. https://doi.org/10.1007/s10570-019-02541-7.
  • 46. Noralian, Z., Gashti, M.P., Moghaddam, M.R., Tayyeb, H., Erfanian, I. (2021) Ultrasonically Developed Silver/Iota-Carrageenan/Cotton Bionanocomposite as An Efficient Material for Biomedical Applications, International Journal of Biological Macromolecules, 180: 439–57. https://doi.org/10.1016/j.ijbiomac.2021.02.204.
  • 47. Ozturk, E., Cinperi, N.C., Kitis, M. (2020) Improving Energy Efficiency Using the Most Appropriate Techniques in An Integrated Woolen Textile Facility, Journal of Cleaner Production, 254: 120145. https://doi.org/10.1016/j.jclepro.2020.120145.
  • 48. Ozturk, E., Koseoglu, H., Karaboyaci, M., Yigit, N.O., Yetis, U., Kitis, M. (2016) Minimization of Water and Chemical Use in A Cotton/Polyester Fabric Dyeing Textile Mill, Journal of Cleaner Production, 130: 92–102. https://doi.org/10.1016/j.jclepro.2016.01.080.
  • 49. Pei, L., Luo, Y., Saleem, M.A., Wang, J. (2021) Sustainable Pilot Scale Reactive Dyeing Based on Silicone Oil for Improving Dye Fixation and Reducing Discharges, Journal of Cleaner Production, 279: 123831. https://doi.org/10.1016/j.jclepro.2020.123831.
  • 50. Prabu, H.G., Sundrarajan, M. (2002) Effect of the Bio-Salt Trisodium Citrate in the Dyeing of Cotton, Coloration Technology, 118 (3): 131–34. https://doi.org/10.1111/j.1478-4408.2002.tb00370.x.
  • 51. Ramadan, M.A. el-moneim, Samy, S., Abdulhady, M., Hebeish, A. (2011) Eco-Friendly Pretreatment of Cellulosic Fabrics with Chitosan and Its Influence on Dyeing Efficiency, in Natural Dyes, edited by E Kumbasar, 3–12. London: IntechOpen. https://doi.org/10.5772/20097.
  • 52. Sankaran, A., Kamboj, A., Samant, L., Jose, S. (2021) Synthetic and Natural UV Protective Agents for Textile Finishing, in In Innovative and Emerging Technologies for Textile Dyeing and Finishing, edited by Luqman Jameel Rather, Aminoddin Haji, and Mohd Shabbir, 301–24. New Jersey: Wiley-Scrivener. https://doi.org/10.1002/9781119818915.ch8.
  • 53. Shahidi, S., Ghoranneviss, M., Dalalsharifi, S. (2015) Preparation of Multifunctional Wool Fabric Using Chitosan after Plasma Treatment, Journal of the Textile Institute, 106 (10): 1127–34. https://doi.org/10.1080/00405000.2014.977522.
  • 54. Shu, L., Waite, T.D., Bliss, P.J., Fane, A., Jegatheesan, V. (2005) Nanofiltration for the Possible Reuse of Water and Recovery of Sodium Chloride Salt from Textile Effluent, Desalination, 172: 235–43. https://doi.org/10.1016/j.
  • 55. Stegmaier, T., Wunderlich, W., Hager, T., Siddique, A.B., Sarsour, J., Planck, H. (2008) Chitosan - A Sizing Agent in Fabric Production - Development and Ecological Evaluation, Clean - Soil, Air, Water, 36 (3): 279–86. https://doi.org/10.1002/clen.200700013.
  • 56. Tang, A.Y.L., Lee, C.H., Wang, Y.M., Kan, C.W. (2019) Dyeing Cotton with Reactive Dyes: A Comparison between Conventional Water-Based and Solvent-Assisted PEG-Based Reverse Micellar Dyeing Systems, Cellulose, 26 (2): 1399–1408. https://doi.org/10.1007/s10570-018-2150-3.
  • 57. Toprak, T., Anis, P. (2017) Textile Industry’s Environmental Effects and Approaching Cleaner Production and Sustainability: An Overview, Journal of Textile Engineering & Fashion Technology, 2 (4): 429–42. https://doi.org/10.15406/jteft.2017.02.00066.
  • 58. Toprak, T., Anis, P., Kutlu, E., Kara, A. (2018) Effect of Chemical Modification with 4-Vinylpyridine on Dyeing of Cotton Fabric with Reactive Dyestuff, Cellulose, 25 (11): 6793–6809. https://doi.org/10.1007/s10570-018-2026-6.
  • 59. Troatman, E.R. (1970) Reactive Dyes, in Dyeing and Chemical Technology of TextileFibres, 4th ed., 520–43. London: Charles Griffin & Company.
  • 60. Verma, M., Gahlot, N., Singh, S.S.J., Rose, N.M., (2021) UV Protection and Antibacterial Treatment of Cellulosic Fibre (Cotton) Using Chitosan and Onion Skin Dye, Carbohydrate Polymers, 257: 117612. https://doi.org/10.1016/j.carbpol.2020.117612
  • 61. Vikrant, K., Giri, B.S., Raza, N., Roy, K., Kim, K.H., Rai, B.N., Singh, R.S. (2018) Recent Advancements in Bioremediation of Dye: Current Status and Challenges, Bioresource Technology, 253: 355–67. https://doi.org/10.1016/j.biortech.2018.01.029.
  • 62. Wang, W.Y., Chiou, J.C., Chen, W.X., Yu, J.L., Kan, C.W. (2022) A Salt-Free, Zero-Discharge and Dyebath-Recyclable Circular Coloration Technology Based on Cationic Polyelectrolyte Complex for Cotton Fabric Dyeing, Cellulose, 29 (2): 1249–62. https://doi.org/10.1007/s10570-021-04353-0.
  • 63. Xie, K., Hou, A., Sun, Y. (2008) Chemical Graft of Cellulose with the Ion-Pair Emulsion Containing the Reactive Groups and Its Dyeing Properties, Journal of Dispersion Science and Technology, 29 (10): 1385–90. https://doi.org/10.1080/01932690802313105.
  • 64. Xu, X.-J., Huang, S.-M., Zhang, L.-H. (2009) Biodegradability, Antibacterial Properties, and Ultraviolet Protection of Polyvinyl Alcohol-Natural Polyphenol Blends, Polymer Composites, 30 (11): 1611–17. https://doi.org/10.1002/pc.
  • 65. Yen, M.S. (2001) Application of Chitosan/Nonionic Surfactant Mixture in Reactive Dyes for Dyeing Wool Fabrics, Journal of Applied Polymer Science, 80 (14): 2859–64. https://doi.org/10.1002/app.1403.
  • 66. Youssef, Y.A., Ahmed, N.S.E., Mousa, A.A., El-Shishtawy, R.M. (2008) Alkaline Dyeing of Polyester and Polyester/Cotton Blend Fabrics Using Sodium Edetate, Journal of Applied Polymer Science, 108: 342–50. https://doi.org/10.1002/app.

