Araştırma Makalesi
BibTex RIS Kaynak Göster

Op-Amp 741 ve Zamanlayıcı 555 IC Üzerinde Gama Işını Etkisi

Yıl 2023, Cilt: 28 Sayı: 1, 193 - 206, 30.04.2023
https://doi.org/10.17482/uumfd.1094384

Öz

Ticari olarak kullanılan 555 tekli zamanlayıcı ve 741 işlemsel yükselteç (op-amp), Co-60 kaynağının gama ışını radyasyonu altında incelenmiştir. Işınlama için maksimum toplam dozlar 2 kGy ve 4 kGy kullanılmıştır. 744 Gy gama ışını radyasyonlarında 202 Hz'den 195 Hz'e düşen 555 tekli zamanlayıcı devre frekansında anormal davranış gözlemlenmiştir. 741 op-amp devresinin sonuçlarında, 741 op-amp'in genlik sinyali 4 kGy gama dozunda maksimum -0,054 dB değerini göstermektedir ve yükselme eğimi 4'ten 0,65 V/µs'ye düşmüştür. 555 tekli zamanlayıcının iki pn bağlantısı vardır ve bu diyotlar 555 tekli zamanlayıcının gama radyasyonundan kolayca etkilenmesine neden olmaktadır. Sonuç olarak, entegre devrelerin radyasyon ortamlarındaki direnç sınırlarının belirlenmesi için test edilmesi gerekmektedir.

