Araştırma Makalesi
BibTex RIS Kaynak Göster

Kavitasyon İşleminin Denim Kumaşların Termal Konfor Özelliklerine Etkisi

Yıl 2023, Cilt: 28 Sayı: 1, 77 - 88, 30.04.2023
https://doi.org/10.17482/uumfd.1195270

Öz

Ultrasonik işlem yada kavitasyon, kumaş yüzeyine zarar verilmeden kirlerin uzaklaştırılmasını sağlayan bir proses olarak tanımlanmaktadır. Literatürde denim kumaşların ultrasonik yıkama işlemleri ile ilgili çalışmalar bulunmaktadır ancak kavitasyon işleminin denim kumaşların ısıl konforuna etkisi ile ilgili herhangi bir çalışma bulunmamaktadır. Bu amaçla denim kumaşlara ultrasonik homojenizatör test cihazında 15, 30 ve 45 dakika olmak üzere üç farklı zamanda ve 8khz ve 16khz olmak üzere iki farklı frekansta işlem uygulanmıştır. Uygulanan kavitasyon işleminin hava geçirgenliği, ısıl iletkenlik ve ısıl soğurma değerlerini azalttığı gözlemlenmiştir. Diğer yandan kavitasyon işlemi yüzeydeki kir, yağ gibi maddeleri temizleyerek su buharı geçirgenlik değerini artırmıştır. Uygulanan kavitasyon işleminin terin dış yüzeye hızlı bir şekilde atılmasını sağlayarak konfor sağladığı, kumaştan daha az ısı iletimi sağladığı ve kavitasyon işleminden sonra denim kumaşın daha sıcak hissedildiği sonucuna varılabilir.

Kaynakça

  • 1. Alambeta Measuring Device: Users’ Guide Version 2.3, Sensora Instrument Liberec, Company Brochure.
  • 2. ASTM Test Method D 1777. Standard Test Method for Thickness of Textile Materials.
  • 3. Arikan, A., Karadag, T., Avci, M. E., Karlik, O. (2018) The Use of Ultrasonic Washing Technology in Denim Fabrics, International Journal of Scientific and Technological Research, 4, 10, 455-461.
  • 4. Bandelin HD2200 Homogenizator Manual.
  • 5. Ciukas, R., Abramavičiūtė J. (2010) Investigation of the Air Permeability of Socks Knitted from Yarns with Peculiar Properties, FIBRES & TEXTILES in Eastern Europe, 18, 1, 84-88.
  • 6. EN ISO 9237. Determination of the Permeability of Fabrics to Air.
  • 7. Eyüpoğlu, Ş., Merdan, N. (2020) Investigation of the Effect of Enzymatic Treatment on Some Physical and Chemical Properties of Cotton Fabric, European Journal of Science and Technology, 18, 885-894. doi: https://doi.org/10.31590/ejosat.672653
  • 8. Fraj, A.B., Jaouachi, B. (2021) Effects of ozone treatment on denim garment properties, Coloration Technology, 137, 678-688. doi: https://doi.org/10.1111/cote.12568
  • 9. Frydrych I, Dziworska G, Bilska J. (2002) Comparative Analysis of the Thermal Insulation Properties of Fabrics Made of Natural and Man-Made Cellulose Fibres, FIBRES & TEXTILES in Eastern Europe, October/December, 40-44.
  • 10. Havlova, M. (2020) Air permeability, water vapour permeability and selected structural parameters of woven fabrics, Fibres and Textiles, 1, 12-18.