Reactive Dyeing of Cotton Fibers in the Presence of Polyelectrolyte Poly (Acrylic Acid Sodium Salt) after Surface Modification with Chitosan

Yıl 2022, Cilt: 27 Sayı: 3, 1147 - 1162, 31.12.2022
https://doi.org/10.17482/uumfd.1129407

Öz

Reactive dyes are the most widely used dyes in dyeing cotton. The high amount of electrolyte used for reactive dyeing of cotton fabrics inevitably poses environmental threats. Chitosan is used for different purposes in many areas in textiles due to its superior properties. In this study, the use of synthetic polyelectrolyte poly(sodium salt of acrylic acid) instead of inorganic electrolyte sodium chloride in reactive dyeing and the effects of chitosan on the reactive dyeing behavior of fabric were investigated. In addition, the washing fastness and ultraviolet protection factors of the fabrics were also observed. Treatment with chitosan before dyeing and the use of sodium chloride in dyeing increased the color depths compared to conventional dyeings, and this increase continued with the rise in chitosan concentration. Such that, values similar to the color strength of 3% conventional dyeing were obtained from the dyeing at 2% concentration following the application of chitosan at 8% concentration. The effect of the sodium chloride concentration increase on the color depth was observed more prominently than the polyelectrolyte. It has been understood that the working principle of the poly (acrylic acid sodium salt) in the reactive dyeing of cotton is relatively complex due to its non-ionizability, temperature-concentration-pH sensitivity and composing hydrophobic dye combinations. In addition, it was thought that different salt sensitivities of dyes might have created a difference in the effect of electrolytes. While the washing fastness of the chitosan-applied and dyed samples was good-excellent, it was observed that the crosslinking used in the chitosan application increased these values by 0.5 points. It has been observed that dyes were more effective than chitosan in increasing the ultraviolet protection factor. 

