Araştırma Makalesi
BibTex RIS Kaynak Göster

MAP/PH/1 Üretim Envanter Modeli

Yıl 2023, Cilt: 28 Sayı: 1, 89 - 106, 30.04.2023
https://doi.org/10.17482/uumfd.1171281

Öz

Bu çalışmada, müşterilerin Markovian varış sürecine göre sisteme katıldığı faz-tipi hizmet sürelerine sahip bir üretim envanter modeli tartışılmaktadır. Envanter seviyesi pozitif olduğunda, gelen bir müşteri hizmet biriminin boş olduğunu tespit ederse hemen hizmete girer. Hizmet verilen müşteri sistemden ayrılır ve eldeki stok, hizmet tamamlanma anında bir birim azalır. Aksi takdirde müşteri sonsuz büyüklükte bir bekleme alanına (kuyruğa) girer ve hizmet almayı bekler. Üretim tesisi, ürünleri (𝑠, 𝑆) politikasına göre üretir. Envanter seviyesi 𝑠'ye düştüğünde üretim açılır ve envanter seviyesi maksimum 𝑆 seviyesine ulaşana kadar üretim açık kalır. Envanter seviyesi 𝑆 olduğu anda, üretim süreci kapatılır. Matris-geometrik yöntemi uygulayarak, üretim envanter modelinin kararlı durum analizini gerçekleştiriyoruz ve parametrelerin sistem performans ölçüleri üzerindeki etkisini ve envanter politikası için bir optimizasyon çalışmasını içeren birkaç açıklayıcı sayısal örnek gerçekleştiriyoruz.