  • 11. Ivanovska , A., Reljic , M., Kostic , M., Asanovic, K., Mangovska, B. (2021) Air Permeability and Water Vapor Resistance of Differently Finished Cotton and Cotton/Elastane Single Jersey Knitted Fabrics, Journal of Natural Fibers, 1-13. doi: https://doi.org/10.1080/15440478.2021.1875383
  • 12. Khajavi, R., Novinrad, B., Kiumarsi, A. (2007) The effect of ultrasonic on the denim fabric worn out process, Pakistan journal of biological sciences: PJBS, 10(4), 645-648. doi: https://doi.org/10.3923/pjbs.2007.645.648
  • 13. Lee S., Obendorf S.K. (2012) Statistical modelling of water vapour transport through woven fabrics, Textile Research Journal, 82(3), 211-219. doi: https://doi.org/10.1177/0040517511433145
  • 14. Mason, T. J. (1988). Theory. Applications and uses of ultrasound in chemistry. Sonochemistry. doi: https://doi.org/ 10.1016/0041-624X(89)90051-6
  • 15. Morton, W.E, Hearle, J.W.S. (2008). Physical Properties of Textile Fibres, Woodhead Publishing, England.
  • 16. Muthu, S. Sustainability in Denim, Woodhead Publishing, USA, 2017
  • 17. Oğulata, R.T. (2006) Air Permeability of Woven Fabrics, JTATM, 5, 2, 1-10.
  • 18. Polipowski M., Wiecek P., Wiecek B., Pinar A. (2017) Analysis of the effect of chanel parameters between filaments and single fabric parameters on air permeability, water vapour resistance and thermal resistance, Fibres Textiles in Eastern Europe, 25(5), 79-86. doi: https://doi.org/ 10.5604/01.3001.0010.4632
  • 19. Sun, D., Guo, Q., Liu, X. (2010) Investigation into dyeing acceleration efficiency of ultrasound energy, Ultrasonics, 50, 4–5, 441-446. doi: https://doi.org/10.1016/j.ultras.2009.07.002
  • 20. Taştan Özkan, E., Kaplangiray B. (2020) Effect of Loop Length On Thermal Comfort Properties of Mesh Knitted Fabrics, Textile and Engineer, 27 (120): 243-251. doi: 10.7216/ 1300759920202712004.
  • 21. Ticha, M.B., Meksi, N. (2021) Exploitation of Ultrasonic Waves to Develop and Model a Sustainable Process for Washing Denim Fabrics, Journal of Natural Fibers, 1-18. doi: https://doi.org/10.1080/15440478.2021.2002758
  • 22. TS EN ISO 11092, 2014. Textile-Determination of Physiological Properties-Measurement of Thermal Resistance and Resistance to Water Vapor in Stable Conditions (hot plate test protected against mist), Turkish Standards Institute, Ankara.
  • 23. Uzun, M. (2013) Effect of Ultrasonic Laundering on Thermophysiological Properties of Knitted Fabrics, Fibers and Polymers, 14, 10, 1714-1721. doi: https://doi.org/10.1007/s12221-013-1714-y
  • 24. Uzun, M. (2013) Ultrasonic Washing Effect on Thermo Physiological Properties of Natural Based Fabrics, Journal of Engineered Fibers and Fabrics, 2013, 8,1, 39-51. doi: https://doi.org/10.1177/155892501300800105
  • 25. Yıldırım, N., Üstündağ, S., Örtlek, H.G. (2014) The Effects of Washing Treatments on Physical Properties of Denim Fabrics, Textile and Engineer, 21, 95, 16-29. doi:10.7216/130075992014219503.