Proje Numarası

OUAP(MH)-2019/5

Kaynakça

  • 1. Abdel-Halim, E.S., Abdel-Mohdy, F.A., Al-Deyab, S.S., El-Newehy, M.H. (2010) Chitosan and Monochlorotriazinyl-β-Cyclodextrin Finishes Improve Antistatic Properties of Cotton/Polyester Blend and Polyester Fabrics, Carbohydrate Polymers, 82 (1): 202–8. https://doi.org/10.1016/j.carbpol.2010.04.077.
  • 2. Agarwal, B.J., Bhattacharya, S.D.(2010) Possibilities of Polymer-Aided Dyeing of Cotton Fabricwith Reactive Dyes at Neutral pH, Journal of Applied Polymer Science,118: 1257-1269. https://doi.org/10.1002/app.32469
  • 3. Ahmad, A., Mohd-Setapar, S.H., Chuong, C.S., Khatoon, A., Wani, W.A., Kumar, R., Rafatullah, M. (2015) Recent Advances in New Generation Dye Removal Technologies: Novel Search for Approaches to Reprocess Wastewater, RSC Advances, 5 (39): 30801–18. https://doi.org/10.1039/c4ra16959j.
  • 4. Ahmed, N.S.E. (2005) The Use of Sodium Edate in the Dyeing of Cotton with Reactive Dyes, Dyes and Pigments, 65 (3): 221–25. https://doi.org/10.1016/j.dyepig.2004.07.014.
  • 5. Ahmed, N.S.E., Youssef, Y.A., El-Shishtawy, R.M., Mousa, A.A. (2006) Urea/Alkali-Free Printing of Cotton with Reactive Dyes, Coloration Technology, 122 (6): 324–28. https://doi.org/10.1111/j.1478- 4408.2006.00047.x.
  • 6. Akgun, M., Becerir, B., Alpay, H.R. (2014) Reflectance Prediction of Colored Polyester Fabrics by A Novel Formula, Fibers and Polymers, 15 (1): 126–37. https://doi.org/10.1007/s12221-014-0126-y.
  • 7. Ali, R., Ali, S., Khatri, A., Javeed, A. (2022) Using Biodegradable Organic Salt for Cotton Garment Dyeing to Reduce Effluent Pollution, Coloration Technology, 1–9. https://doi.org/10.1111/cote.12599.
  • 8. Alonso, D., Gimeno, M., Olayo, R., Vázquez-Torres, H., Sepúlveda-Sánchez, J.D., Shirai, K., (2009) Cross-Linking Chitosan into UV-Irradiated Cellulose Fibers for The Preparation of Antimicrobial-Finished Textiles, Carbohydrate Polymers, 77 (3): 536–43. https://doi.org/10.1016/j.carbpol.2009.01.027.
  • 9. Anis, P., Toprak, T., Kutlu, E. (2019) Sericin Assisted Eco-Friendly Reactive Dyeing for Cotton Fabric, Cellulose, 26 (10): 6317–31. https://doi.org/10.1007/s10570-019-02464-3.
  • 10. Arivithamani, N., Dev, V.R.G. (2017a) Industrial Scale Salt-Free Reactive Dyeing of Cationized Cotton Fabric with Different Reactive Dye Chemistry, Carbohydrate Polymers, 174: 137–45. https://doi.org/10.1016/j.carbpol.2017.06.045.
  • 11. Arivithamani, N., Dev, V.R.G. (2017b) Cationization of Cotton for Industrial Scale Salt-Free Reactive Dyeing of Garments, Clean Technologies and Environmental Policy, 19 (9): 2317–26. https://doi.org/10.1007/s10098-017-1425-y.
  • 12. Babar, A.A., Bughio, N. ul ain, Peerzada, M.H., Naveed, T., Dayo, A.Q. (2019) Exhaust Reactive Dyeing of Lyocell Fabric with Ultrasonic Energy, Ultrasonics Sonochemistry, 58: 104611. https://doi.org/10.1016/j.ultsonch.2019.05.028.
  • 13. Bahmani, S.A., East, G.C., Holme, I. (2000) The Application of Chitosan in Pigment Printing, Journal of the Society of Dyers and Colourists, 116 (3): 94–99. https://doi.org/10.1111/j.1478-4408.2000.tb00027.x.
  • 14. Bashar, M.M., Khan, M.A. (2013) An Overview on Surface Modification of Cotton Fiber for Apparel Use, Journal of Polymers and the Environment, 21 (1): 181–90. https://doi.org/10.1007/s10924-012-0476- 8.