Kaynakça

  • 1. Abel, I., Neuner, M., and Graeb, H. (2021). A Hierarchical Performance Equation Library for Basic Op-Amp Design. In IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems. doi: 10.1109/TCAD.2021.3101691
  • 2. Abhirami, K., Sathyamoorthy, R., and Asokan, K. (2013) Structural, optical and electrical properties of gamma irradiated SnO thin films, Radiation physics and chemistry, 91, 35-39. doi:10.1016/j.radphyschem.2013.05.030
  • 3. Ahn, S. H., Sun, G. M., and Baek, H. 2018. Experimental study of gamma irradiation on bipolar junction transistor. Proceedings of the KNS 2018 Spring Meeting, (p. v). Korea, Republic of: KNS.
  • 4. Arshak, K., and Korostynska, O. (2004) Thick film oxide diode structures for personal dosimetry application, Sensors and Actuators A: Physical, 113, 319-23. doi: 10.1016/j.sna.2004.01.050
  • 5. Arshak, K., and Korostynska, O. (2004) Thin film pn-junctions based on oxide materials as γ-radiation sensors, Sensors and Actuators A: Physical, 113, 307-11. doi: 10.1016/j.sna.2004.01.026
  • 6. Ashry, H., Soliman, F. A., Swidan, A., El-Ghana, M., and Abdel Rahman, W. (2008). Gamma radiation effects on the electrical parameters of some operational amplifiers. In The Second All African IRPA Regional Radiation Protection Congress. Egypt
  • 7. Assaf, J. (2020) Reducing the ringing oscillation of IC Timer by using gamma rays and neutron radiation, Microelectronics Reliability, 104, 113553. doi: 10.1016/j.microrel.2019.113553
  • 8. Babcock, J. A., Cressler, J. D., Vempati, L. S., Clark, S. D., Jaeger, R. C., and Harame, D. L. (1995) Ionizing radiation tolerance and low-frequency noise degradation in UHV/CVD SiGe HBT's, IEEE Electron Device Letters, 16, 351-53. doi: 10.1109/55.400735
  • 9. Baczuk, R. L. 1994. PSPICE Simulation of Total Dose Effects on Composite and Single Operational Amplifiers, Master's Thesis, Naval Postgraduate School Monterey, California.
  • 10. Baliga, B. J. (2010) Fundamentals of power semiconductor devices Springer Science & Business Media. doi: 10.1007/978-0-387-47314-7
  • 11. Cameron, N. 2021. 'Signal generation with 555 timer IC.' in, Electronics Projects with the ESP8266 and ESP32 (Springer). doi: 10.1007/978-1-4842-6336-5_17
  • 12. Claro, L. H., and Santos, J. A. d. (2009). Effects of gamma radiation on commercial operational amplifiers. In International Nuclear Atlantic Conference. Rio de Janeiro, Brazil.
  • 13. Dewan, N., Sreenivas, K., and Gupta, V. (2008) Comparative study on TeO2 and TeO3 thin film for γ-ray sensor application, Sensors and Actuators A: Physical, 147, 115-20. doi: 10.1016/j.sna.2008.04.011
  • 14. Dvornikov, O., Dyatlov, V., Prokopenko, N., and Chekhovskii, V. (2017) Configurable structured array for fabrication of radiation-hardened analog interfaces, Journal of Communications Technology and Electronics, 62, 1193-99. doi: 10.1134/S1064226917090078
  • 15. Dvornikov, O. V., Dziatlau, V. L., Tchekhovski, V. A., Prokopenko, N. N., and Bugakova, A. V. (2018). BiJFet Array Chip MH2XA030—a Design Tool for Radiation-Hardened and Cryogenic Analog Integrated Circuits. In 2018 IEEE International Conference on Electrical Engineering and Photonics (EExPolytech), 13-17. IEEE. doi: 10.1109/EExPolytech.2018.8564415
  • 16. Elbuluk, M. E., Hammoud, A., and Patterson, R. (2009). Wide Range Temperature Sensors for Harsh Environments. In 2009 IEEE Industry Applications Society Annual Meeting, 1-6. IEEE. doi: 10.1109/IAS.2009.5324840
  • 17. Ferikoğlu, A., and Topal, T. (2010) INDUCTOR SIMULATION WITH OPERATIONAL DEVICES, Gazi University Journal of Science, 18, 143-51.
  • 18. Gray, P. R., Hurst, P. J., Lewis, S. H., and Meyer, R. G. (2009) Analysis and design of analog integrated circuits John Wiley & Sons. USA.
  • 19. Jung, W. G. (1977) IC timer cookbook HW Sams & Co Inc. USA.
  • 20. Lai, S., Alexiev, D., and Nener, B. (1995) Comparison between deep level defects in GaAsinduced by gamma, 1 MeV electron, and neutron irradiation, Journal of Applied Physics, 78, 3686-90. doi: 10.1063/1.359946
  • 21. Li, X., Xiao, J., Liu, C., Zhao, Z., Geng, H., Lan, M., Yang, D., and He, S. (2010) Ionization damage in NPN transistors caused by lower energy electrons, Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 621, 707-12. doi: 10.1016/j.nima.2010.04.068
  • 22. M Fiore, J. (2018). Operational Amplifiers & Linear Integrated Circuits: Theory and Application/3E. Dissidents, New York.
  • 23. McPherson, M., Jones, B., and Sloan, T. (1997) Effects of radiation damage in silicon p-i-n photodiodes, Semiconductor science and technology, 12, 1187. doi: 10.1088/0268- 1242/12/10/003
  • 24. Montagner, X., Briand, R., Fouillat, P., Schrimpf, R., Touboui, A., Galloway, K., Calvet, M., and Calvel, P. (1998) Dose-rate and irradiation temperature dependence of BJT SPICE model rad-parameters, IEEE Transactions on Nuclear Science, 45, 1431-37. doi: 10.1109/RADECS.1997.698893
  • 25. Pien, C. F., Amir, H. F., Salleh, S., and Muhammad, A. (2010) Effects of total ionizing dose on bipolar junction transistor, American Journal of Applied Sciences, 7, 807. doi: 10.3844/ajassp.2010.807.810
  • 26. Roberge, J. K. (1975) Operational amplifiers: theory and practice, John Wiley&Sons Inc. New York.
  • 27. Schrimpf, R. D., and Fleetwood, D. M. (2004) Radiation effects and soft errors in integrated circuits and electronic devices, World Scientific. doi: 10.1142/5607
  • 28. Sedra, A. S., Smith, K. C., Carusone, T. C., and Gaudet, V. (2004) Microelectronic circuits, Oxford University Press, New York.
  • 29. Sharma, M. C. (1978) 555 Timer and Its Applications, Business Promotion Puplications. Delhi.
  • 30. Soliman, F. (1993) Operational amplifier type 741: Characterization and radiation effects, Communications Faculty of Sciences University of Ankara Series A2-A3 Physical Sciences and Engineering, 42, 15-32. doi: 10.1501/commua1-2_0000000051
  • 31. Terrell, D. (1996) Op Amps: Design, Application, and Troubleshooting, Newnes. doi: 10.1016/B978-0-7506-9702-6.X5000-8
  • 32. Um, M., Ro, D., Chang, I. J., and Lee, H.-M. (2020). A Radiation-Hardened ReadoutIntegrated Circuits for Sensor Systems. In 2020 IEEE International Conference on Consumer Electronics-Asia (ICCE-Asia), 1-4. IEEE. doi: 10.1109/ICCEAsia49877.2020.9276762
  • 33. Van Lint, V. A. (1987) The physics of radiation damage in particle detectors, Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 253, 453-59. doi: 10.1016/0168-9002(87)90532-8
  • 34. Walldén, J. (2014). Radiation Induced Effects in Electronic Devices and Radiation Hardening By Design Techniques. Master's Thesis, Linköpings university, Department of Electrical Engineering, Sweden.