EFFECT OF CAVITATION PROCESS ON THERMAL COMFORT PROPERTIES OF DENIM FABRICS

Yıl 2023, Cilt: 28 Sayı: 1, 77 - 88, 30.04.2023
https://doi.org/10.17482/uumfd.1195270

Öz

The process, which is defined as ultrasonic treatment or cavitation, ensures that the dirt is removed from the surfaces without damaging the fabric surface. There are studies on the ultrasonic washing processes of denim fabrics in the literature, but there is no study on the effect of the cavitation process on the thermal comfort of denim fabrics. For this purpose, denim fabrics were treated at three different times, 15, 30, and 45 minutes, and at two different frequencies 8khz and 16khz in the ultrasonic homogenizer test device. It was observed that the applied cavitation process reduces the air permeability, thermal conductivity, and thermal absorptivity values. On the other hand, the cavitation process increased the water vapour permeability value by cleaning the materials such as dirt and oil on the surface. It can be concluded that the applied cavitation process provides comfort by enabling quick throwing of the sweat to the outer surface, provides less heat conduction from the fabric, and the denim fabric felt warmer after the cavitation process.

Kaynakça

  • 1. Alambeta Measuring Device: Users’ Guide Version 2.3, Sensora Instrument Liberec, Company Brochure.
  • 2. ASTM Test Method D 1777. Standard Test Method for Thickness of Textile Materials.
  • 3. Arikan, A., Karadag, T., Avci, M. E., Karlik, O. (2018) The Use of Ultrasonic Washing Technology in Denim Fabrics, International Journal of Scientific and Technological Research, 4, 10, 455-461.
  • 4. Bandelin HD2200 Homogenizator Manual.
  • 5. Ciukas, R., Abramavičiūtė J. (2010) Investigation of the Air Permeability of Socks Knitted from Yarns with Peculiar Properties, FIBRES & TEXTILES in Eastern Europe, 18, 1, 84-88.
  • 6. EN ISO 9237. Determination of the Permeability of Fabrics to Air.
  • 7. Eyüpoğlu, Ş., Merdan, N. (2020) Investigation of the Effect of Enzymatic Treatment on Some Physical and Chemical Properties of Cotton Fabric, European Journal of Science and Technology, 18, 885-894. doi: https://doi.org/10.31590/ejosat.672653
  • 8. Fraj, A.B., Jaouachi, B. (2021) Effects of ozone treatment on denim garment properties, Coloration Technology, 137, 678-688. doi: https://doi.org/10.1111/cote.12568
  • 9. Frydrych I, Dziworska G, Bilska J. (2002) Comparative Analysis of the Thermal Insulation Properties of Fabrics Made of Natural and Man-Made Cellulose Fibres, FIBRES & TEXTILES in Eastern Europe, October/December, 40-44.
  • 10. Havlova, M. (2020) Air permeability, water vapour permeability and selected structural parameters of woven fabrics, Fibres and Textiles, 1, 12-18.
  • 11. Ivanovska , A., Reljic , M., Kostic , M., Asanovic, K., Mangovska, B. (2021) Air Permeability and Water Vapor Resistance of Differently Finished Cotton and Cotton/Elastane Single Jersey Knitted Fabrics, Journal of Natural Fibers, 1-13. doi: https://doi.org/10.1080/15440478.2021.1875383
  • 12. Khajavi, R., Novinrad, B., Kiumarsi, A. (2007) The effect of ultrasonic on the denim fabric worn out process, Pakistan journal of biological sciences: PJBS, 10(4), 645-648. doi: https://doi.org/10.3923/pjbs.2007.645.648
  • 13. Lee S., Obendorf S.K. (2012) Statistical modelling of water vapour transport through woven fabrics, Textile Research Journal, 82(3), 211-219. doi: https://doi.org/10.1177/0040517511433145
  • 14. Mason, T. J. (1988). Theory. Applications and uses of ultrasound in chemistry. Sonochemistry. doi: https://doi.org/ 10.1016/0041-624X(89)90051-6
  • 15. Morton, W.E, Hearle, J.W.S. (2008). Physical Properties of Textile Fibres, Woodhead Publishing, England.
  • 16. Muthu, S. Sustainability in Denim, Woodhead Publishing, USA, 2017
  • 17. Oğulata, R.T. (2006) Air Permeability of Woven Fabrics, JTATM, 5, 2, 1-10.
  • 18. Polipowski M., Wiecek P., Wiecek B., Pinar A. (2017) Analysis of the effect of chanel parameters between filaments and single fabric parameters on air permeability, water vapour resistance and thermal resistance, Fibres Textiles in Eastern Europe, 25(5), 79-86. doi: https://doi.org/ 10.5604/01.3001.0010.4632
  • 19. Sun, D., Guo, Q., Liu, X. (2010) Investigation into dyeing acceleration efficiency of ultrasound energy, Ultrasonics, 50, 4–5, 441-446. doi: https://doi.org/10.1016/j.ultras.2009.07.002
  • 20. Taştan Özkan, E., Kaplangiray B. (2020) Effect of Loop Length On Thermal Comfort Properties of Mesh Knitted Fabrics, Textile and Engineer, 27 (120): 243-251. doi: 10.7216/ 1300759920202712004.
  • 21. Ticha, M.B., Meksi, N. (2021) Exploitation of Ultrasonic Waves to Develop and Model a Sustainable Process for Washing Denim Fabrics, Journal of Natural Fibers, 1-18. doi: https://doi.org/10.1080/15440478.2021.2002758
  • 22. TS EN ISO 11092, 2014. Textile-Determination of Physiological Properties-Measurement of Thermal Resistance and Resistance to Water Vapor in Stable Conditions (hot plate test protected against mist), Turkish Standards Institute, Ankara.
  • 23. Uzun, M. (2013) Effect of Ultrasonic Laundering on Thermophysiological Properties of Knitted Fabrics, Fibers and Polymers, 14, 10, 1714-1721. doi: https://doi.org/10.1007/s12221-013-1714-y
  • 24. Uzun, M. (2013) Ultrasonic Washing Effect on Thermo Physiological Properties of Natural Based Fabrics, Journal of Engineered Fibers and Fabrics, 2013, 8,1, 39-51. doi: https://doi.org/10.1177/155892501300800105
  • 25. Yıldırım, N., Üstündağ, S., Örtlek, H.G. (2014) The Effects of Washing Treatments on Physical Properties of Denim Fabrics, Textile and Engineer, 21, 95, 16-29. doi:10.7216/130075992014219503.
Toplam 25 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Giyilebilir Malzemeler
Bölüm Araştırma Makaleleri
Yazarlar