  • 15. Blumberg, A.A. (1986) Membranes and Films from Polymers, Journal of Chemical Education 63 (5): 414–17. https://doi.org/10.1021/ed063p414.
  • 16. Burkinshaw, S.M., Salihu, G. (2019a) The Role of Auxiliaries in the Immersion Dyeing of Textile Fibres: Part 3 Theoretical Model to Describe the Role of Inorganic Electrolytes Used in Dyeing Cellulosic Fibres with Direct Dyes, Dyes and Pigments, 161: 546–64. https://doi.org/10.1016/j.dyepig.2017.11.039.
  • 17. Burkinshaw, S.M., Salihu, G. (2019b) The Role of Auxiliaries in the Immersion Dyeing of Textile Fibres: Part 6 Analysis of Conventional Models That Describe the Manner by Which Inorganic Electrolytes Promote Reactive Dye Uptake on Cellulosic Fibres, Dyes and Pigments, 161: 595–604. https://doi.org/10.1016/j.dyepig.2017.09.028.
  • 18. Cai, L., Ying, D., Liang, X., Zhu, M., Lin, X., Xu, Q., Cai, Z., Xu, X., Zhang, L. (2021) A Novel Cationic Polyelectrolyte Microsphere for Ultrafast and Ultra-Efficient Removal of Heavy Metal Ions and Dyes, Chemical Engineering Journal, 410: 128404. https://doi.org/10.1016/j.cej.2021.128404.
  • 19. Chakraborty, J. N. (2010) Dyeing with Reactive Dye, in Fundamentals and Practices in Colouration of Textiles, edited by J.N. Chakraborty, 57–75. Daryaganj: Woodhead Publishing.
  • 20. Chattopadhyay, D.P. (2011) Chemistry of Dyeing, in Handbook of Textile and Industrial Dyeing Volume 1: Principles, Processes and Types of Dyes, edited by M. Clark, 150–83. Cambridge: Woodhead Publishing.
  • 21. Chinta, S. K., and Shrivastava V. (2013) Technical Facts & Figures of Reactive Dyes Used in Textiles, International Journal of Engineering and Management Sciences, 4 (3): 308–12.
  • 22. Chollakup, R., Beck, J.B., Dirnberger, K., Tirrell, M., Eisenbach, C.D. (2013) Polyelectrolyte Molecular Weight and Salt Effects on the Phase Behavior and Coacervation of Aqueous Solutions of Poly(Acrylic Acid) Sodium Salt and Poly(Allylamine) Hydrochloride, Macromolecules, 46 (6): 2376–90. https://doi.org/10.1021/ma202172q.
  • 23. Dasgupta, J., Sikder, J., Chakraborty, S., Curcio, S., Drioli, E. (2015) Remediation of Textile Effluents by Membrane Based Treatment Techniques: A State of the Art Review, Journal of Environmental Management, 147: 55–72. https://doi.org/10.1016/j.jenvman.2014.08.008.
  • 24. Fang, K., Shu, D., Liu, X., Cai, Y., An, F., Zhang, X. (2018) Reactive Pad-Steam Dyeing of Cotton Fabric Modified with Cationic P(St-BA-VBT) Nanospheres, Polymers, 10 (564): 1–11. https://doi.org/10.3390/polym10060564.
  • 25. Frank, H.S., Evans, M.W. (1945) Free Volume and Entropy in Condensed Systems III. Entropy in Binary Liquid Mixtures; Partial Molal Entropy in Dilute Solutions; Structure and Thermodynamics in Aqueous Electrolytes, The Journal of Chemical Physics, 13 (11): 507–32. https://doi.org/10.1063/1.1723985.
  • 26. Gies, P.H., Roy, C.R., Toomey, S., McLennan, A. (1998) Protection against Solar Ultraviolet Radiation, Mutation Research - Fundamental and Molecular Mechanisms of Mutagenesis 422 (1): 15–22. https://doi.org/10.1016/S0027-5107(98)00181-X.
  • 27. Guan, Y., Zheng, Q., Mao, Y., Gui, M., Fu, H. (2007) Application of Polycarboxylic Acid Sodium Salt in the Dyeing of Cotton Fabric with Reactive Dyes, Journal of Applied Polymer Science, 105: 726–32. https://doi.org/10.1002/app.