GAMMA RAY EFFECT ON OP-AMP 741 AND TIMER 555 IC

Yıl 2023, Cilt: 28 Sayı: 1, 193 - 206, 30.04.2023
https://doi.org/10.17482/uumfd.1094384

Öz

The commercial used the 555 single timer and the 741 operational amplifiers (op-amp) were investigated under the gamma-ray radiation of the Co-60 source. The maximum total doses were used 2 kGy and 4 kGy to irradiate. The abnormal behavior in the 555 single timer circuit frequency was observed, which decreased from 202 to 195 Hz at 744 Gy gamma-ray radiations. In the results of 741 opamp circuit, the amplitude signal of the 741 op-amp shows a maximum value of -0.054 dB at 4 kGy gamma dose and its slew rate decreases from 4 to 0.65 V/µs. The 555 single timer has two pn junctions and these cause that the 555 single timer is easily affected by the gamma radiation. Consequently, the integrated circuits must be tested to determine their resistance limits in the radiation environments.

Kaynakça

  • 1. Abel, I., Neuner, M., and Graeb, H. (2021). A Hierarchical Performance Equation Library for Basic Op-Amp Design. In IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems. doi: 10.1109/TCAD.2021.3101691
  • 2. Abhirami, K., Sathyamoorthy, R., and Asokan, K. (2013) Structural, optical and electrical properties of gamma irradiated SnO thin films, Radiation physics and chemistry, 91, 35-39. doi:10.1016/j.radphyschem.2013.05.030
  • 3. Ahn, S. H., Sun, G. M., and Baek, H. 2018. Experimental study of gamma irradiation on bipolar junction transistor. Proceedings of the KNS 2018 Spring Meeting, (p. v). Korea, Republic of: KNS.
  • 4. Arshak, K., and Korostynska, O. (2004) Thick film oxide diode structures for personal dosimetry application, Sensors and Actuators A: Physical, 113, 319-23. doi: 10.1016/j.sna.2004.01.050
  • 5. Arshak, K., and Korostynska, O. (2004) Thin film pn-junctions based on oxide materials as γ-radiation sensors, Sensors and Actuators A: Physical, 113, 307-11. doi: 10.1016/j.sna.2004.01.026
  • 6. Ashry, H., Soliman, F. A., Swidan, A., El-Ghana, M., and Abdel Rahman, W. (2008). Gamma radiation effects on the electrical parameters of some operational amplifiers. In The Second All African IRPA Regional Radiation Protection Congress. Egypt
  • 7. Assaf, J. (2020) Reducing the ringing oscillation of IC Timer by using gamma rays and neutron radiation, Microelectronics Reliability, 104, 113553. doi: 10.1016/j.microrel.2019.113553
  • 8. Babcock, J. A., Cressler, J. D., Vempati, L. S., Clark, S. D., Jaeger, R. C., and Harame, D. L. (1995) Ionizing radiation tolerance and low-frequency noise degradation in UHV/CVD SiGe HBT's, IEEE Electron Device Letters, 16, 351-53. doi: 10.1109/55.400735
  • 9. Baczuk, R. L. 1994. PSPICE Simulation of Total Dose Effects on Composite and Single Operational Amplifiers, Master's Thesis, Naval Postgraduate School Monterey, California.
  • 10. Baliga, B. J. (2010) Fundamentals of power semiconductor devices Springer Science & Business Media. doi: 10.1007/978-0-387-47314-7
  • 11. Cameron, N. 2021. 'Signal generation with 555 timer IC.' in, Electronics Projects with the ESP8266 and ESP32 (Springer). doi: 10.1007/978-1-4842-6336-5_17
  • 12. Claro, L. H., and Santos, J. A. d. (2009). Effects of gamma radiation on commercial operational amplifiers. In International Nuclear Atlantic Conference. Rio de Janeiro, Brazil.
  • 13. Dewan, N., Sreenivas, K., and Gupta, V. (2008) Comparative study on TeO2 and TeO3 thin film for γ-ray sensor application, Sensors and Actuators A: Physical, 147, 115-20. doi: 10.1016/j.sna.2008.04.011
  • 14. Dvornikov, O., Dyatlov, V., Prokopenko, N., and Chekhovskii, V. (2017) Configurable structured array for fabrication of radiation-hardened analog interfaces, Journal of Communications Technology and Electronics, 62, 1193-99. doi: 10.1134/S1064226917090078