Kaynakça

  • 1. Artalejo, J.R., Gomez-Corral, A. and He, Q.M. (2010) Markovian arrivals in stochastic modelling: a survey and some new results. SORT: Statistics and Operations Research Transactions, 34(2), 101-144.
  • 2. Baek, J.W. and Moon, S.K. (2014) The 𝑀/𝑀/1 queue with a production-inventory system and lost sales, Applied Mathematics and Computation, 233, 534-544. doi.org/10.1016/j.amc.2014.02.033
  • 3. Baek, J.W. and Moon, S.K. (2016) A production-inventory system with a Markovian service queue and lost sales, Journal of the Korean Statistical Society, 45, 14-24. doi.org/10.1016/j.jkss.2015.05.002
  • 4. Barron, Y. (2022) The continuous (𝑆, 𝑠, 𝑆𝑒 ) inventory model with dual sourcing and emergency orders, European Journal of Operational Research, 301, 18-38. doi.org/10.1016/j.ejor.2021.09.021
  • 5. Chakravarthy, S.R. (2001) The batch Markovian arrival process: a review and future work. In: Krishnamoorthy, A., Raju, N. and Ramaswami, V. (eds) Advances in probability and stochastic processes. Notable, New Jersey, 21-49.
  • 6. Chakravarthy, S.R. (2010) Markovian arrival processes, Wiley Encyclopedia of Operations Research and Management Science. doi.org/10.1002/9780470400531.eorms0499
  • 7. Chakravarthy, S.R. (2020) Queueing-inventory models with batch demands and positive service times, Automation and Remote Control, 81, 713-730. doi.org/10.1134/S0005117920040128
  • 8. Chakravarthy, S.R. and Rumyantsev, A. (2020) Analytical and simulation studies of queueing-inventory models with 𝑀𝐴𝑃 demands in batches and positive phase type services, Simulation Modelling Practice and Theory, 103, 1-15. doi.org/10.1016/j.simpat.2020.102092
  • 9. De la Cruz, N.N. and Daduna, H. (2022) Analysis of second order properties of production– inventory systems with lost sales, Annals of Operations Research. doi.org/10.1007/s10479- 022-05061-z
  • 10. He, Q.M. and Zhang, H. (2013) Performance analysis of an inventory–production system with shipment consolidation in the production facility, Performance Evaluation, 70(9), 623- 638. doi.org/10.1016/j.peva.2013.05.007
  • 11. Karthikeyan, K. and Sudhesh, R. (2016) Recent review article on queueing inventory systems, Research Journal of Pharmacy and Technology, 9(11), 1451-1461. doi:10.5958/0974-360X.2016.00421.2
  • 12. Krishnamoorthy, A. and Raju, N. (1998) (𝑠, 𝑆) inventory with lead time-the N-policy. International Journal of Information and Management Sciences, 9, 45-52.
  • 13. Krishnamoorthy, A., Lakshmy, B. and Manikandan, R. (2011a) A survey on inventory models with positive service time, OPSEARCH, 48, 153-169. doi.org/10.1007/s12597-010- 0032-z
  • 14. Krishnamoorthy, A., Viswanath, C. and Narayanan, V.C. (2011b) Production inventory with service time and vacation to the server, IMA Journal of Management Mathematics, 22, 33-45. doi.org/10.1093/imaman/dpp025
  • 15. Krishnamoorthy, A. and Narayanan, V.C. (2013) Stochastic decomposition in production inventory with service time, European Journal of Operational Research, 228, 358-366. doi.org/10.1016/j.ejor.2013.01.041
  • 16. Krishnamoorthy, A., Nair, S.S. and Narayanan, V.C. (2015) Production inventory with service time and interruptions, International Journal of Systems Science, 46(10), 1800- 1816. doi.org/10.1080/00207721.2013.837538
  • 17. Latouche, G. and Ramaswami, V. (1999) Introduction to Matrix Analytic Methods in Stochastic Modelling, ASASIAM, Philadelphia.
  • 18. Melikov, A., Mirzayev, R. and Sztrik, J. (2023) Double-sources queuing-inventory systems with finite waiting room and destructible stocks, Mathematics, 11, 226. doi.org/10.3390/math11010226
  • 19. Neuts, M.F. (1981) Matrix-geometric Solutions in Stochastic Models: An Algorithmic Approach, The Johns Hopkins University Press, Baltimore, MD. [1994 version is Dover Edition].
  • 20. Saffari, M., Asmussen, S. and Haji, R. (2013) The 𝑀/𝑀/1 queue with inventory, lost sale, and general lead times, Queueing Systems, 75, 65-77. doi.org/10.1007/s11134-012-9337-3
  • 21. Schwarz, M., Sauer, C., Daduna, H., Kulik, R. and Szekli, R. (2006) 𝑀/𝑀/1 queueing system with inventory, Queueing Systems: Theory and Applications, 54, 55-78. doi.org/10.1007/s11134-006-8710-5
  • 22. Sigman, K. and Simchi-Levi, D. (1992) Light traffic heuristic for an 𝑀/𝐺/1 queue with limited inventory, Annals of Operations Research, 40, 371-380. doi.org/10.1007/BF02060488
  • 23. Shajin, D., Krishnamoorthy, A., Melikov, A.Z. and Sztrik, J. (2022) Multi-server queuing production inventory system with emergency replenishment, Mathematics, 10(20), 3839. doi.org/10.3390/math10203839

A MAP/PH/1 PRODUCTION INVENTORY MODEL

Yıl 2023, Cilt: 28 Sayı: 1, 89 - 106, 30.04.2023
https://doi.org/10.17482/uumfd.1171281

Öz

In this study, a production inventory model with phase type service times where customers join the system occur according to a Markovian arrival process is discussed. When the inventory level is positive, if an arriving customer finds the server idle gets into service immediately. Served customer leaves the system and the on-hand inventory is decreased one unit of item at service completion epoch. Otherwise, the customer enters into a waiting space (queue) of infinite capacity and waits for get served. The production facility produces items according to an (𝑠,𝑆) policy. The production is switched on when the inventory level depletes to 𝑠 and the production remains on until the inventory level reaches to the maximum level 𝑆. Once the inventory level becomes 𝑆, the production process is switched off. Applying the matrix-geometric method, we carry out the steady-state analysis of the production inventory model and perform a few illustrative numerical examples includes the effect of parameters on the system performance measures and an optimization study for the inventory policy