  • 28. Hasebe, Y., Kuwahara, K., Tokunaga, S. (2001) Applied Technology Chitosan Hybrid Deodorant Agent for Finishing Textiles-A New Polymeric Deodorizer Exhibited Effective Deodorant Performance Against Human Malodors, American Association of Textile Chemists and Colorists Review, 1 (11): 23–27.
  • 29. Huang, K.S., Wu, W.J., Chen, J.B., Lian, H.S. (2008) Application of Low-Molecular-Weight Chitosan in Durable Press Finishing, Carbohydrate Polymers, 73 (2): 254–60. https://doi.org/10.1016/j.carbpol.2007.11.023.
  • 30. Huang, L., Xiao, L., Yang, G. (2018) Chitosan Application in Textile Processing, Current Trends in Fashion Technology & Textile Engineering, 4 (2): 32–34. https://doi.org/10.19080/ctftte.2018.04.555635.
  • 31. Kaliyamoorthi, K., Thangavelu, R. (2015) Union Dyeing of Cotton/Nylon Blended Fabric by Plasma-Nano Chitosan Treatment, Fashion and Textiles, 2 (10): 1–10. https://doi.org/10.1186/s40691-015- 0035-8.
  • 32. Kasaai, M.R. (2010) Determination of The Degree of N-Acetylation for Chitin and Chitosan by Various NMR Spectroscopy Techniques: A Review, Carbohydrate Polymers, 79 (4): 801–10. https://doi.org/10.1016/j.carbpol.2009.10.051.
  • 33. Khatri, A., Padhye, R., White, M. (2013) The Use of Trisodium Nitrilo Triacetate in the Pad-Steam Dyeing of Cotton with Reactive Dyes, Coloration Technology, 129 (1): 76–81. https://doi.org/10.1111/j.1478- 4408.2012.00410.x.
  • 34. Khatri, A., Peerzada, M.H., Mohsin, M., White, M. (2015) A Review on Developments in Dyeing Cotton Fabrics with Reactive Dyes for Reducing Effluent Pollution, Journal of Cleaner Production, 87 (1): 50–57. https://doi.org/10.1016/j.jclepro.2014.09.017.
  • 35. Kim, K.-S., Kim, S.-J., Jeon, D.-W. (2009) Dyeability of Cotton Fabric Treated with Chitosan, 1,2,3,4-Butanetetracarboxylic Acid, and Citric Acid, Journal of Fashion Business, 13 (1): 115–24.
  • 36. King, D. (2007) Dyeing Cotton and Cotton Products, in Cotton: Science and Technology, edited by S. Gordon and Y-L. Hsieh, 353–80. Cambridge: Woodhead Publishing.
  • 37. Leistner, M., Abu-Odeh, A.A., Rohmer, S.C., Grunlan, J.C. (2015) Water-Based Chitosan/Melamine Polyphosphate Multilayer Nanocoating That Extinguishes Fire on Polyester-Cotton Fabric, Carbohydrate Polymers, 130: 227–32. https://doi.org/10.1016/j.carbpol.2015.05.005.
  • 38. Lim, S.H., Hudson, S.M. (2003) Review of Chitosan and Its Derivatives as Antimicrobial Agents and Their Uses as Textile Chemicals, Journal of Macromolecular Science Part C : Polymer Reviews, 43 (2): 223–69. https://doi.org/10.1081/MC-120020161.
  • 39. Liu, L., Mu, B., Li, W., Yang, Y. (2019) Cost-Effective Reactive Dyeing Using Spent Cooking Oil for Minimal Discharge of Dyes and Salts, Journal of Cleaner Production, 227: 1023–34. https://doi.org/10.1016/j.jclepro.2019.04.277.
  • 40. Louris, E., Sfiroera, E., Priniotakis, G., Makris, R., Siemos, H., Efthymiou, C., Assimakopoulos, M.N. (2019) Evaluating the Ultraviolet Protection Factor (UPF) of Various Knit Fabric Structures, IOP Conference Series: Materials Science and Engineering, 459: 012051. https://doi.org/10.1088/1757-899X/459/1/012051.