  • 15. Dvornikov, O. V., Dziatlau, V. L., Tchekhovski, V. A., Prokopenko, N. N., and Bugakova, A. V. (2018). BiJFet Array Chip MH2XA030—a Design Tool for Radiation-Hardened and Cryogenic Analog Integrated Circuits. In 2018 IEEE International Conference on Electrical Engineering and Photonics (EExPolytech), 13-17. IEEE. doi: 10.1109/EExPolytech.2018.8564415
  • 16. Elbuluk, M. E., Hammoud, A., and Patterson, R. (2009). Wide Range Temperature Sensors for Harsh Environments. In 2009 IEEE Industry Applications Society Annual Meeting, 1-6. IEEE. doi: 10.1109/IAS.2009.5324840
  • 17. Ferikoğlu, A., and Topal, T. (2010) INDUCTOR SIMULATION WITH OPERATIONAL DEVICES, Gazi University Journal of Science, 18, 143-51.
  • 18. Gray, P. R., Hurst, P. J., Lewis, S. H., and Meyer, R. G. (2009) Analysis and design of analog integrated circuits John Wiley & Sons. USA.
  • 19. Jung, W. G. (1977) IC timer cookbook HW Sams & Co Inc. USA.
  • 20. Lai, S., Alexiev, D., and Nener, B. (1995) Comparison between deep level defects in GaAsinduced by gamma, 1 MeV electron, and neutron irradiation, Journal of Applied Physics, 78, 3686-90. doi: 10.1063/1.359946
  • 21. Li, X., Xiao, J., Liu, C., Zhao, Z., Geng, H., Lan, M., Yang, D., and He, S. (2010) Ionization damage in NPN transistors caused by lower energy electrons, Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 621, 707-12. doi: 10.1016/j.nima.2010.04.068
  • 22. M Fiore, J. (2018). Operational Amplifiers & Linear Integrated Circuits: Theory and Application/3E. Dissidents, New York.
  • 23. McPherson, M., Jones, B., and Sloan, T. (1997) Effects of radiation damage in silicon p-i-n photodiodes, Semiconductor science and technology, 12, 1187. doi: 10.1088/0268- 1242/12/10/003
  • 24. Montagner, X., Briand, R., Fouillat, P., Schrimpf, R., Touboui, A., Galloway, K., Calvet, M., and Calvel, P. (1998) Dose-rate and irradiation temperature dependence of BJT SPICE model rad-parameters, IEEE Transactions on Nuclear Science, 45, 1431-37. doi: 10.1109/RADECS.1997.698893
  • 25. Pien, C. F., Amir, H. F., Salleh, S., and Muhammad, A. (2010) Effects of total ionizing dose on bipolar junction transistor, American Journal of Applied Sciences, 7, 807. doi: 10.3844/ajassp.2010.807.810
  • 26. Roberge, J. K. (1975) Operational amplifiers: theory and practice, John Wiley&Sons Inc. New York.
  • 27. Schrimpf, R. D., and Fleetwood, D. M. (2004) Radiation effects and soft errors in integrated circuits and electronic devices, World Scientific. doi: 10.1142/5607
  • 28. Sedra, A. S., Smith, K. C., Carusone, T. C., and Gaudet, V. (2004) Microelectronic circuits, Oxford University Press, New York.
  • 29. Sharma, M. C. (1978) 555 Timer and Its Applications, Business Promotion Puplications. Delhi.
  • 30. Soliman, F. (1993) Operational amplifier type 741: Characterization and radiation effects, Communications Faculty of Sciences University of Ankara Series A2-A3 Physical Sciences and Engineering, 42, 15-32. doi: 10.1501/commua1-2_0000000051
  • 31. Terrell, D. (1996) Op Amps: Design, Application, and Troubleshooting, Newnes. doi: 10.1016/B978-0-7506-9702-6.X5000-8
  • 32. Um, M., Ro, D., Chang, I. J., and Lee, H.-M. (2020). A Radiation-Hardened ReadoutIntegrated Circuits for Sensor Systems. In 2020 IEEE International Conference on Consumer Electronics-Asia (ICCE-Asia), 1-4. IEEE. doi: 10.1109/ICCEAsia49877.2020.9276762
  • 33. Van Lint, V. A. (1987) The physics of radiation damage in particle detectors, Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 253, 453-59. doi: 10.1016/0168-9002(87)90532-8
  • 34. Walldén, J. (2014). Radiation Induced Effects in Electronic Devices and Radiation Hardening By Design Techniques. Master's Thesis, Linköpings university, Department of Electrical Engineering, Sweden.
Toplam 34 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Elektrik Mühendisliği, Nükleer Mühendisliği
Bölüm Araştırma Makaleleri
Yazarlar