Kaynakça

  • 1. Artalejo, J.R., Gomez-Corral, A. and He, Q.M. (2010) Markovian arrivals in stochastic modelling: a survey and some new results. SORT: Statistics and Operations Research Transactions, 34(2), 101-144.
  • 2. Baek, J.W. and Moon, S.K. (2014) The 𝑀/𝑀/1 queue with a production-inventory system and lost sales, Applied Mathematics and Computation, 233, 534-544. doi.org/10.1016/j.amc.2014.02.033
  • 3. Baek, J.W. and Moon, S.K. (2016) A production-inventory system with a Markovian service queue and lost sales, Journal of the Korean Statistical Society, 45, 14-24. doi.org/10.1016/j.jkss.2015.05.002
  • 4. Barron, Y. (2022) The continuous (𝑆, 𝑠, 𝑆𝑒 ) inventory model with dual sourcing and emergency orders, European Journal of Operational Research, 301, 18-38. doi.org/10.1016/j.ejor.2021.09.021
  • 5. Chakravarthy, S.R. (2001) The batch Markovian arrival process: a review and future work. In: Krishnamoorthy, A., Raju, N. and Ramaswami, V. (eds) Advances in probability and stochastic processes. Notable, New Jersey, 21-49.
  • 6. Chakravarthy, S.R. (2010) Markovian arrival processes, Wiley Encyclopedia of Operations Research and Management Science. doi.org/10.1002/9780470400531.eorms0499
  • 7. Chakravarthy, S.R. (2020) Queueing-inventory models with batch demands and positive service times, Automation and Remote Control, 81, 713-730. doi.org/10.1134/S0005117920040128
  • 8. Chakravarthy, S.R. and Rumyantsev, A. (2020) Analytical and simulation studies of queueing-inventory models with 𝑀𝐴𝑃 demands in batches and positive phase type services, Simulation Modelling Practice and Theory, 103, 1-15. doi.org/10.1016/j.simpat.2020.102092
  • 9. De la Cruz, N.N. and Daduna, H. (2022) Analysis of second order properties of production– inventory systems with lost sales, Annals of Operations Research. doi.org/10.1007/s10479- 022-05061-z
  • 10. He, Q.M. and Zhang, H. (2013) Performance analysis of an inventory–production system with shipment consolidation in the production facility, Performance Evaluation, 70(9), 623- 638. doi.org/10.1016/j.peva.2013.05.007
  • 11. Karthikeyan, K. and Sudhesh, R. (2016) Recent review article on queueing inventory systems, Research Journal of Pharmacy and Technology, 9(11), 1451-1461. doi:10.5958/0974-360X.2016.00421.2
  • 12. Krishnamoorthy, A. and Raju, N. (1998) (𝑠, 𝑆) inventory with lead time-the N-policy. International Journal of Information and Management Sciences, 9, 45-52.
  • 13. Krishnamoorthy, A., Lakshmy, B. and Manikandan, R. (2011a) A survey on inventory models with positive service time, OPSEARCH, 48, 153-169. doi.org/10.1007/s12597-010- 0032-z
  • 14. Krishnamoorthy, A., Viswanath, C. and Narayanan, V.C. (2011b) Production inventory with service time and vacation to the server, IMA Journal of Management Mathematics, 22, 33-45. doi.org/10.1093/imaman/dpp025
  • 15. Krishnamoorthy, A. and Narayanan, V.C. (2013) Stochastic decomposition in production inventory with service time, European Journal of Operational Research, 228, 358-366. doi.org/10.1016/j.ejor.2013.01.041
  • 16. Krishnamoorthy, A., Nair, S.S. and Narayanan, V.C. (2015) Production inventory with service time and interruptions, International Journal of Systems Science, 46(10), 1800- 1816. doi.org/10.1080/00207721.2013.837538
  • 17. Latouche, G. and Ramaswami, V. (1999) Introduction to Matrix Analytic Methods in Stochastic Modelling, ASASIAM, Philadelphia.
  • 18. Melikov, A., Mirzayev, R. and Sztrik, J. (2023) Double-sources queuing-inventory systems with finite waiting room and destructible stocks, Mathematics, 11, 226. doi.org/10.3390/math11010226
  • 19. Neuts, M.F. (1981) Matrix-geometric Solutions in Stochastic Models: An Algorithmic Approach, The Johns Hopkins University Press, Baltimore, MD. [1994 version is Dover Edition].
  • 20. Saffari, M., Asmussen, S. and Haji, R. (2013) The 𝑀/𝑀/1 queue with inventory, lost sale, and general lead times, Queueing Systems, 75, 65-77. doi.org/10.1007/s11134-012-9337-3
  • 21. Schwarz, M., Sauer, C., Daduna, H., Kulik, R. and Szekli, R. (2006) 𝑀/𝑀/1 queueing system with inventory, Queueing Systems: Theory and Applications, 54, 55-78. doi.org/10.1007/s11134-006-8710-5
  • 22. Sigman, K. and Simchi-Levi, D. (1992) Light traffic heuristic for an 𝑀/𝐺/1 queue with limited inventory, Annals of Operations Research, 40, 371-380. doi.org/10.1007/BF02060488
  • 23. Shajin, D., Krishnamoorthy, A., Melikov, A.Z. and Sztrik, J. (2022) Multi-server queuing production inventory system with emergency replenishment, Mathematics, 10(20), 3839. doi.org/10.3390/math10203839
Toplam 23 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Endüstri Mühendisliği
Bölüm Araştırma Makaleleri
Yazarlar