  • 41. Massella, D., Giraud, S., Guan, J., Ferri, A., Salaün, F. (2019) Textiles for Health: A Review of Textile Fabrics Treated with Chitosan Microcapsules, Environmental Chemistry Letters, 17 (4): 1787–1800. https://doi.org/10.1007/s10311-019-00913-w.
  • 42. Merdan, N., Acar, K. (2009) Tekstilde UV Absorban Madde Uygulamaları, İstanbul Ticaret Üniversitesi Fen Bilimleri Dergisi, 16: 1–12.
  • 43. Moattari, M., Moattari, F., Kouchesfehani, H.M., Kaka, G., Sadraie, H.S., Naghdi, M. (2018) Chitosan and Textile Industry, Trends in Textile Engineering & Fashion Technology, 2 (5): 236–38. https://doi.org/10.31031/tteft.2018.02.000549.
  • 44. Mourya, V.K., Inamdar, N.N. (2008) Chitosan-Modifications and Applications: Opportunities Galore, Reactive and Functional Polymers, 68 (6): 1013–51. https://doi.org/10.1016/j.reactfunctpolym.2008.03.002.
  • 45. Mu, B., Li, W., Xu, H., Emanuel, L.R., Yang, Y. (2019) Salt-Free and Environment-Friendly Reactive Dyeing of Cotton in Cottonseed Oil/Water System, Cellulose, 26 (10): 6379–91. https://doi.org/10.1007/s10570-019-02541-7.
  • 46. Noralian, Z., Gashti, M.P., Moghaddam, M.R., Tayyeb, H., Erfanian, I. (2021) Ultrasonically Developed Silver/Iota-Carrageenan/Cotton Bionanocomposite as An Efficient Material for Biomedical Applications, International Journal of Biological Macromolecules, 180: 439–57. https://doi.org/10.1016/j.ijbiomac.2021.02.204.
  • 47. Ozturk, E., Cinperi, N.C., Kitis, M. (2020) Improving Energy Efficiency Using the Most Appropriate Techniques in An Integrated Woolen Textile Facility, Journal of Cleaner Production, 254: 120145. https://doi.org/10.1016/j.jclepro.2020.120145.
  • 48. Ozturk, E., Koseoglu, H., Karaboyaci, M., Yigit, N.O., Yetis, U., Kitis, M. (2016) Minimization of Water and Chemical Use in A Cotton/Polyester Fabric Dyeing Textile Mill, Journal of Cleaner Production, 130: 92–102. https://doi.org/10.1016/j.jclepro.2016.01.080.
  • 49. Pei, L., Luo, Y., Saleem, M.A., Wang, J. (2021) Sustainable Pilot Scale Reactive Dyeing Based on Silicone Oil for Improving Dye Fixation and Reducing Discharges, Journal of Cleaner Production, 279: 123831. https://doi.org/10.1016/j.jclepro.2020.123831.
  • 50. Prabu, H.G., Sundrarajan, M. (2002) Effect of the Bio-Salt Trisodium Citrate in the Dyeing of Cotton, Coloration Technology, 118 (3): 131–34. https://doi.org/10.1111/j.1478-4408.2002.tb00370.x.
  • 51. Ramadan, M.A. el-moneim, Samy, S., Abdulhady, M., Hebeish, A. (2011) Eco-Friendly Pretreatment of Cellulosic Fabrics with Chitosan and Its Influence on Dyeing Efficiency, in Natural Dyes, edited by E Kumbasar, 3–12. London: IntechOpen. https://doi.org/10.5772/20097.
  • 52. Sankaran, A., Kamboj, A., Samant, L., Jose, S. (2021) Synthetic and Natural UV Protective Agents for Textile Finishing, in In Innovative and Emerging Technologies for Textile Dyeing and Finishing, edited by Luqman Jameel Rather, Aminoddin Haji, and Mohd Shabbir, 301–24. New Jersey: Wiley-Scrivener. https://doi.org/10.1002/9781119818915.ch8.
  • 53. Shahidi, S., Ghoranneviss, M., Dalalsharifi, S. (2015) Preparation of Multifunctional Wool Fabric Using Chitosan after Plasma Treatment, Journal of the Textile Institute, 106 (10): 1127–34. https://doi.org/10.1080/00405000.2014.977522.