Esra Kendir 0000-0002-6728-5640

Şerafettin Yaltkaya Bu kişi benim 0000-0002-6840-8200

Yayımlanma Tarihi 30 Nisan 2023
Gönderilme Tarihi 31 Mart 2022
Kabul Tarihi 30 Mart 2023
Yayımlandığı Sayı Yıl 2023 Cilt: 28 Sayı: 1

Kaynak Göster

APA Kendir, E., & Yaltkaya, Ş. (2023). GAMMA RAY EFFECT ON OP-AMP 741 AND TIMER 555 IC. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi, 28(1), 193-206. https://doi.org/10.17482/uumfd.1094384
AMA Kendir E, Yaltkaya Ş. GAMMA RAY EFFECT ON OP-AMP 741 AND TIMER 555 IC. UUJFE. Nisan 2023;28(1):193-206. doi:10.17482/uumfd.1094384
Chicago Kendir, Esra, ve Şerafettin Yaltkaya. “GAMMA RAY EFFECT ON OP-AMP 741 AND TIMER 555 IC”. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi 28, sy. 1 (Nisan 2023): 193-206. https://doi.org/10.17482/uumfd.1094384.
EndNote Kendir E, Yaltkaya Ş (01 Nisan 2023) GAMMA RAY EFFECT ON OP-AMP 741 AND TIMER 555 IC. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi 28 1 193–206.
IEEE E. Kendir ve Ş. Yaltkaya, “GAMMA RAY EFFECT ON OP-AMP 741 AND TIMER 555 IC”, UUJFE, c. 28, sy. 1, ss. 193–206, 2023, doi: 10.17482/uumfd.1094384.
ISNAD Kendir, Esra - Yaltkaya, Şerafettin. “GAMMA RAY EFFECT ON OP-AMP 741 AND TIMER 555 IC”. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi 28/1 (Nisan 2023), 193-206. https://doi.org/10.17482/uumfd.1094384.
JAMA Kendir E, Yaltkaya Ş. GAMMA RAY EFFECT ON OP-AMP 741 AND TIMER 555 IC. UUJFE. 2023;28:193–206.
MLA Kendir, Esra ve Şerafettin Yaltkaya. “GAMMA RAY EFFECT ON OP-AMP 741 AND TIMER 555 IC”. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi, c. 28, sy. 1, 2023, ss. 193-06, doi:10.17482/uumfd.1094384.
Vancouver Kendir E, Yaltkaya Ş. GAMMA RAY EFFECT ON OP-AMP 741 AND TIMER 555 IC. UUJFE. 2023;28(1):193-206.

DUYURU:

30.03.2021- Nisan 2021 (26/1) sayımızdan itibaren TR-Dizin yeni kuralları gereği, dergimizde basılacak makalelerde, ilk gönderim aşamasında Telif Hakkı Formu yanısıra, Çıkar Çatışması Bildirim Formu ve Yazar Katkısı Bildirim Formu da tüm yazarlarca imzalanarak gönderilmelidir. Yayınlanacak makalelerde de makale metni içinde "Çıkar Çatışması" ve "Yazar Katkısı" bölümleri yer alacaktır. İlk gönderim aşamasında doldurulması gereken yeni formlara "Yazım Kuralları" ve "Makale Gönderim Süreci" sayfalarımızdan ulaşılabilir. (Değerlendirme süreci bu tarihten önce tamamlanıp basımı bekleyen makalelerin yanısıra değerlendirme süreci devam eden makaleler için, yazarlar tarafından ilgili formlar doldurularak sisteme yüklenmelidir).  Makale şablonları da, bu değişiklik doğrultusunda güncellenmiştir. Tüm yazarlarımıza önemle duyurulur.

Bursa Uludağ Üniversitesi, Mühendislik Fakültesi Dekanlığı, Görükle Kampüsü, Nilüfer, 16059 Bursa. Tel: (224) 294 1907, Faks: (224) 294 1903, e-posta: mmfd@uludag.edu.tr