Esra Tastan 0000-0001-8950-6048

Binnaz Meriç Kaplangiray 0000-0002-1296-9092

Yayımlanma Tarihi 30 Nisan 2023
Gönderilme Tarihi 27 Ekim 2022
Kabul Tarihi 29 Mart 2023
Yayımlandığı Sayı Yıl 2023 Cilt: 28 Sayı: 1

Kaynak Göster

APA Tastan, E., & Meriç Kaplangiray, B. (2023). EFFECT OF CAVITATION PROCESS ON THERMAL COMFORT PROPERTIES OF DENIM FABRICS. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi, 28(1), 77-88. https://doi.org/10.17482/uumfd.1195270
AMA Tastan E, Meriç Kaplangiray B. EFFECT OF CAVITATION PROCESS ON THERMAL COMFORT PROPERTIES OF DENIM FABRICS. UUJFE. Nisan 2023;28(1):77-88. doi:10.17482/uumfd.1195270
Chicago Tastan, Esra, ve Binnaz Meriç Kaplangiray. “EFFECT OF CAVITATION PROCESS ON THERMAL COMFORT PROPERTIES OF DENIM FABRICS”. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi 28, sy. 1 (Nisan 2023): 77-88. https://doi.org/10.17482/uumfd.1195270.
EndNote Tastan E, Meriç Kaplangiray B (01 Nisan 2023) EFFECT OF CAVITATION PROCESS ON THERMAL COMFORT PROPERTIES OF DENIM FABRICS. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi 28 1 77–88.
IEEE E. Tastan ve B. Meriç Kaplangiray, “EFFECT OF CAVITATION PROCESS ON THERMAL COMFORT PROPERTIES OF DENIM FABRICS”, UUJFE, c. 28, sy. 1, ss. 77–88, 2023, doi: 10.17482/uumfd.1195270.
ISNAD Tastan, Esra - Meriç Kaplangiray, Binnaz. “EFFECT OF CAVITATION PROCESS ON THERMAL COMFORT PROPERTIES OF DENIM FABRICS”. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi 28/1 (Nisan 2023), 77-88. https://doi.org/10.17482/uumfd.1195270.
JAMA Tastan E, Meriç Kaplangiray B. EFFECT OF CAVITATION PROCESS ON THERMAL COMFORT PROPERTIES OF DENIM FABRICS. UUJFE. 2023;28:77–88.
MLA Tastan, Esra ve Binnaz Meriç Kaplangiray. “EFFECT OF CAVITATION PROCESS ON THERMAL COMFORT PROPERTIES OF DENIM FABRICS”. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi, c. 28, sy. 1, 2023, ss. 77-88, doi:10.17482/uumfd.1195270.
Vancouver Tastan E, Meriç Kaplangiray B. EFFECT OF CAVITATION PROCESS ON THERMAL COMFORT PROPERTIES OF DENIM FABRICS. UUJFE. 2023;28(1):77-88.

DUYURU:

30.03.2021- Nisan 2021 (26/1) sayımızdan itibaren TR-Dizin yeni kuralları gereği, dergimizde basılacak makalelerde, ilk gönderim aşamasında Telif Hakkı Formu yanısıra, Çıkar Çatışması Bildirim Formu ve Yazar Katkısı Bildirim Formu da tüm yazarlarca imzalanarak gönderilmelidir. Yayınlanacak makalelerde de makale metni içinde "Çıkar Çatışması" ve "Yazar Katkısı" bölümleri yer alacaktır. İlk gönderim aşamasında doldurulması gereken yeni formlara "Yazım Kuralları" ve "Makale Gönderim Süreci" sayfalarımızdan ulaşılabilir. (Değerlendirme süreci bu tarihten önce tamamlanıp basımı bekleyen makalelerin yanısıra değerlendirme süreci devam eden makaleler için, yazarlar tarafından ilgili formlar doldurularak sisteme yüklenmelidir).  Makale şablonları da, bu değişiklik doğrultusunda güncellenmiştir. Tüm yazarlarımıza önemle duyurulur.

Bursa Uludağ Üniversitesi, Mühendislik Fakültesi Dekanlığı, Görükle Kampüsü, Nilüfer, 16059 Bursa. Tel: (224) 294 1907, Faks: (224) 294 1903, e-posta: mmfd@uludag.edu.tr