  • 54. Shu, L., Waite, T.D., Bliss, P.J., Fane, A., Jegatheesan, V. (2005) Nanofiltration for the Possible Reuse of Water and Recovery of Sodium Chloride Salt from Textile Effluent, Desalination, 172: 235–43. https://doi.org/10.1016/j.
  • 55. Stegmaier, T., Wunderlich, W., Hager, T., Siddique, A.B., Sarsour, J., Planck, H. (2008) Chitosan - A Sizing Agent in Fabric Production - Development and Ecological Evaluation, Clean - Soil, Air, Water, 36 (3): 279–86. https://doi.org/10.1002/clen.200700013.
  • 56. Tang, A.Y.L., Lee, C.H., Wang, Y.M., Kan, C.W. (2019) Dyeing Cotton with Reactive Dyes: A Comparison between Conventional Water-Based and Solvent-Assisted PEG-Based Reverse Micellar Dyeing Systems, Cellulose, 26 (2): 1399–1408. https://doi.org/10.1007/s10570-018-2150-3.
  • 57. Toprak, T., Anis, P. (2017) Textile Industry’s Environmental Effects and Approaching Cleaner Production and Sustainability: An Overview, Journal of Textile Engineering & Fashion Technology, 2 (4): 429–42. https://doi.org/10.15406/jteft.2017.02.00066.
  • 58. Toprak, T., Anis, P., Kutlu, E., Kara, A. (2018) Effect of Chemical Modification with 4-Vinylpyridine on Dyeing of Cotton Fabric with Reactive Dyestuff, Cellulose, 25 (11): 6793–6809. https://doi.org/10.1007/s10570-018-2026-6.
  • 59. Troatman, E.R. (1970) Reactive Dyes, in Dyeing and Chemical Technology of TextileFibres, 4th ed., 520–43. London: Charles Griffin & Company.
  • 60. Verma, M., Gahlot, N., Singh, S.S.J., Rose, N.M., (2021) UV Protection and Antibacterial Treatment of Cellulosic Fibre (Cotton) Using Chitosan and Onion Skin Dye, Carbohydrate Polymers, 257: 117612. https://doi.org/10.1016/j.carbpol.2020.117612
  • 61. Vikrant, K., Giri, B.S., Raza, N., Roy, K., Kim, K.H., Rai, B.N., Singh, R.S. (2018) Recent Advancements in Bioremediation of Dye: Current Status and Challenges, Bioresource Technology, 253: 355–67. https://doi.org/10.1016/j.biortech.2018.01.029.
  • 62. Wang, W.Y., Chiou, J.C., Chen, W.X., Yu, J.L., Kan, C.W. (2022) A Salt-Free, Zero-Discharge and Dyebath-Recyclable Circular Coloration Technology Based on Cationic Polyelectrolyte Complex for Cotton Fabric Dyeing, Cellulose, 29 (2): 1249–62. https://doi.org/10.1007/s10570-021-04353-0.
  • 63. Xie, K., Hou, A., Sun, Y. (2008) Chemical Graft of Cellulose with the Ion-Pair Emulsion Containing the Reactive Groups and Its Dyeing Properties, Journal of Dispersion Science and Technology, 29 (10): 1385–90. https://doi.org/10.1080/01932690802313105.
  • 64. Xu, X.-J., Huang, S.-M., Zhang, L.-H. (2009) Biodegradability, Antibacterial Properties, and Ultraviolet Protection of Polyvinyl Alcohol-Natural Polyphenol Blends, Polymer Composites, 30 (11): 1611–17. https://doi.org/10.1002/pc.
  • 65. Yen, M.S. (2001) Application of Chitosan/Nonionic Surfactant Mixture in Reactive Dyes for Dyeing Wool Fabrics, Journal of Applied Polymer Science, 80 (14): 2859–64. https://doi.org/10.1002/app.1403.
  • 66. Youssef, Y.A., Ahmed, N.S.E., Mousa, A.A., El-Shishtawy, R.M. (2008) Alkaline Dyeing of Polyester and Polyester/Cotton Blend Fabrics Using Sodium Edetate, Journal of Applied Polymer Science, 108: 342–50. https://doi.org/10.1002/app.
Toplam 66 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Giyilebilir Malzemeler
Bölüm Araştırma Makaleleri
Yazarlar