Şerife Özkar 0000-0003-3475-5666

Yayımlanma Tarihi 30 Nisan 2023
Gönderilme Tarihi 5 Eylül 2022
Kabul Tarihi 11 Mart 2023
Yayımlandığı Sayı Yıl 2023 Cilt: 28 Sayı: 1

Kaynak Göster

APA Özkar, Ş. (2023). A MAP/PH/1 PRODUCTION INVENTORY MODEL. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi, 28(1), 89-106. https://doi.org/10.17482/uumfd.1171281
AMA Özkar Ş. A MAP/PH/1 PRODUCTION INVENTORY MODEL. UUJFE. Nisan 2023;28(1):89-106. doi:10.17482/uumfd.1171281
Chicago Özkar, Şerife. “A MAP/PH/1 PRODUCTION INVENTORY MODEL”. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi 28, sy. 1 (Nisan 2023): 89-106. https://doi.org/10.17482/uumfd.1171281.
EndNote Özkar Ş (01 Nisan 2023) A MAP/PH/1 PRODUCTION INVENTORY MODEL. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi 28 1 89–106.
IEEE Ş. Özkar, “A MAP/PH/1 PRODUCTION INVENTORY MODEL”, UUJFE, c. 28, sy. 1, ss. 89–106, 2023, doi: 10.17482/uumfd.1171281.
ISNAD Özkar, Şerife. “A MAP/PH/1 PRODUCTION INVENTORY MODEL”. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi 28/1 (Nisan 2023), 89-106. https://doi.org/10.17482/uumfd.1171281.
JAMA Özkar Ş. A MAP/PH/1 PRODUCTION INVENTORY MODEL. UUJFE. 2023;28:89–106.
MLA Özkar, Şerife. “A MAP/PH/1 PRODUCTION INVENTORY MODEL”. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi, c. 28, sy. 1, 2023, ss. 89-106, doi:10.17482/uumfd.1171281.
Vancouver Özkar Ş. A MAP/PH/1 PRODUCTION INVENTORY MODEL. UUJFE. 2023;28(1):89-106.

DUYURU:

30.03.2021- Nisan 2021 (26/1) sayımızdan itibaren TR-Dizin yeni kuralları gereği, dergimizde basılacak makalelerde, ilk gönderim aşamasında Telif Hakkı Formu yanısıra, Çıkar Çatışması Bildirim Formu ve Yazar Katkısı Bildirim Formu da tüm yazarlarca imzalanarak gönderilmelidir. Yayınlanacak makalelerde de makale metni içinde "Çıkar Çatışması" ve "Yazar Katkısı" bölümleri yer alacaktır. İlk gönderim aşamasında doldurulması gereken yeni formlara "Yazım Kuralları" ve "Makale Gönderim Süreci" sayfalarımızdan ulaşılabilir. (Değerlendirme süreci bu tarihten önce tamamlanıp basımı bekleyen makalelerin yanısıra değerlendirme süreci devam eden makaleler için, yazarlar tarafından ilgili formlar doldurularak sisteme yüklenmelidir).  Makale şablonları da, bu değişiklik doğrultusunda güncellenmiştir. Tüm yazarlarımıza önemle duyurulur.

Bursa Uludağ Üniversitesi, Mühendislik Fakültesi Dekanlığı, Görükle Kampüsü, Nilüfer, 16059 Bursa. Tel: (224) 294 1907, Faks: (224) 294 1903, e-posta: mmfd@uludag.edu.tr