Tuba Toprak-çavdur 0000-0001-8475-3197

Pervin Aniş 0000-0002-6295-637X

Proje Numarası OUAP(MH)-2019/5
Erken Görünüm Tarihi 9 Aralık 2022
Yayımlanma Tarihi 31 Aralık 2022
Gönderilme Tarihi 11 Haziran 2022
Kabul Tarihi 23 Ekim 2022
Yayımlandığı Sayı Yıl 2022 Cilt: 27 Sayı: 3

Kaynak Göster

APA Toprak-çavdur, T., & Aniş, P. (2022). PAMUK LİFLERİNİN KİTOSAN İLE YÜZEY MODİFİKASYONU SONRASI POLİELEKTROLİT POLİ (AKRİLİK ASİDİN SODYUM TUZU) VARLIĞINDA REAKTİF BOYANMASI. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi, 27(3), 1147-1162. https://doi.org/10.17482/uumfd.1129407
AMA Toprak-çavdur T, Aniş P. PAMUK LİFLERİNİN KİTOSAN İLE YÜZEY MODİFİKASYONU SONRASI POLİELEKTROLİT POLİ (AKRİLİK ASİDİN SODYUM TUZU) VARLIĞINDA REAKTİF BOYANMASI. UUJFE. Aralık 2022;27(3):1147-1162. doi:10.17482/uumfd.1129407
Chicago Toprak-çavdur, Tuba, ve Pervin Aniş. “PAMUK LİFLERİNİN KİTOSAN İLE YÜZEY MODİFİKASYONU SONRASI POLİELEKTROLİT POLİ (AKRİLİK ASİDİN SODYUM TUZU) VARLIĞINDA REAKTİF BOYANMASI”. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi 27, sy. 3 (Aralık 2022): 1147-62. https://doi.org/10.17482/uumfd.1129407.
EndNote Toprak-çavdur T, Aniş P (01 Aralık 2022) PAMUK LİFLERİNİN KİTOSAN İLE YÜZEY MODİFİKASYONU SONRASI POLİELEKTROLİT POLİ (AKRİLİK ASİDİN SODYUM TUZU) VARLIĞINDA REAKTİF BOYANMASI. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi 27 3 1147–1162.
IEEE T. Toprak-çavdur ve P. Aniş, “PAMUK LİFLERİNİN KİTOSAN İLE YÜZEY MODİFİKASYONU SONRASI POLİELEKTROLİT POLİ (AKRİLİK ASİDİN SODYUM TUZU) VARLIĞINDA REAKTİF BOYANMASI”, UUJFE, c. 27, sy. 3, ss. 1147–1162, 2022, doi: 10.17482/uumfd.1129407.
ISNAD Toprak-çavdur, Tuba - Aniş, Pervin. “PAMUK LİFLERİNİN KİTOSAN İLE YÜZEY MODİFİKASYONU SONRASI POLİELEKTROLİT POLİ (AKRİLİK ASİDİN SODYUM TUZU) VARLIĞINDA REAKTİF BOYANMASI”. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi 27/3 (Aralık 2022), 1147-1162. https://doi.org/10.17482/uumfd.1129407.
JAMA Toprak-çavdur T, Aniş P. PAMUK LİFLERİNİN KİTOSAN İLE YÜZEY MODİFİKASYONU SONRASI POLİELEKTROLİT POLİ (AKRİLİK ASİDİN SODYUM TUZU) VARLIĞINDA REAKTİF BOYANMASI. UUJFE. 2022;27:1147–1162.
MLA Toprak-çavdur, Tuba ve Pervin Aniş. “PAMUK LİFLERİNİN KİTOSAN İLE YÜZEY MODİFİKASYONU SONRASI POLİELEKTROLİT POLİ (AKRİLİK ASİDİN SODYUM TUZU) VARLIĞINDA REAKTİF BOYANMASI”. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi, c. 27, sy. 3, 2022, ss. 1147-62, doi:10.17482/uumfd.1129407.
Vancouver Toprak-çavdur T, Aniş P. PAMUK LİFLERİNİN KİTOSAN İLE YÜZEY MODİFİKASYONU SONRASI POLİELEKTROLİT POLİ (AKRİLİK ASİDİN SODYUM TUZU) VARLIĞINDA REAKTİF BOYANMASI. UUJFE. 2022;27(3):1147-62.

DUYURU:

30.03.2021- Nisan 2021 (26/1) sayımızdan itibaren TR-Dizin yeni kuralları gereği, dergimizde basılacak makalelerde, ilk gönderim aşamasında Telif Hakkı Formu yanısıra, Çıkar Çatışması Bildirim Formu ve Yazar Katkısı Bildirim Formu da tüm yazarlarca imzalanarak gönderilmelidir. Yayınlanacak makalelerde de makale metni içinde "Çıkar Çatışması" ve "Yazar Katkısı" bölümleri yer alacaktır. İlk gönderim aşamasında doldurulması gereken yeni formlara "Yazım Kuralları" ve "Makale Gönderim Süreci" sayfalarımızdan ulaşılabilir. (Değerlendirme süreci bu tarihten önce tamamlanıp basımı bekleyen makalelerin yanısıra değerlendirme süreci devam eden makaleler için, yazarlar tarafından ilgili formlar doldurularak sisteme yüklenmelidir).  Makale şablonları da, bu değişiklik doğrultusunda güncellenmiştir. Tüm yazarlarımıza önemle duyurulur.

Bursa Uludağ Üniversitesi, Mühendislik Fakültesi Dekanlığı, Görükle Kampüsü, Nilüfer, 16059 Bursa. Tel: (224) 294 1907, Faks: (224) 294 1903, e-posta: mmfd@uludag.edu.tr